
Network Theorems 
 

9.1 INTRODUCTION 

This chapter will introduce the important fundamental theorems of network 

analysis. Included are the superposition, Thévenin’s, Norton’s, and maximum 

power transfer theorems. We will consider a number of areas of application for 

each. A thorough understanding of each theorem is important because a number of 

these theorems will be applied repeatedly in the material to follow. 

 

9.2 SUPERPOSITION THEOREM 
 

The superposition theorem can be used to find solution to networks with many 

sources. 

The theorem states that: 
 

 

User
Text Box
· Linear ≡ elements of the network are independent of the voltage applied across or the current through them, · Bilateral ≡ no change in the behavior if current or voltage is reversed. 



 
 

To reduce the number of network to be analyzed we can consider the effect of 

more than one source at a time. 
 

To consider the effects of each source independently requires that other sources be 

removed and replaced without affecting the final result. 

 

 

 
 

Voltage source are replaced by a short 

 
 

Current source are replaced by an open 

 



 

 
 

Voltage source are replaced by a short 

 
 

Current source are replaced by an open 

 
  



I1 and I2 in the same direction: 𝑰𝑻 = 𝑰𝟏 + 𝑰𝟐 
 

Power from Source 1 is:   𝑷𝟏 = 𝑰𝟏
𝟐 ∙ 𝑹 

 

Power from Source 2 is:   𝑷𝟐 = 𝑰𝟐
𝟐 ∙ 𝑹 

 

If we assume total power is just the sum of 

powers delivered by each source then:  
 

 𝑷𝑻 = 𝑷𝟏 + 𝑷𝟐 = 𝑹 ∙  𝑰𝟏
𝟐 + 𝑰𝟐

𝟐  
 

⟹ 𝑰𝑻
𝟐 = 𝑰𝟏

𝟐 + 𝑰𝟐
𝟐 

 

This is not equal to the value calculated 

from the theorem that is: 
 

𝑰𝑻
𝟐 =  𝑰𝟏 + 𝑰𝟐 

𝟐 = 𝑰𝟏
𝟐 + 𝟐 ∙ 𝑰𝟏 ∙ 𝑰𝟐 + 𝑰𝟐

𝟐 
 

Which is different. 
 

 

 

 



 
 

 

 

 

 
 



 
 

 
 

 

 

 
 



 

 
 

 



  



 
 

 
 

  



 

 
 

 

 

 

 

 
 



 

 
 

 
 

 
  



 
 

 
 

 

 

 

 

 

 
 



 
 

  



9.3 THÉVENIN’S THEOREM 
 

Any two-terminal, linear bilateral dc network can be 

replaced by an equivalent circuit consisting of a voltage 

source and a series resistor, as shown. 

 

 

the Thévenin equivalent circuit provides an equivalence 

at the terminals only—the internal construction and 

characteristics of the original network and the 

Thévenin equivalent are usually quite different. 
 

 

The Thévenin equivalent circuit can be 

found quite directly by simply 

combining the series batteries and 

resistors. 
 

To apply the theorem, the network to be 

reduced to the Thévenin equivalent 

form must be isolated as shown in  the 

figure, and the two “holding” terminals 

identified. 

 

 



The voltage, current, or resistance readings between the two “holding” terminals is 

the same whether the original or the Thévenin equivalent circuit is connected to the 

left of terminals a and b. 

 

The theorem achieves two important objectives: 

 

1- It allows us to find any particular voltage or current in a linear network as the 

previous methods. 

2- We can concentrate on a specific portion of the network by replacing the 

remaining with an equivalent circuit 

  

  



by finding the Thévenin equivalent circuit 

for the network in the shaded area, we can 

quickly calculate the change in current 

through or voltage across the variable 

resistor RL for the various values that it may 

assume. 

 

the current through or voltage across RL 

must be the same for either network for any 

value of RL. 

 

 

  



Preliminary: 

1. Remove the portion of the network across which the Thévenin equivalent 

circuit is to be found.  

2. Mark the terminals of the remaining two-terminal network.  

RTh: 

3. Calculate RTh by first setting all sources to zero (voltage sources are 

replaced by short circuits, and current sources by open circuits) and then 

finding the resultant resistance between the two marked terminals. (If the 

internal resistance of the voltage and/or current sources is included in the 

original network, it must remain when the sources are set to zero.) 

