Sinusoidal Alternating Waveforms

13.1 INTRODUCTION
dc networks: Voltages or Currents are fixed
ac networks: Voltages or Currents are varying with time in predefined manner
ac =  alternating current
ac voltage and ac current ;
alternating =  changing between two levels in a set of time sequence
by Ay Ay
o
0 \/ / 0 \ ] 0 \/ r
Siusoidal Square wave Triangular wave
FIG. 13.1

Alternating waveformes.




13.2 SINUSOIDAL ac VOLTAGE
CHARACTERISTICS AND DEFINITIONS

Generation

Inverter

(c) (d) (e)

FIG. 13.2
Various sources of ac power: (a) generating plant; (b) portable ac generator;
(c) wind-power station; (d) solar panel; (e) function generator:
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FIG. 13.3
Important parameters for a sinusoidal voltage.

Waveform: The path traced by a quantity plotted as a function of some variable
such as time, position, degrees, radians, temperature, and so on.

Instantaneous value: The magnitude of a waveform at any instant of time;
denoted by lowercase letters (el, e2).




Peak amplitude:

Peak value:

The maximum value of a waveform measured from its average,

or mean, value, denoted by uppercase letters (£,, and V,,).

Peak-to-peak value:

the zero-volt level.

Periodic waveform:

The maximum instantaneous value of a function as measured from

Denoted by E,, or V,_,, the full voltage between positive

and negative peaks of the waveform.

Period (T ):

Cycle:

A waveform that repeats itself after the same time interval.

The time between successive repetitions of a periodic waveform.

The portion of a waveform contained in one period of time.
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Defining the cvcle and period of a sinusoidal waveforin.




Frequency (f): The number of cycles that occur in 1 s. The frequency of the
waveform of Fig. 13.5(a) is 1 cycle per second, and for Fig.
13.5(b), 212 cycles per second. If a waveform of similar shape
had a period of 0.5 s [Fig. 13.5(c)], the frequency would be
2cycles per second.
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T =045 IF=105s
(a) (b) (¢)
FIG. 13.5
Demonstrating the effect of a changing frequency on the period of a simisoidal
waveform.
f= 1 f=Hz
The unit of measure for frequency is the hertz (Hz), where T T = seconds (s)

1 hertz (Hz) = 1 cycle per second (c/s)

T:

1
f
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SHF [30 GHz- 300 GHz
(Extremely High Freq.)
UHF |3 GHz - 30 GHz (Super-High Freq.)
VHF 300 MHz - 3 GHz (Ultrshigh Freq.)

HF 30 MHz - 300 MHz (Very High Freq.)

MF '3\ 5, - 30 MHz (High Freq)
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VLE |30 kHz - 300 kHz (Low Freg.)
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FM
':' 88 MHz - 108 MH=z

TV channels (2 — 6)
':' 54 MHz- 88 MH=z

TV chamnels (7 - 13)
TV < l:ll'."4 MHz- 216 MHz

TV channels (14 — 83)
':' 470 MHz - 890 MHz

CB Countertop micTowave oven
269 MHz - 27 4 MH=z | | 245 GHz

Shortwave
1.5 MHz - 30 MH=

Cordless telephones

Cellular phones { |:| 46 MHz — 49 MHz

Pagers VHF
l:] 30 MHz— 50 MHz

Pagers
Pagers UHF

l:l 405 MHz - 512 MHz

FIG. 13.7
Areas of application for specific frequency bands.



EXAMPLE 13.1 Find the period of a periodic waveform with a fre-

quency of

a. 60 Hz.

b. 1000 Hz.

Solutions:
1 1

a. ' =—= = (0.01667 s or 16.67 ms
f 60 Hz

(a recurring value since 60 Hz is so prevalent)

b. T:l:;: 10 °s =1 ms
f 1000 Hz

EXAMPLE 13.2 Determine the frequency of the waveform of Fig.

13.8.
Solution: From the figure, 7= (25 ms — 5 ms) = 20 ms, and

] ]
=—=———— =50Hz
S T 20x10 s

10V

FIG. 13.8
Example 13.2.




EXAMPLE 13.3 The oscilloscope is an instrument that will display
alternating waveforms such as those described above. A sinusoidal pattern
appears on the oscilloscope of Fig. 13.9 with the indicated vertical and
horizontal sensitivities. The vertical sensitivity defines the voltage associ-
ated with each vertical division of the display. Virtually all oscilloscope
screens are cut into a crosshatch pattern of lines separated by 1 cm in the
vertical and horizontal directions. The horizontal sensitivity defines the
time period associated with each horizontal division of the display.

