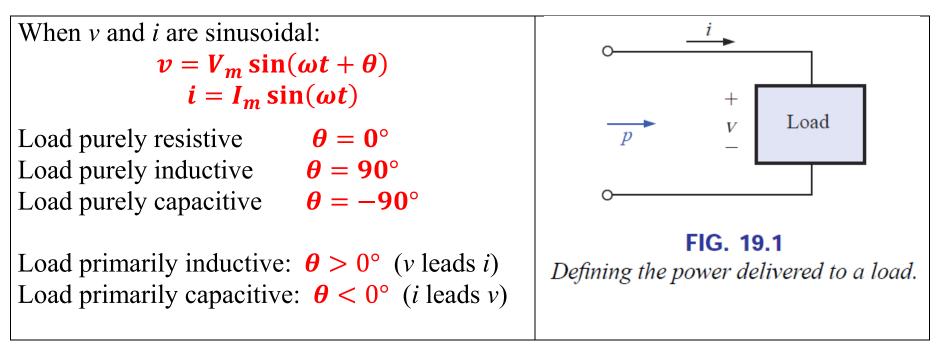
Power (ac)

19.1 INTRODUCTION

- The discussion about power in the previous chapters only included the *average power* delivered to ac network.
- We will examine the total power equation and introduce two additional types of power: *apparent power* and *reactive power*.

The power at any instant is always defined as:

 $\boldsymbol{p} = \boldsymbol{v} \cdot \boldsymbol{i}$



$$P = V_m I_m \sin(\omega t + \theta) \sin(\omega t)$$

Using the trigonometric identity: $\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$ two times results in:

 $p = VI \cos \theta (1 - \cos 2\omega t) + VI \sin \theta (\sin 2\omega t)$

Where: V and I are the rms values, $V = V_m/\sqrt{2}$ and $I = I_m/\sqrt{2}$ If Equation (19.1) is expanded to the form

$$p = \underbrace{VI\cos\theta}_{\text{Average}} - \underbrace{VI\cos\theta}_{\text{Peak}} \cos \underbrace{2\omega t}_{2x} + \underbrace{VI\sin\theta}_{\text{Peak}} \sin \underbrace{2\omega t}_{2x}$$

Three terms:

 Average power: independent of time
 The other two terms: vary at a frequency of (2ω) Peak values having similar format: (VI cos θ and VI sin θ)

19.2 RESISTIVE CIRCUIT

$\theta = 0^{\circ} \implies P_R = V$ $p_R = VI - V$		\xrightarrow{i} $\xrightarrow{+}$ $_{V}$ $\xrightarrow{-}$
• VI	is the average term	<i>p_R R</i> FIG. 19.2
 –VI cos 2ωt 	is a negative cosine wave with frequency twice the frequency of the voltage and current	Determining the power delivered to a purely resistive load.

 T_1 = period of input quantities T_2 = period of power curve p_R

The power curve is always positive. \Rightarrow

the total power delivered to a resistor will be dissipated in the form of heat.

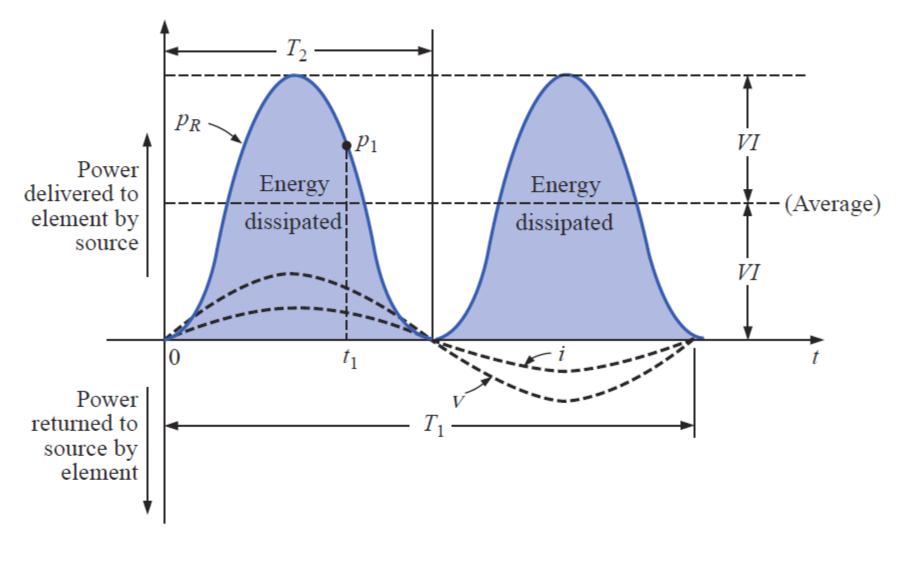


FIG. 19.3 *Power versus time for a purely resistive load.*

- The power returned to the source is represented by the portion of the curve below the axis, which is zero in this case.
- The power p_1 dissipated by the resistor at time t_1 can be found by simply substituting the time t_1 into the equation of the power, as indicated in Fig. 19.3.
- The average (real) power is VI:

$$P = VI = \frac{V_m I_m}{2} = I^2 R = \frac{V^2}{R}$$
(watts, W)

The energy dissipated by the resistor W_R over any period of time *t* is:

$$W_R = Pt = VIt$$
 (Joule, J)

For one cycle $t=T_1$:

$$W_R = VIT_1 = \frac{VI}{f_1}$$
 (Joule, J)

19.3 APPARENT POWER

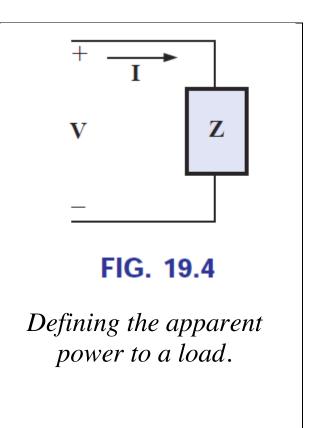
From what we have studied it seems *apparent* that the power delivered to the load is simply:

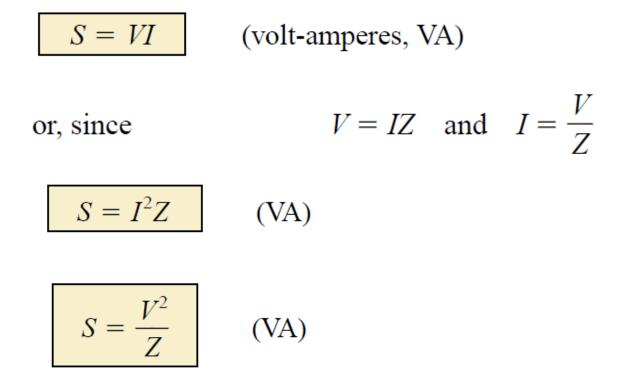
P = VI

We found: the power factor $\cos \theta$ of the load has a significant effect on the power dissipated.

The product VI is not the power delivered, but it is a useful power rating in the study of ac networks: it is called the *apparent power* and is represented by the symbol *S*.

It's unit is simply: *Volt-Ampere* (VA)





The average power to the load of Fig. 19.4 is

However,

S = VI

 $P = VI \cos \theta$

Therefore,

$$P = S \cos \theta \tag{W}$$

and the power factor of a system F_p is

$$F_p = \cos \theta = \frac{P}{S}$$
 (unitless)

For a purely resistive circuit:

$$P = VI = S$$

$$F_p = \cos \theta = \frac{P}{S} = 1$$

In general: power equipments are rated in: (VA) or (kVA)

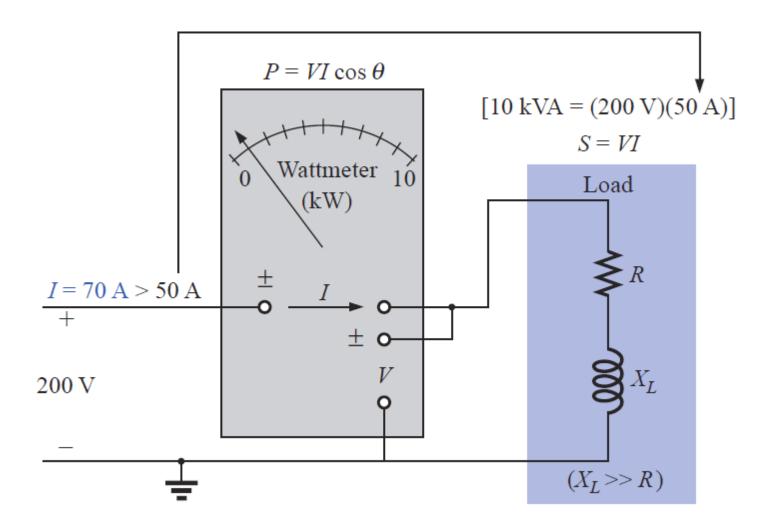


FIG. 19.5

Demonstrating the reason for rating a load in kVA rather than kW.

19.4 INDUCTIVE CIRCUIT AND REACTIVE POWER

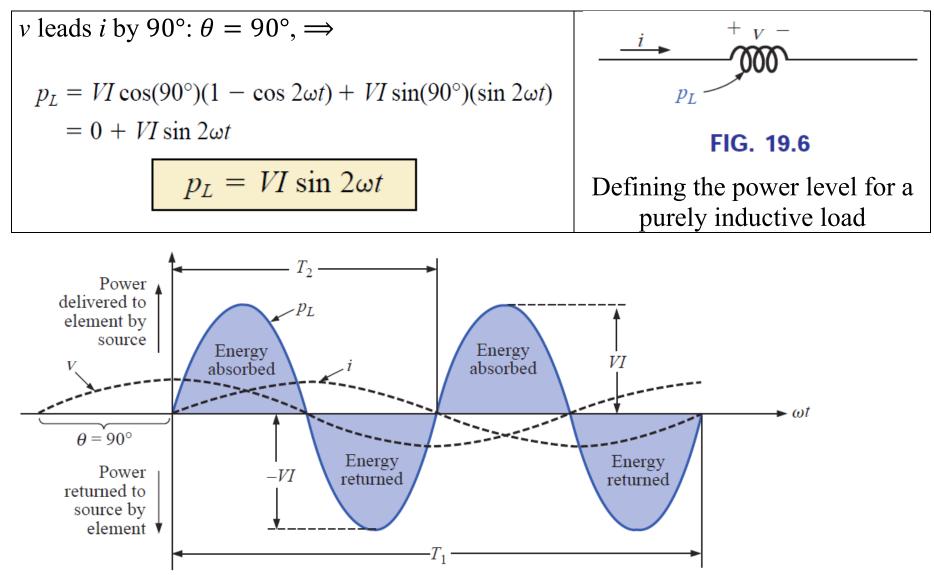


FIG. 19.7 *The power curve for a purely inductive load.*

- It is a sinewave with frequency twice that of the voltage or current and a peak value equal to *VI*.
- There is no average value

 T_1 = period of either input quantity

 $T_2 =$ period of p_L curve

Over one cycle: area above the horizontal axis = The area below the axis power delivered to inductor = power returned by inductor

The net flow of power to the pure (ideal) inductor is zero over a full cycle, and no energy is lost in the transaction.

The peak value of the power curve $(V \cdot I)$ is defined as the *reactive power*.