ETh: 

4. Calculate ETh by first returning all sources to their original position and 

finding the open-circuit voltage between the marked terminals. 

Conclusion: 

5. Draw the Thévenin equivalent circuit with the portion of the circuit 

previously removed replaced between the terminals of the equivalent circuit. 
 



 

 

 

    

 



 

 

 

 

 

 

 



 

 

 

 



 

 

  



 

 

 

 

 

 



 

 

 



 

 
 

 

 

 

 

 



 

 

 

 

 

 

 



 

𝑉3 =
𝑅′

𝑇𝐸1

𝑅′
𝑇

+ 𝑅1 (Error) 𝑉3 =
𝑅′

𝑇𝐸1

𝑅′
𝑇+𝑅1

  

 

 

 

 

 

 



9.4 NORTON’S THEOREM 

Any two-terminal linear bilateral dc network can be replaced by an equivalent 

circuit consisting of a current source and a parallel resistor, as shown in Fig. 

 

  



Preliminary: 

1. Remove the portion of the network across which the Norton equivalent 

circuit is to be found.  

2. Mark the terminals of the remaining two-terminal network.  

RN: 

3. Calculate RN by first setting all sources to zero (voltage sources are replaced 

by short circuits, and current sources by open circuits) and then finding the 

resultant resistance between the two marked terminals. (If the internal 

resistance of the voltage and/or current sources is included in the original 

network, it must remain when the sources are set to zero.) Since RN = RTh, 

the procedure and value obtained using the approach described for 

Thévenin’s theorem will determine the proper value of RN. 

IN: 

4. Calculate IN by first returning all sources to their original position and 

finding the short-circuit current between the marked terminals. 

Conclusion: 

5. Draw the Norton equivalent circuit with the portion of the circuit previously 

removed replaced between the terminals of the equivalent circuit. 

 



 
 

 

 



 
 

 

 
 

 

  



 

 

 

 
 

  



9.5 MAXIMUM POWER TRANSFER THEOREM 
 

A load will receive maximum power from a 

linear bilateral dc network when its total 

resistive value is exactly equal to the Thévenin 

resistance of the network as “seen” by the load. 
 

 
 

 

 

 
conditions for maximum power to a 

load using the Thévenin circuit. 

 
conditions for maximum power to a 

load using the Norton circuit. 
 

𝐼𝐿 =
𝐸𝑇ℎ

𝑅𝑇ℎ+𝑅𝐿
   ⟹     𝐼𝑚𝑎𝑥 =

𝐸𝑇ℎ

𝑅𝑇ℎ
  ;  𝑉𝐿 =

𝑅𝐿

𝑅𝑇ℎ+𝑅𝐿
𝐸𝑇ℎ    ⟹     𝑉𝑚𝑎𝑥 = 𝐸𝑇ℎ  

 



MAXIMUM POWER TRANSFER THEOREM ⏐⏐⏐ 367
Th

RL = RTh

IRTh

ETh

+

–

FIG. 9.78

Defining the conditions for maximum power to a
load using the Thévenin equivalent circuit.
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FIG. 9.79

Thévenin equivalent network to be used to validate
the maximum power transfer theorem.

9.5 MAXIMUM POWER TRANSFER THEOREM

When designing a circuit, it is often important to be able to answer one
of the following questions:

What load should be applied to a system to ensure that the load is
receiving maximum power from the system?

and, conversely:

For a particular load, what conditions should be imposed on the
source to ensure that it will deliver the maximum power available?

Even if a load cannot be set at the value that would result in maximum
power transfer, it is often helpful to have some idea of the value that will
draw maximum power so that you can compare it to the load at hand. For
instance, if a design calls for a load of 100 �, to ensure that the load re-
ceives maximum power, using a resistor of 1 � or 1 k� results in a power
transfer that is much less than the maximum possible. However, using a
load of 82 � or 120 � probably results in a fairly good level of power
transfer.