For the pattern of Fig. 13.9 and the indicated sensitivities, determine
the period, frequency. and peak value of the waveform.

Solution: One cycle spans 4 divisions. The period is therefore

. (50 ps®
T = 4 div.[ — ) = 200 ps
M( aiv. K
and the frequency 1is
1 1
=—= = 5 kHz
S =T~ 200 % 10

The vertical height above the horizontal axis encompasses 2 divisions.
Therefore.

v, = mmn( '

/N7
/I

Vertical sensitivity = 0.1 V/div.

Horizontal sensitivity = 50 ps/div.

FIG. 13.9
Example 13.3.




Defined Polarities and Direction

(a) (b)

FIG. 13.10
(a) Sinusoidal ac voltage sources,
(b) sinusoidal current sources.



13.3 THE SINE WAVE

The sinusoidal waveform is the only alternating waveform whose
shape is unaffected by the response characteristics of R, L, and C
elements.
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Horizontal axis: degree or radian (rad)
Radian: 1s defined by a quadrant of a circle

where the distance subtended equals
the radius

1 radian

FIG. 13.13
Defining the radian.
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x = N® of intervals of r (the radius)

around the circumference of a circle:

C=2nr=x'1r = x =21

There are 27 rad around a 360° circle:

27 rad = 360°

1 rad = 57.296° = 57.3°

The quantity T is the ratio of the

circumference of a circle to its diameter.

wt=23.14159 26535 89793 23846 26433 ..
= 3.14

'?':"r radians
(6.28 radians)

FIG. 13.14
There are 2w radians in one full circle of 360°.

it is sometimes preferable to
measure angles in radians
rather than in degrees.




. Applying these equations. we find

) X (degrees) 90°: Radians = —
180°

O

. m
Rad =
Acats (1 (90°) = % rad

m

30°: Radians =

a

(30°) = %ra{l
) X (radians)

180°

Degrees = ( 150
m

T rad: Degrees = 180 (E) = 60°
3 T o\ 3,

ELs rad: Degrees = 0 ﬂ) = 270°
2 T 2,

AV i etc.
A Sine wave

N
rold fm——————

E 0
N\

L

0° 90° 18§y° 270° 0° o

FIG. 13.15

Plotting a sine wave versus radians.




The sinusoidal waveform can be derived from the length of the vertical projection of

radius vector rotating in a uniform circular motion about a fixed point:

\ o = 225°
(a) o—>——= >~ 225°
o =0 0° o (f:] » o i -
0 N o
Note equality
e -
= 45° —
Lb) ol 45 | - 270°
0° 45° a (Q}C\ — >
0° |
I o
Y _ \
’/[\ i o = 315°
_ oge | = 215"
@) == = 5 e - . Sin -
0 20 o (h) 0° \ i :1
i
~ /__xﬂ Sine wave
(d)}\(\a - 135° / | o = 360°
g 4 . — - ® 225% 270° 315° 360°
0° 45° 90° 135 o 09 45° 90° 1“”18\/ .
: o
Lil"(period)
o = 180°
©
- 0° 180° o
FIG. 13.16

Generating a sinusoidal waveform through the vertical projection of a

I‘(}fﬂﬁﬂg vecior:




The velocity with which the radius vector rotates about the center.
called the angular velocity, can be determined from the following

equation:

distance (degrees or radians)

Angular velocity = , 13.8
: v time (seconds) (25
w typically given in radians per second o @
a the angle typically in radians t
e the time required to complete one revolution is equal o= o
to the period (7) of the sinusoidal waveform
e The radians subtended in this time interval are 2x 2w .,
w=— (rad/s)
T
w = 27f (rad/s)




Decreased @, increased T,

decreased f
@ = 100 rad/s A

A
™~
X =

Increased w, decreased 7,

increased f
@ = 500 rad/s
@ a
|
(b) e
FIG. 13.17

Demonstrating the effect of w on the
frequency and period.



EXAMPLE 13.4 Determine the angular velocity of a sine wave hav-
ing a frequency of 60 Hz.