In general: *reactive power* $\equiv V \cdot I \cdot \sin \theta$ A factor appearing in the general form of the power: $P = VI \cos \theta (1 - \cos 2\omega t) + VI \sin \theta (\sin 2\omega t)$

The symbol of reactive power is *Q* unit *Volt-Ampere Reactive* (VAR)

 $Q = VI \sin \theta$

(volt-ampere reactive, VAR)

Inductor:
$$\theta = 90^{\circ} \Rightarrow$$

$$Q_L = VI \qquad (VAR)$$

or, since $V = IX_L$ or $I = V/X_L$,

$$Q_L = I^2 X_L \qquad (VAR)$$

$$Q_L = \frac{V^2}{X_L} \qquad (VAR)$$

or

Apparent power:S = VIAverage power: $P = VI \cos \theta = 0$ Then: $S = VI \cos \theta = 0$

$$F_p = \cos \theta = \frac{P}{S} = \frac{0}{VI} = 0$$

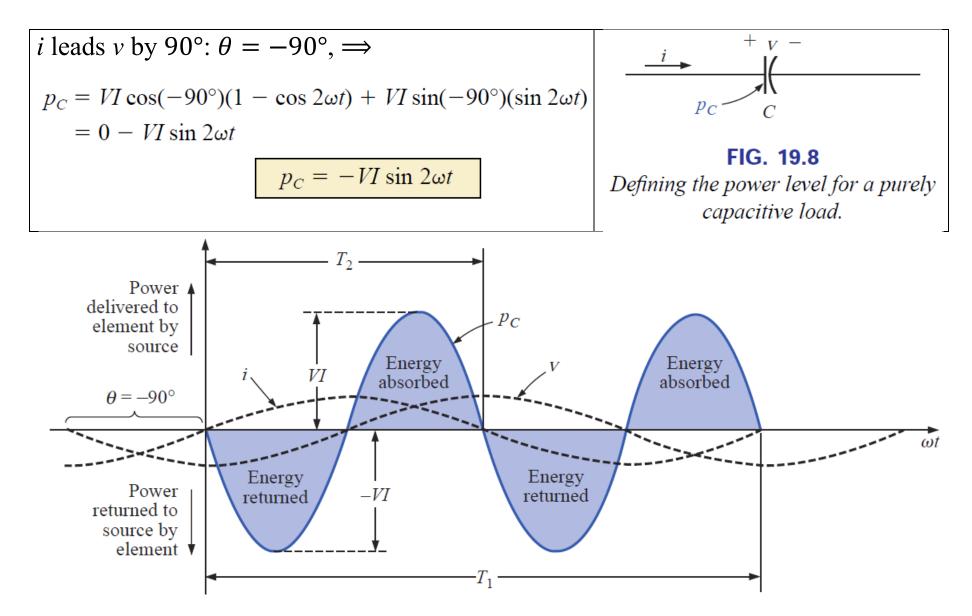
The energy stored by the inductor during half-cycle is:

$$W_{L} = \left(\frac{2VI}{\pi}\right) \times \left(\frac{T_{2}}{2}\right) \qquad W_{L} = \frac{VIT_{2}}{\pi} \qquad W_{L} = \frac{VI}{\pi f_{2}} \qquad (J)$$
$$W_{L} = \frac{VI}{\pi (2f_{1})} = \frac{VI}{\omega_{1}}$$
However,
$$V = IX_{L} = I\omega_{1}L$$
so that
$$W_{L} = \frac{(I\omega_{1}L)I}{\omega_{1}}$$

and $W_L = LI^2$ (J)

The energy stored or released by the inductor during half- cycle.

19.5 CAPACITIVE CIRCUIT



- It is a negative sinewave with frequency twice that of the voltage or current and a peak value equal to *VI*.
- There is no average value

 T_1 = period of either input quantity

 $T_2 =$ period of p_L curve

Over one cycle: area above the horizontal axis = The area below the axis power delivered to Capacitor = power returned by Capacitor

The net flow of power to the pure (ideal) capacitor is zero over a full cycle, and no energy is lost in the transaction.

The reactive power associated with the capacitor is again the peak value of P_C curve

 $Q_C = VI$ (VAR)

since $V = IX_C$ and $I = V/X_C$, the reactive power

$$Q_C = I^2 X_C \qquad \qquad Q_C = \frac{V^2}{X_C} \qquad (VAR)$$

Apparent power:S = VIAverage power: $P = VI \cos \theta = 0$ Then: $S = VI \cos \theta = 0$

$$F_p = \cos \theta = \frac{P}{S} = \frac{0}{VI} = 0$$

The energy stored by the capacitor during the positive half-cycle is:

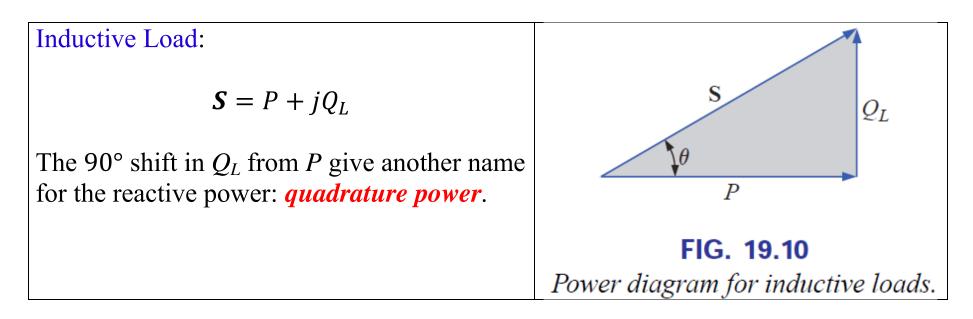
$$W_C = CV^2 \tag{J}$$

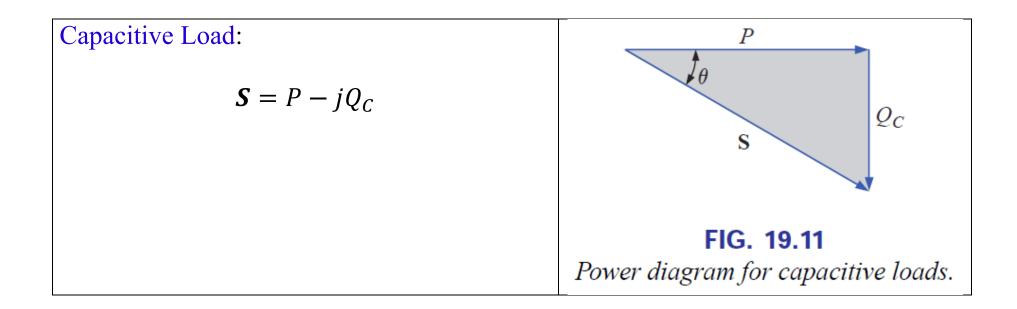
19.6 THE POWER TRIANGLE

The three quantities *average power*, *apparent power*, and *reactive power* can be related in the vector domain by:

 $\mathbf{S} = \mathbf{P} + \mathbf{Q} \qquad \text{with}$ $\mathbf{P} = P \angle 0^{\circ} \qquad \mathbf{Q}_L = Q_L \angle 90^{\circ} \qquad \mathbf{Q}_C = Q_C \angle -90^{\circ}$

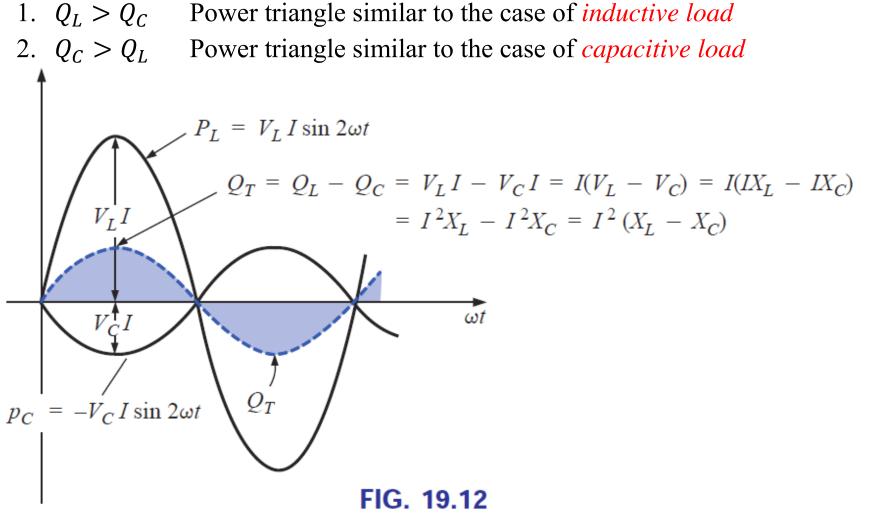
S is called the *phasor power*,





If Load has both Capacitive and inductive elements:

The reactive component of the power triangle is the difference between Q_L and Q_C :



Demonstrating why the net reactive power is the difference between that delivered to inductive and capacitive elements.

Series R-L-C Load:

If we multiply each vector in the impedance diagram by I^2 :

We obtain the power triangle:

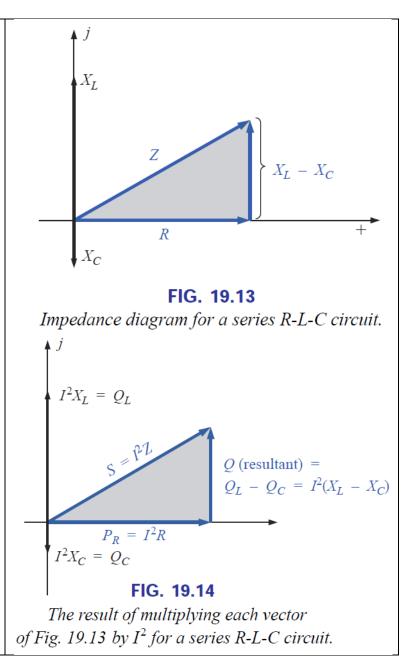
 $S^2 = P^2 + Q^2$

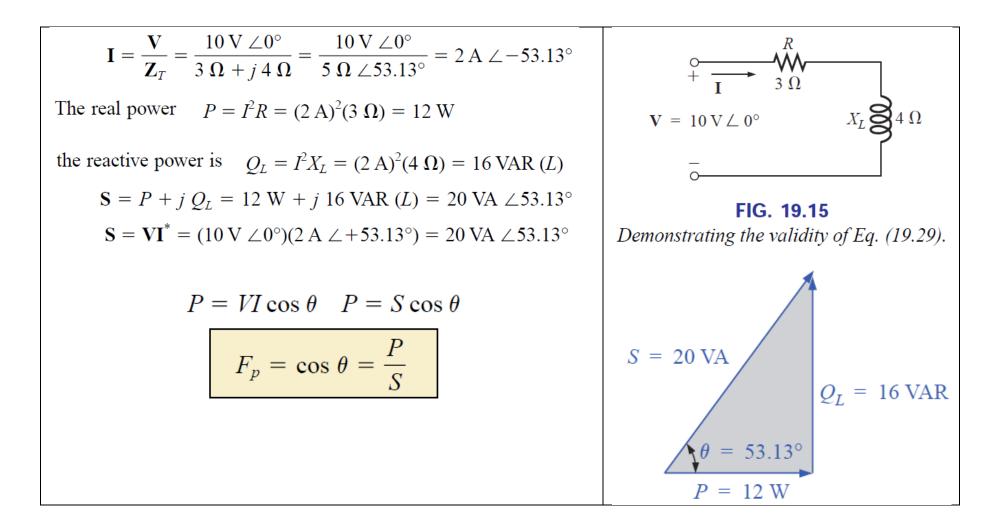
It is particularly interesting that the equation

 $S = VI^*$

Provides the vector form of the apparent power.