Fortunately, the process of finding the load that will receive maximum
power from a particular system is quite straightforward due to the
maximum power transfer theorem, which states the following:

A load will receive maximum power from a network when its
resistance is exactly equal to the Thévenin resistance of the network
applied to the load. That is,

(9.2)

In other words, for the Thévenin equivalent circuit in Fig. 9.78, when the
load is set equal to the Thévenin resistance, the load will receive maxi-
mum power from the network.

Using Fig. 9.78 with RL � RTh, the maximum power delivered to the
load can be determined by first finding the current:

Then substitute into the power equation:

and (9.3)

To demonstrate that maximum power is indeed transferred to the load un-
der the conditions defined above, consider the Thévenin equivalent cir-
cuit in Fig. 9.79.

Before getting into detail, however, if you were to guess what value
of RL would result in maximum power transfer to RL, you may think that
the smaller the value of RL , the better, because the current reaches a max-
imum when it is squared in the power equation. The problem is, how-
ever, that in the equation the load resistance is a multiplier.
As it gets smaller, it forms a smaller product. Then again, you may sug-
gest larger values of RL, because the output voltage increases and power
is determined by This time, however, the load resistancePL � V 2

L>RL.

PL � I 2
LRL,

PLmax
�

E 2
Th

4RTh

PL � I 2
L RL � a ETh

2RTh

b 21RTh 2 �
E 2

ThRTh

4R 2
Th

IL �
ETh

RTh � RL

�
ETh

RTh � RTh

�
ETh

2RTh

RL � RTh
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TABLE 9.1

RL (�) PL (W) IL (A) VL (V)

0.1 4.35 6.60 0.66
0.2 8.51 6.52 1.30
0.5 19.94 6.32 3.16
1 36.00 6.00 6.00
2 59.50 5.46 10.91
3 75.00 5.00 15.00
4 85.21 4.62 18.46
5 91.84 4.29 21.43
6 96.00 4.00 24.00
7 98.44 Increase 3.75 Decrease 26.25 Increase
8 99.65 3.53 28.23
9 (RTh) 100.00 (Maximum) 3.33 (Imax/2) 30.00 (ETh /2)

10 99.72 3.16 31.58
11 99.00 3.00 33.00
12 97.96 2.86 34.29
13 96.69 2.73 35.46
14 95.27 2.61 36.52
15 93.75 2.50 37.50
16 92.16 2.40 38.40
17 90.53 2.31 39.23
18 88.89 2.22 40.00
19 87.24 2.14 40.71
20 85.61 2.07 41.38
25 77.86 1.77 44.12
30 71.00 1.54 46.15
40 59.98 1.22 48.98

100 30.30 0.55 55.05
500 6.95 Decrease 0.12 Decrease 58.94 Increase

1000 3.54 0.06 59.47

is in the denominator of the equation and causes the resulting power to
decrease. A balance must obviously be made between the load resistance
and the resulting current or voltage. The following discussion shows that

maximum power transfer occurs when the load voltage and current
are one-half of their maximum possible values.

For the circuit in Fig. 9.79, the current through the load is deter-
mined by

The voltage is determined by

and the power by

If we tabulate the three quantities versus a range of values for RL from
0.1 � to 30 �, we obtain the results appearing in Table 9.1. Note in par-
ticular that when RL is equal to the Thévenin resistance of 9 �, the power
has a maximum value of 100 W, the current is 3.33 A or one-half its max-

PL � I 2
L RL � a 60 V

9 � � RL

b 21RL 2 �
3600RL

19 � � RL 2 2

VL �
RLETh

RL � RTh

�
RL160 V 2
RL � RTh

IL �
ETh

RTh � RL

�
60 V

9 � � RL
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Consider an example where: 

  

 Eth = 60 V and 
  

 Rth = 9 Ω 

 

 

 
 

 
 

 
 

 
 



 



Maximum Power Obtained When: RL = RTh = 9 Ω 

 RL < RTh: The increase in power is very fast ⟹ small change in RL give a  

   large change in PL. 

 RL > RTh: The decrease in power is very slow ⟹ small change in RL give a  

   small change in PL. 

 

At RL = RTh:   𝐼𝐿 =
𝐼𝑚𝑎𝑥

2
  and 𝑉𝐿 =

𝐸𝑇ℎ

2
 

 

 





 

 

 



 
 



 



 