Solution:
w = 2nf = (27)(60 Hz) = 377 rad/s

(a recurring value due to 60-Hz predominance)

EXAMPLE 13.5 Determine the frequency and period of the sine wave
of Fig. 13.17(b).

Solution: Since w = 27/T,

T:271-_ 2wrad _  2wrad — 12.57 ms

@  S00tad/s 500 rad/s

1 1

_ — 7958 H
T 1257 X 10 3s £

and f=



EXAMPLE 13.6 Given w = 200 rad/s, determine how long it will take
the sinusoidal waveform to pass through an angle of 90°.

Solution: Eq. (13.10): « = wt, and

t=—
)

However. « must be substituted as 7/2 (= 90°) since w 1s in radians per
second:

/2 rad
IZEZ T S s = 7.85 ms

© 200rads 400

EXAMPLE 13.7 Find the angle through which a sinusoidal waveform
of 60 Hz will pass in a period of 5 ms.
Solution: Eq. (13.11): « = wt, or
o = 2mft = (27)(60 Hz)(5 X 10°s) = 1.885 rad
If not careful, one might be tempted to interpret the answer as

1.885°. However.,

180°
7 rad

a (°) = (1.885 rad) = 108°



134 GENERAL FORMAT FOR THE SINUSOIDAL
VOLTAGE OR CURRENT

The basic mathematical format for the sinusoidal waveform is:

A, sina
A,, = peak amplitude (value) of the |
waveform
. A
a = unit of measure for the g
: : mw, 180° 2w 360°
horizontal axis -
0 o (° or rad)
. A?ﬂ
a = wt = the angle of the rotating vector
A, sin wt
FIG. 13.18
Basic sinusoidal function.
l,and E, = gmplitude i=1 sinwt=1,sin«
[ and e = Instantaneous value . .
e=F, smwl=FE, sin«




The angle at which a particular voltage level is attained can be determined by
rearranging the equation:

e=E,sina = Sina =

e 7o

)

. -1/
For a current level: a = S1In (L)

I'm

For a voltage level: a = sin”? (

The function sin” is available in calculators (the inverse of the sin function)



EXAMPLE 13.9

a. Determine the angle at which the magnitude of the sinusoidal func-
tion v = 10 sin 37715 4 V.

b. Determine the time at which the magnitude is attained.

Solutions:
a. Eq. (13.15):

oy = sin”! = sin! AV sin” ! 0.4 = 23.578°
10%

T

m

However. Figure 13.19 reveals that the magnitude of 4 V (posi-
tive) will be attained at two points between 0° and 180°. The second
intersection is determined by

a, = 1807 — 23.578° = 156.422°

In general, therefore, keep in mind that Equations (13.15) and
(13.16) will provide an angle with a magnitude between 0° and 90°.

b. Eq. (13.10): @ = wt, and so t = a/w. However, « must be in radians.
Thus.

T
rad) = 23.578% = 0411 rad
o (rad) = —=(23.578°)
and = @ _ Odllrad _ 1.09 ms
@ 377 rad/s

For the second intersection.

T
180°

fo 2.73 rad
2w 377 rad/s

« (rad) = (156.422°) = 2.73 rad

= 7.24 ms

v(V)

Y

90°




EXAMPLE 13.10 Sketch ¢ = 10 sin 3147 with the abscissa

a. angle («) 1in degrees.
b. angle («) 1n radians.
¢. time (7) 1n seconds.
e '3
10
| 10 | Sr
| 180° 270°  360° . I T 2 - .
o (s o ; 0 rad
0° | 30° 90 o () % Tﬂ' o (rad)
10 10
FIG. 13.20 FIG. 13.21

Example 13.10, horizontal axis in degrees.

Example 13.10, horizontal axis in radians.




Sketch e = 10 sin 3147 A

e T = 20ms
-
c. 360 T=-"L = 2T 20 ms
w 314
10
T 20 ms

|

180°: — = = 10 ms | 10 15 20 _

2 2 0(1.67 5 t (ms)
90°: I _20ms _ S s 0

4

T 20 ms
300 — = = 1.67 ms

1o 1o FIG. 13.22

Example 13.10, horizontal axis in
milliseconds.

EXAMPLE 13.11 Giveni = 6 X 107" sin 10007, determine 7 at 7 = 2 ms
Solution:
o = wt = 1000 = (1000 rad/s)(2 X 1077 s) = 2 rad
a (°) = 180 (2 rad) = 114.59°
7 rad
i = (6 X 107 7)(sin 114.59°)
= (6 mA)(0.9093) = 5.46 mA




13.5 PHASE RELATIONS

e

The sine wave we considered A4,, sin wt has: !