V is the phasor voltage across the system
 I* is the complex conjugate of the phasor current



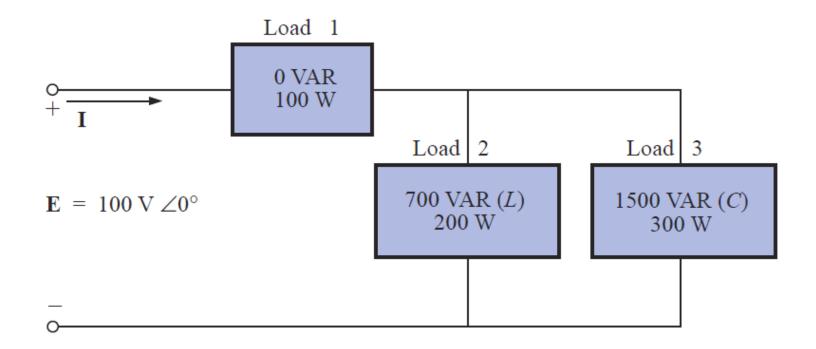


19.7 THE TOTAL P, Q, AND S

The total number of watts, volt-amperes reactive, and volt-amperes, and the power factor of any system can be found using the following procedure:

- 1. Find the real power and reactive power for each branch of the circuit.
- 2. The total real power of the system (P_T) is then the sum of the average power delivered to each branch.
- 3. The total reactive power (Q_T) is the difference between the reactive power of the inductive loads and that of the capacitive loads.
- 4. The total apparent power is $S_T = \sqrt{P_T^2 + Q_T^2}$.
- 5. The total power factor is P_T/S_T .

EXAMPLE 19.1 Find the total number of watts, volt-amperes reactive, and volt-amperes, and the power factor F_p of the network in Fig. 19.17. Draw the power triangle and find the current in phasor form.



Solution: Construct a table such as shown in Table 19.1.

TABLE 19.1

Load	W	VAR	VA
1 2 3	100 200 300	0 700 (<i>L</i>) 1500 (<i>C</i>)	$\frac{100}{\sqrt{(200)^2 + (700)^2}} = 728.0$ $\sqrt{(300)^2 + (1500)^2} = 1529.71$
	$\overline{P_T = 600}$ Total power dissipated	$Q_T = 800 (C)$ Resultant reactive power of network	$S_T = \sqrt{(600)^2 + (800)^2} = 1000$ (Note that $S_T \neq$ sum of each branch: $1000 \neq 100 + 728 + 1529.71$)

Thus,

$$F_p = \frac{P_T}{S_T} = \frac{600 \text{ W}}{1000 \text{ VA}} = 0.6 \text{ leading (C)}$$

The power triangle is shown in Fig. 19.18.

Since $S_T = VI = 1000$ VA, I = 1000 VA/100 V = 10 A; and since θ of $\cos \theta = F_p$ is the angle between the input voltage and current:

$$I = 10 A \angle +53.13^{\circ}$$

The plus sign is associated with the phase angle since the circuit is predominantly capacitive.

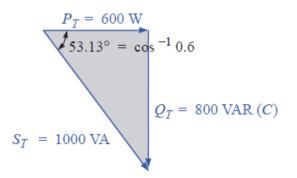
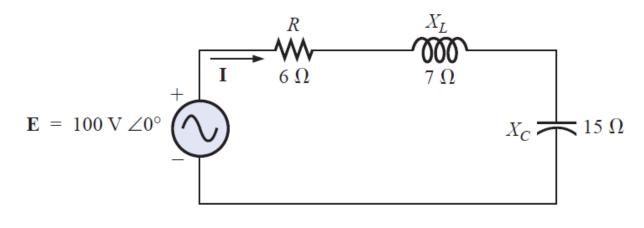
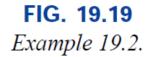


FIG. 19.18 Power triangle for Example 19.1.

EXAMPLE 19.2

a. Find the total number of watts, volt-amperes reactive, and volt-amperes, and the power factor F_p for the network of Fig. 19.19.





- b. Sketch the power triangle.
- c. Find the energy dissipated by the resistor over one full cycle of the input voltage if the frequency of the input quantities is 60 Hz.
- d. Find the energy stored in, or returned by, the capacitor or inductor over one half-cycle of the power curve for each if the frequency of the input quantities is 60 Hz.

Solutions:

a.
$$\mathbf{I} = \frac{\mathbf{E}}{\mathbf{Z}_{T}} = \frac{100 \text{ V} \angle 0^{\circ}}{6 \Omega + j 7 \Omega - j 15 \Omega} = \frac{100 \text{ V} \angle 0^{\circ}}{10 \Omega \angle -53.13^{\circ}}$$
$$= 10 \text{ A} \angle 53.13^{\circ} (6 \Omega \angle 0^{\circ}) = 60 \text{ V} \angle 53.13^{\circ} \mathbf{V}_{R} = (10 \text{ A} \angle 53.13^{\circ})(6 \Omega \angle 0^{\circ}) = 60 \text{ V} \angle 53.13^{\circ} \mathbf{V}_{L} = (10 \text{ A} \angle 53.13^{\circ})(7 \Omega \angle 90^{\circ}) = 70 \text{ V} \angle 143.13^{\circ} \mathbf{V}_{C} = (10 \text{ A} \angle 53.13^{\circ})(15 \Omega \angle -90^{\circ}) = 150 \text{ V} \angle -36.87^{\circ}$$
$$P_{T} = EI \cos \theta = (100 \text{ V})(10 \text{ A}) \cos 53.13^{\circ} = 600 \text{ W}$$
$$= I^{2}R = (10 \text{ A})^{2}(6 \Omega) = 600 \text{ W}$$
$$M_{T} = I^{2}R = (100 \text{ V})(10 \text{ A}) = 1000 \text{ VA}$$
$$= I^{2}Z_{T} = (10 \text{ A})^{2}(10 \Omega) = 1000 \text{ VA}$$
$$= \frac{E^{2}}{Z_{T}} = \frac{(100 \text{ V})^{2}}{10 \Omega} = 1000 \text{ VA}$$
$$Q_{T} = EI \sin \theta = (100 \text{ V})(10 \text{ A}) \sin 53.13^{\circ} = 800 \text{ VAR}$$
$$= Q_{C} - Q_{L}$$
$$= I^{2}(X_{C} - X_{L}) = (10 \text{ A})^{2}(15 \Omega - 7 \Omega) = 800 \text{ VAR}$$

$$Q_T = \frac{V_C^2}{X_C} - \frac{V_L^2}{X_L} = \frac{(150 \text{ V})^2}{15 \Omega} - \frac{(70 \text{ V})^2}{7 \Omega}$$

= 1500 VAR - 700 VAR = **800 VAR**
$$F_p = \frac{P_T}{S_T} = \frac{600 \text{ W}}{1000 \text{ VA}} = 0.6 \text{ leading (C)}$$

b. The power triangle is as shown in Fig. 19.20.

c.
$$W_R = \frac{V_R I}{f_1} = \frac{(60 \text{ V})(10 \text{ A})}{60 \text{ Hz}} = 10 \text{ J}$$

d. $W_L = \frac{V_L I}{\omega_1} = \frac{(70 \text{ V})(10 \text{ A})}{(2\pi)(60 \text{ Hz})} = \frac{700 \text{ J}}{377} = 1.86 \text{ J}$
 $W_C = \frac{V_C I}{\omega_1} = \frac{(150 \text{ V})(10 \text{ A})}{377 \text{ rad/s}} = \frac{1500 \text{ J}}{377} = 3.98 \text{ J}$

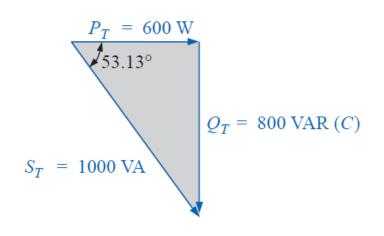
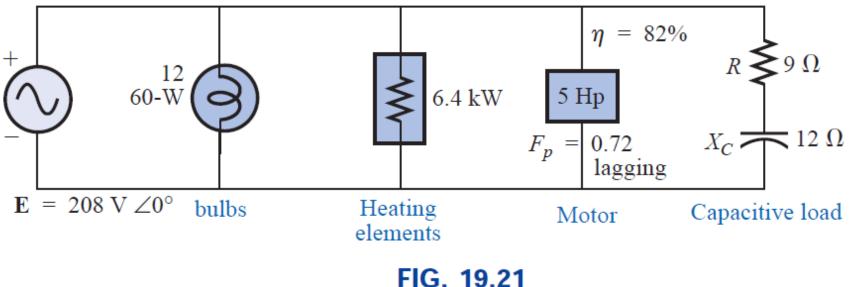


FIG. 19.20 *Power triangle for Example 19.2.*

EXAMPLE 19.3 For the system of Fig. 19.21,



Example 19.3.

- a. Find the average power, apparent power, reactive power, and F_p for each branch.
- b. Find the total number of watts, volt-amperes reactive, and voltamperes, and the power factor of the system. Sketch the power triangle.
- c. Find the source current *I*.

Solutions:

a. Bulbs:

Total dissipation of applied power

$$P_1 = 12(60 \text{ W}) = 720 \text{ W}$$

 $Q_1 = 0 \text{ VAR}$
 $S_1 = P_1 = 720 \text{ VA}$
 $F_{p_1} = 1$

Heating elements:

Total dissipation of applied power

$$P_2 = 6.4 \text{ kW}$$

 $Q_2 = 0 \text{ VAR}$
 $S_2 = P_2 = 6.4 \text{ kVA}$
 $F_{p_2} = 1$

Motor:

$$\eta = \frac{P_o}{P_i} \longrightarrow P_i = \frac{P_o}{\eta} = \frac{5(746 \text{ W})}{0.82} = 4548.78 \text{ W} = P_3$$

$$F_p = 0.72 \text{ lagging}$$

$$P_3 = S_3 \cos \theta \longrightarrow S_3 = \frac{P_3}{\cos \theta} = \frac{4548.78 \text{ W}}{0.72} = 6317.75 \text{ VA}$$
Also, $\theta = \cos^{-1} 0.72 = 43.95^\circ$, so that
$$Q_3 = S_3 \sin \theta = (6317.75 \text{ VA})(\sin 43.95^\circ)$$

$$= (6317.75 \text{ VA})(0.694) = 4384.71 \text{ VAR} (L)$$

Capacitive load:

$$\mathbf{I} = \frac{\mathbf{E}}{\mathbf{Z}} = \frac{208 \text{ V} \angle 0^{\circ}}{9 \ \Omega - j \ 12 \ \Omega} = \frac{208 \text{ V} \angle 0^{\circ}}{15 \ \Omega \angle -53.13^{\circ}} = 13.87 \text{ A} \angle 53.13^{\circ}$$

$$P_{4} = I^{2}R = (13.87 \text{ A})^{2} \cdot 9 \ \Omega = \mathbf{1731.39 W}$$

$$Q_{4} = I^{2}X_{C} = (13.87 \text{ A})^{2} \cdot 12 \ \Omega = \mathbf{2308.52 VAR} (C)$$

$$S_{4} = \sqrt{P_{4}^{2}} + Q_{4}^{2} = \sqrt{(1731.39 \text{ W})^{2}} + (2308.52 \text{ VAR})^{2}$$

$$= \mathbf{2885.65 VA}$$

$$F_{p} = \frac{P_{4}}{S} = \frac{1731.39 \text{ W}}{2885.65 \text{ VA}} = \mathbf{0.6 \text{ leading}}$$

b. $P_T = P_1 + P_2 + P_3 + P_4$

= 720 W + 6400 W + 4548.78 W + 1731.39 W

= 13,400.17 W

$$Q_{T} = \pm Q_{1} \pm Q_{2} \pm Q_{3} \pm Q_{4}$$

= 0 + 0 + 4384.71 VAR (L) - 2308.52 VAR (C)
= **2076.19 VAR (L)**
$$S_{T} = \sqrt{P_{T}^{2} + Q_{T}^{2}} = \sqrt{(13,400.17 \text{ W})^{2} + (2076.19 \text{ VAR})^{2}}$$