) T 3T
e maxima at: > and ~

e zero value at: 0, m, and 2n

10

Iu|:4 F—-
=

If the waveform is shifted to the right or left of 0°, the expression becomes
A, sin(wt £+ 0)

0 is the angle in degree or radians that the waveform has been shifted




If the waveform passes the horizontal axis
with a positive going slope before 0° as
shown the expression is:

A, sin(wt + 0)
At wt = a = 0° the magnitude 1s
A, sin(0)
This wave and the sine wave are out of

phase by 0.
This wave leads the sine wave by 0.

L

A, smb

A
A

T“-v-’

6

FIG. 13.23

a
2m —6)

Defining the phase shift for a sinusoidal
function that crosses the horizontal axis with

a positive slope before 0°.

If the waveform passes the horizontal axis
with a positive going slope after 0° as
shown the expression is:
A, sin(wt — 0)
At wt = a = 0° the magnitude 1s
A, sin(—0) = —A,,sin(09)
This wave and the sine wave are out of

phase by 0.
This wave lags the sine wave by 0.

l

X ‘4m
6 (m + 6)
o

2w + 0)

|

— A, smb

_T_

FIG. 13.24

N

o

Defining the phase shift for a sinusoidal
function that crosses the horizontal axis with

a positive slope after 0°.




If the waveform crosses the horizontal axis T

with a positive-going sl(?pe 90° (1t/2) 4, Y e
sooner, it is called a cosine wave; _ < & \
2 / \? \\W Eﬂ- 2w .
sin(wr + 90°) = Sin(wr + —;L) = CcOS wf “—QET'O ‘\ )«
’ g
.~_ >~
or
T FIG. 13.25
sin wf = cos(wf — 90°) = COS({.:Jf — *—) Phase relationship between a sine wave and a
2 - cosine wave.

The terms lead and lag are used to indicate the relationship between two sinusoidal
waveforms of the same frequency plotted on the same set of axes:

e The cosine curve leads the sine curve by 90°.
e The sine curve lags the cosine curve by 90°.
e 90° is the phase angle between the two waveform,

e The waveforms are out of phase by 90°.

e The phase angle is measured between those two points on the horizontal axis

through which each passes with the same slope.




- +cos o
cos « = sm(a + 90°)
. - ane
S?Il @ = L.OS(CY 90°) —sin o +sin o
—smn « = sm(a = 180°)
—cos o = sin(a + 270°) = sin(a — 90°) —cos o
etc.
FIG. 13.26
Graphic tool for finding the relationship
between specific sine and cosine functions.
sin(—a) = —sin «
cos(—a) = cos «

e=—E, sinwt=e=E, (—sinwt) = e =E,,sin(wt + 180°)

The phase relationship between two waveform indicates which leads or lags and
by how many degrees or radians.




EXAMPLE 13.12 What is the phase relationship between the sinu-
soidal waveforms of each of the following sets?

a.

V=
l]l':

10 sin(wt + 30°)
5 sin(wt + 70°)

a. See Fig. 13.27.

i leads v by 40°, or vlags i by 40°.

S
« 40°+ 30°
;'Y'_J

70°

FIG. 13.27
Example 13.12; i leads v by 40°.




b. i = 15 sin(wt + 60°)
v = 10 sin(wt — 20°)

b. See Fig. 13.28.
i leads v by 80°, or vlags i by 80°.

7;' f [S—— wit
5 7| 600
- 80°—
FIG. 13.28
Example 13.12; i leads v by 80°.
c. i =2 cos(wt + 10°) 1
v = 3 sin(wt — 10°)
o }

c. See Fig. 13.29. 2

. .
i = 2 cos(wt + 10°) = 2 sin(wr + 10° + 90°) wt

= 2 sin(wt + 100°)

i leads v by 110°, or vlags i by 110°.

FIG. 13.29
Example 13.12, i leads v by 110°.




d. i = —sin(wt + 30°)
v = 2 sin(wt + 10°)

d. See Fig. 13.30.
/N.m-
—sin(wt + 30°) = sin(wt + 30° — 180°)
= sin(wt — 150°)
v leads i by 160°, or 7 lags v by 160°.

i leads v by 200°, or v lags i by 200°.

FIG. 13.30
Example 13.12; vieads i by 160°.

e. i = —2 cos(wt — 60°)
v = 3 sin(wt — 150°)

e. See Fig. 13.31.

/By choice

i = —2 cos(wt — 60°) = 2 cos(wt — 60° — 180°)
= 2 cos(wr — 240°)
However, cos o = sin(a + 90°)

so that 2 cos(wt — 240°) = 2 sin(wt — 240° + 90°)
= 2 sin(wz — 150°)

vand i are in phase.

| i | = (ot

|
FIEQE
(=]
7
S ey
P o
s,
E|
[ R™)
E|
g
|
3
%]
E|

FIG. 13.31
Example 13.12; vand i are in phase.




360° o

T (no. of div.) N phase shift (no. of div.)

phase shift (no. of div.)
and 0= : X 360°
T (no. of div.)
Substituting into Eq. (13.24) will result in
(2 div)
= —— X 360° = 144°
(5 div.)

and e leads 7 by 144°,

S

™~
/

N

)

-

\L'\HH;;‘U‘} HHTH

I J I N - .

as

s

g —e=

L
1

T

3

Vertical sensitivity = 2 V/div.
Horizontal sensitivity = 0.2 ms/div.

FIG. 13.32
Finding the phase angle behveen waveforms
using a dual-trace oscilloscope.




13.6 AVERAGE VALUE

A Height

Sand

«—— Distance —P|

(a)
Height '

Average height

Sand

Same ——»
distance

(b)

FIG. 13.33
Defining average value.

A Height
Sand
= Distance >
(a)
Height

Average height

Effect of distance (length) on average value.

Same
distance

(b)

FIG. 13.34




Average height =

total amount

total distance

|-

Height

Sand

Ground level

e
=

Y

l«——— Distance —»

(a)

Height '

Average height

Sand .
<+—— Same
distance
(b)
FIG. 13.35

Effect of depressions (negative excursions) on
average value.




A; =60 mi/h for 2 hours
A break of 1/2 hour
A, =50 mi/h for 2.5 hours

b Speed (mmi/'h)

________ I A.'\'E‘l'ﬂgt‘ speecl

area under curve

Average speed =

length of curve

14] + _[12

Averag d=
verage spee 5h

(60 mi/h)(2 h) + (50 mi/h)(2.5 h)

25
= /h
5 mi

= 45 mi/h

5h

1 2~ 3 4 5 6 t (h)
Lunch break

FIG. 13.36

Plotting speed versus time for an automobile excursion.

For any other quantity such as voltage or current:

G (average value) =

algebraic sum of areas

length of curve




e Algebraic sum of areas:
o Area above horizontal axis 1s positive

o Area below horizontal axis is negative

e Positive average value = above axis

e Negative average value = below axis

The average value of any current or voltage is the value indicated on a dc meter



EXAMPLE 13.13 Determine the average value of the waveforms of

Fig. 13.37.

G = (10V)(1 ms) — (10 V)(1 ms)

2 ms
= 0 =0V
2 ms
G- (14 V)(1 ms) — (6 V)(1 ms)
2 ms
_ 14V — 6V _ 8V 4V
2 2

In reality, the waveform of Fig. 13.37(b) 1s simply the square wave
of Fig. 13.37(a) with a dc shift of 4 V: that 1s.

Va = V1+4\fr

14V

4 "i,..I-" ______________________

A Vi

10V

(Square wave)

"Vﬁ

14V

'
1 2 3 4 t(ms)

—10WV

(a)

-
1 2 3 4 t(ms)
-6V

(b)




For a sine wave:

Area = fon A, sinada = A, [—cosa]f =24,

Area = 24

i

A

i

0 T

G (average value) =

algebraic sum of areas

length of curve

G = 0.6374

m




For the waveform of Fig. 13.45, A
R
y .
24,2y 24, (average the same A .
/2 T as for a full pulse) AN
\
\
J \ -
0 E T o
2
. . . L
EXAMPLE 13.15 Determine the average value of the sinusoidal 1 cycle
wavetorm of Fig. 13.46.
Solution: By mspection it 1s fairly obvious that y
the average value of a pure sinusoidal waveform over one full cycle is >
o

gero.

Eq. (13.26):

+24, — 24
G — m m — 0\7
2w

The average of a pure sinusoidal waveform over a full cycle is zero




EXAMPLE 13.16 Determine the average value of the waveform of
Fig. 13.47.