= 13,560.06 VA
$$P_{T} = \frac{13.4 \text{ kW}}{13.4 \text{ kW}} = 0.000 \text{ J} = 1$$

$$F_p = \frac{T_T}{S_T} = \frac{13.4 \text{ KW}}{13,560.06 \text{ VA}} = 0.988 \text{ lagging}$$
$$\theta = \cos^{-1} 0.988 = 8.89^{\circ}$$

$$S_T = 13,560.06 \text{ VA}$$

 $P_T = 13.4 \text{ kW}$ $Q_T = 2076.19 \text{ VAR}(L)$

FIG. 19.22 Power triangle for Example 19.3.

c.
$$S_T = EI \longrightarrow I = \frac{S_T}{E} = \frac{13,559.89 \text{ VA}}{208 \text{ V}} = 65.19 \text{ A}$$

Lagging power factor: **E** leads **I** by 8.89°, and
 $\mathbf{I} = 65.19 \text{ A} \angle -8.89^\circ$

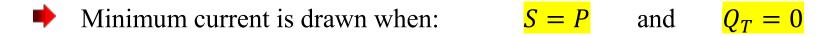
19.8 POWER FACTOR CORRECTION

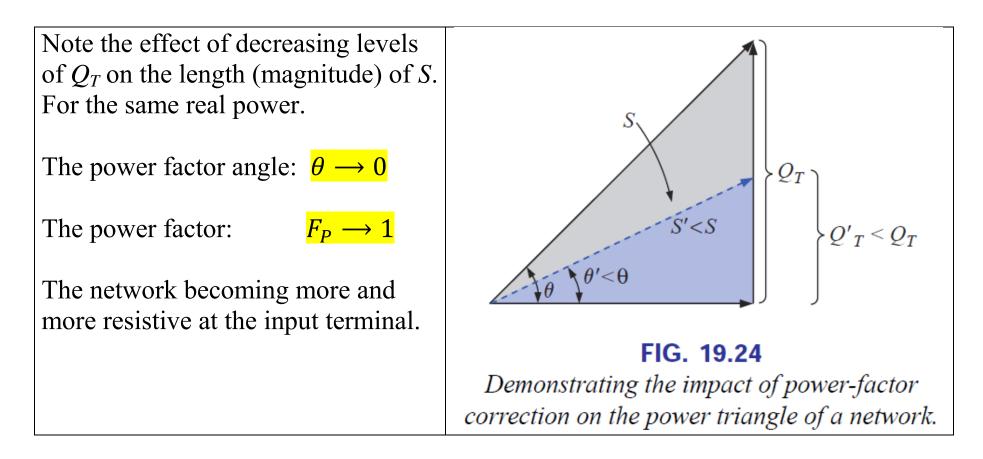
In power transmission system we need to minimize the magnitude of the current:

- Minimize power losses in the lines $(P = I^2 R)$
- Large current require large conductors \implies more copper

Since the line voltage of a system is fixed \Rightarrow the apparent power is related to the current level

Smaller apparent power \implies smaller current drawn from the supply





The process of introducing reactive element to bring the power factor closer to unity is called *power-factor correction*.

Most loads are inductive \Rightarrow the process involve introducing capacitive elements.

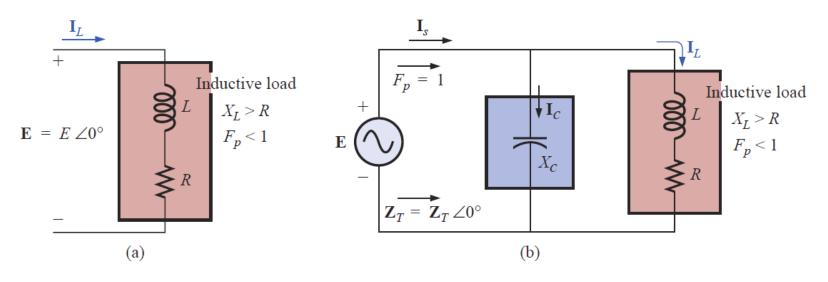


FIG. 19.25

Demonstrating the impact of a capacitive element on the power factor of a network.

In the two circuits the Inductive load receive the same current in both cases: there is no difference for the load.

Solving for the source current in Fig. 19.25(b):

$$\mathbf{I}_{s} = \mathbf{I}_{C} + \mathbf{I}_{L}$$

= $j I_{C}(I_{\text{mag}}) + I_{L}(R_{e}) + j I_{L}(I_{\text{mag}})$
= $I_{L}(R_{e}) + j [I_{L}(I_{\text{mag}}) + I_{C}(I_{\text{mag}})]$

If X_C is chosen such that $|I_C(I_{mag})| = |I_L(I_{mag})|$ Then:

$$\mathbf{I}_{s} = I_{L}(R_{e}) + j(0) = I_{L}(R_{e}) \angle 0^{\circ}$$

EXAMPLE 19.5 A 5-hp motor with a 0.6 lagging power factor and an efficiency of 92% is connected to a 208-V, 60-Hz supply.

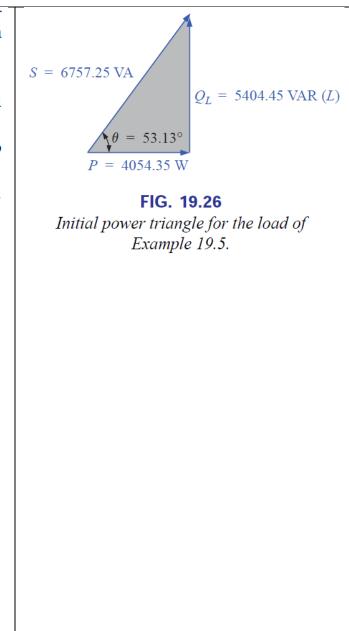
- a. Establish the power triangle for the load.
- b. Determine the power-factor capacitor that must be placed in parallel with the load to raise the power factor to unity.
- c. Determine the change in supply current from the uncompensated to the compensated system.
- d. Find the network equivalent of the above, and verify the conclusions.

Solutions:

a. Since 1 hp = 746 W,

 $P_{o} = 5 \text{ hp} = 5(746 \text{ W}) = 3730 \text{ W}$ and $P_{i} (\text{drawn from the line}) = \frac{P_{o}}{\eta} = \frac{3730 \text{ W}}{0.92} = 4054.35 \text{ W}$ Also, $F_{P} = \cos \theta = 0.6$ and $\theta = \cos^{-1} 0.6 = 53.13^{\circ}$ Applying $\tan \theta = \frac{Q_{L}}{P_{i}}$ we obtain $Q_{L} = P_{i} \tan \theta = (4054.35 \text{ W}) \tan 53.13^{\circ}$ = 5405.8 VAR (L)and $S = \sqrt{P_{i}^{2} + Q_{L}^{2}} = \sqrt{(4054.35 \text{ W})^{2} + (5405.8 \text{ VAR})^{2}}$ = 6757.25 VA

The power triangle appears in Fig. 19.26.



b. A net unity power-factor level is established by introducing a capacitive reactive power level of 5405.8 VAR to balance Q_L . Since	
$Q_C = \frac{V^2}{X_C}$	
then $X_C = \frac{V^2}{Q_C} = \frac{(208 \text{ V})^2}{5405.8 \text{ VAR } (C)} = 8 \Omega$	
and $C = \frac{1}{2\pi f X_C} = \frac{1}{(2\pi)(60 \text{ Hz})(8 \Omega)} = 331.6 \ \mu\text{F}$	
c. At $0.6F_p$,	
S = VI = 6757.25 VA	
and $I = \frac{S}{V} = \frac{6757.25 \text{ VA}}{208 \text{ V}} = 32.49 \text{ A}$	
At unity F_p ,	
S = VI = 4054.35 VA	
and $I = \frac{S}{V} = \frac{4054.35 \text{ VA}}{208 \text{ V}} = 19.49 \text{ A}$	
producing a 40% reduction in supply current.	

d. For the motor, the angle by which the applied voltage leads the current is

$$\theta = \cos^{-1} 0.6 = 53.13^{\circ}$$

and $P = EI_m \cos \theta = 4054.35$ W, from above, so that

$$I_m = \frac{P}{E \cos \theta} = \frac{4054.35 \text{ W}}{(208 \text{ V})(0.6)} = 32.49 \text{ A} \qquad (\text{as above})$$

resulting in $\mathbf{I}_m = 32.49 \,\mathrm{A} \,\angle -53.13^\circ$

Therefore,

$$\mathbf{Z}_{m} = \frac{\mathbf{E}}{\mathbf{I}_{m}} = \frac{208 \text{ V} \angle 0^{\circ}}{32.49 \text{ A} \angle -53.13^{\circ}} = 6.4 \Omega \angle 53.13^{\circ}$$

= 3.84 \Omega + j 5.12 \Omega

as shown in Fig. 19.27(a).

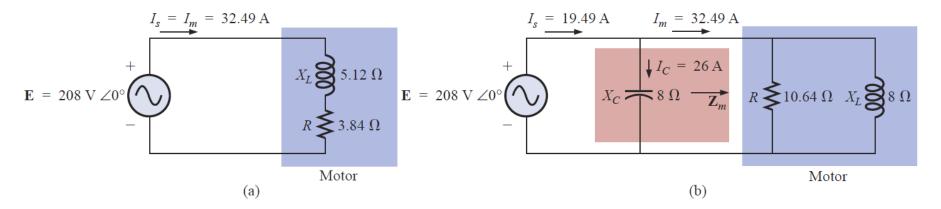


FIG. 19.27 Demonstrating the impact of power-factor corrections on the source current.

The equivalent parallel load is determined from

$$\mathbf{Y} = \frac{1}{\mathbf{Z}} = \frac{1}{6.4 \ \Omega \ \angle 53.13^{\circ}}$$

= 0.156 S \angle -53.13^{\circ} = 0.094 S - j 0.125 S
= $\frac{1}{10.64 \ \Omega} + \frac{1}{j \ 8 \ \Omega}$

as shown in Fig. 19.27(b).

It is now clear that the effect of the 8- Ω inductive reactance can be compensated for by a parallel capacitive reactance of 8 Ω using a power-factor correction capacitor of 332 μ F.

Since

$$\mathbf{Y}_{T} = \frac{1}{-j X_{C}} + \frac{1}{R} + \frac{1}{+j X_{L}} = \frac{1}{R}$$
$$I_{s} = EY_{T} = E\left(\frac{1}{R}\right) = (208 \text{ V})\left(\frac{1}{10.64 \Omega}\right) = \mathbf{19.54 A} \quad \text{as above}$$

In addition, the magnitude of the capacitive current can be determined as follows:

$$I_C = \frac{E}{X_C} = \frac{208 \text{ V}}{8 \Omega} = 26 \text{ A}$$

factor to 0.95. b. Compare the levels of current drawn from the supply.

Solutions:

a. For the induction motors,

$$S = VI = 20 \text{ kVA}$$

$$P = S \cos \theta = (20 \times 10^3 \text{ VA})(0.7) = 14 \times 10^3 \text{ W}$$

$$\theta = \cos^{-1} 0.7 \cong 45.6^{\circ}$$

and

$$Q_L = VI \sin \theta = (20 \times 10^3 \text{ VA})(0.714) = 14.28 \times 10^3 \text{ VAR} (L)$$

The power triangle for the total system appears in Fig. 19.28. Note the addition of real powers and the resulting S_T :

$$S_T = \sqrt{(24 \text{ kW})^2 + (14.28 \text{ kVAR})^2} = 27.93 \text{ kVA}$$

 $I_T = \frac{S_T}{E} = \frac{27.93 \text{ kVA}}{1000 \text{ V}} = 27.93 \text{ A}$

with