Solution: The peak-to-peak value of the sinusoidal function is
16 mV + 2 mV = 18 mV. The peak amplitude of the sinusoidal wave-
form is, therefore, 18 mV/2 = 9 mV. Counting down 9 mV from 2 mV
(or 9 mV up from — 16 mV) results in an average or dc level of —7 mV.,
as noted by the dashed line of Fig. 13.47.

EXAMPLE 13.17 Determine the average value of the waveform of
Fig. 13.48.

Solution:
24,,+0  2(10V)

27 2w

G= =3.18V

10

1 cyele

¥

Sine wave




13.6 EFFECTIVE (rms) VALUE

It gives a relation between dc and ac with respect to power delivered:

¢ A sinusoidal quantity (average zero) can it deliver a net power?

I

@)—" ac l} X
Switch 2 - Switch 1 \\ M /
4 ] R
T"rcf-:'
e ac generator ET dc source

FIG. 13.52
An experimental setup to establish a relationship between dc and ac quantities.

The instantaneous power delivered by the ac supply is:
P, = (ig.)’R = (I,,, sin wt)*R = (I sin®(wt))R

2

. . o . 1
Using the trigonometric identity: sin® x = - (1 — cos 2x)

2 2
P, =12 E (1 — cos Za)t)] R = P, = I";R — I";R cos 2wt




_I;R IR

P, — cos 2wt
2

The average power delivered by the ac source 1s just the first term,
since the average value of a cosine wave is zero even though the wave
may have twice the frequency of the original input current waveform.
Equating the average power delivered by the ac generator to that deliv-

ered by the dc source,

Pm-‘{:ic} — Pdc
IR
= I3.R and I, = V2I,
or I = \;}E = 0.7071,

the equivalent dc value of a sinusoidal current or voltage is 1/ 2 or
0.707 of its maximum value.

The equivalent dc value 1s called the effective value of the sinusoidal

quantity.



]eff — T
7o = Jarea (i°(1))
eff \ T

]eq{dc) — [eﬁc — 0-707];'”

I, = V2Le= 141414

E.. = 0.707E,

E, = V2E.; = 1.414E_ 4

Loy

root mean square value (rms value)




EXAMPLE 13.20 The 120-V dc source of Fig. 13.54(a) delivers
3.6 W to the load. Determine the peak wvalue of the applied voltage
(E,) and the current (/,) if the ac source [Fig. 13.54(b)] is to
deliver the same power to the load.

IJ‘?J
Jac, Tac
A
E,, .
E =120V P=36W 1 P=36W
Load \ Load
(a) (b)
Solution:
Pa. = Vadye
P 3.6 W
and =% =22" —30mA
Vi 120V

I, = V2I,. = (1.414)(30 mA) = 42.42 mA
E, = V2E; = (1.414)(120 V) = 169.68 V



EXAMPLE 13.21 Find the effective or rms value of the waveform of
Fig. 13.55.

Solution:
v (Fig. 13.56): | —
Voo = [DOTME _ 40 _ ) H56y
! 8 V8

Lv(V)
1 cycele —l-;
|
3 |
|
0 4 3| .
Q=== t(s)
FIG. 13.55
Example 13.21.
47 (V)
9
—1? =1
) £ |
0 4 8 I?s}

FIG. 13.56
The squared waveform of Fig. 13.55.




EXAMPLE 13.22 Calculate the rms value of the voltage of Fig. 13.57.

A v(V)

¥

1 cycle

'D -
SF- - 4— — — - pl—ig 10 (s

-10

Solution:
V" (Fig. 13.58):

I..""(100](2) + (16)(2) + (D) _ :I,.-Tﬂ

Vrms = | |
\ 10 y 10
= 4.899V
A VZ(T)

100

e ]

_1 ————————— I— —————— -

0 2 4 6 8 10 t(s)

FIG. 13.58

The squared waveform of Fig. 13.57.



+0

. T8V
1.5s1n 1 I\J 7.5\

A v, 6V
‘ 45V
(VAU——
) -
— 0 t

FIG. 13.61
Generation and display of a waveform having a de and an ac component.

Vr =6+ 1.5sinwt

Veff — \/dec + Vazc rms

Ve = V(6 VY + (1.06 V)
=\V37.124V
=61V



