Network Theorems

9.1 INTRODUCTION

This chapter will introduce the important fundamental theorems of network
analysis. Included are the superposition, Thévenin’s, Norton’s, and maximum
power transfer theorems. We will consider a number of areas of application for
each. A thorough understanding of each theorem is important because a number of
these theorems will be applied repeatedly in the material to follow.

9.2 SUPERPOSITION THEOREM

The superposition theorem can be used to find solution to networks with many
sources.
The theorem states that:

The current through, or voltage across, an element in a linear
bilateral network is equal to the algebraic sum of the currents or
voltages produced independently by each source.

- Linear = elements of the network are independent of the voltage applied
across or the current through them,
- Bilateral = no change in the behavior if current or voltage is reversed.
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Number of networks Number of
to be analyzed independent sources

To reduce the number of network to be analyzed we can consider the effect of
more than one source at a time.

To consider the effects of each source independently requires that other sources be
removed and replaced without affecting the final result.

Removing the effects of ideal sources.
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Voltage source are replaced by a short Current source are replaced by an open




Removing the effects of practical sources.
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Voltage source are replaced by a short
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I, and I, in the same direction: I+ = I + I,
Power from Source 1is: P, =1I5-R
Power from Source 2is: P, =1I5-R

If we assume total power is just the sum of
powers delivered by each source then:

Pr=P;+P,=R-(I5+15)
=I; =11 +1;

This is not equal to the value calculated
from the theorem that is:

= +1,)*’=15+2-1, -1, + I3
Which is different.

2l

P, =I"R
(a)

P,=1"R
(b)

W

W

Pr=I7R
(c)

the total power delivered to a resistive element must be determined
using the total current through or the total voltage across the element

and cannot be determined by a simple sum of the power levels

established by each source.




EXAMPLE 9.1 Determine 7; for the network of Fig. 9.4.

Solution: Setting E = 0V for the network of Fig. 9.4 results in the
network of Fig. 9.5(a), where a short-circuit equivalent has replaced the
30-V source.

As shown in Fig. 9.5(a). the source current will choose the short-
circuit path, and I’; = 0 A. If we applied the current divider rule,

oo Rl QO
""R.+R 00+6Q

Setting / to zero amperes will result in the network of Fig. 9.5(b). with

the current source replaced by an open circuit. Applying Ohm'’s law,

E _ 30V _
6 ()

Since I’y and I”; have the same defined direction in Fig. 9.5(a) and (b).
the current 7; is the sum of the two. and

A

LN

j-rr - =
1 Rl

L =T +I'y=0A+5A=5A

Note in this case that the current source has no effect on the current
through the 6-() resistor. The voltage across the resistor must be fixed
at 30 V because they are parallel elements.

ET=="30V

(b)




EXAMPLE 9.2 Using superposition. determine the current through Ry
the 4-() resistor of Fig. 9.6. Note that this is a two-source network of %
the type considered in Chapter 8. ) .
+
Solution: Considering the effects of a 54-V source (Fig. 9.7): E\=== 54V R § 120 BT a8y
R,=R, +R||R=240+12Q|4Q=240+30=270Q ‘0
E, 54V W
I=—= =2A > L
Ry 27Q

Using the current divider rule,

7= RI  (12)(2A) 24A 15A

 R,+R, 120+4Q 16
AMy r =YY .
M0 0 | m====- N 48-V battery 4 0 3
| replaced by short -
1 L 9 circuit " Ry
EV mEee | e p=Esv mEoe pEeo
| _
J.r::"r I
.q. ______
Wy
R3 =4 H g




54-V battery replaced

by short circuit

Considering the effects of the 48-V source (Fig. 9.8):

Rr=R;+R ||R,=4Q0+24Q120=4Q0+80=120
E, 48V

o
;=

R, 120

4A

The total current through the 4-€) resistor (Fig. 9.9) is

L,=I5—Ts=4A—15A=25A

(direction of "3

MWN——7———— e — -
240 N 2 Iy
y | K
|+ |+
R, glzﬂ E;r==43V EEEJ> R, §24ﬂ R«,§12ﬂ E, == 48V
| - ) - -
Q | |
- Ry - - ___RS__J
40 3 0 40



EXAMPLE 9.3

a. Using superposition. find the current through the 6-() resistor of the
network of Fig. 9.10.

b. Demonstrate that superposition 1s not applicable to power levels.
Solutions:
a. Considering the effect of the 36-V source (Fig. 9.11):

E___E _ 36V _
Ry R{+R, 120+6()

r,= 2A

Considering the effect of the 9-A source (Fig. 9.12).

Applying the current divider rule,

, R  (120)9A) 108A ‘A
* R,+R, 120+60Q 18

The total current through the 6-£) resistor (Fig. 9.13) is

L=I,+I,=2A+6A=8A

SA

6 A NN R, §6ﬂ I,=

Rgg 60 | h=2A |I%=

v
N —
Same direction

Y

Ry
120 lf_ﬁ
E=am36V Rzgﬁﬂj'q)QA
Current source replaced
by open circuit
R,
- =120} » i
| L
E_—_:Sﬁv Rzgﬁﬂ
- |
N | - ! T
R,
Wy
12 Q)
Q |
|
R=60 I=9A
|
? Iy




b. The power to the 6-() resistor is
Power = I’R = (8 A)*(6 ()) = 384 W

The calculated power to the 6-() resistor due to each source. misus-
ing the principle of superposition. is

P,=T,)'R=(2A760)=24W
P,=(I")R=(6A)(60)=216 W
P, + P, =240 W # 384 W

This results because 2 A + 6 A = 8 A, but
2A) + (6A) # (RA)



EXAMPLE 9.4 Using the principle of superposition, find the current
I, through the 12-k() resistor of Fig. 9.16.

Solution: Considering the effect of the 6-mA current source (Fig. | ; 6 mA
9.17):

Current divider rule:

o _RI_ (6kD)6mA)
* R, +R, 6kQ+ 12k

2 mA




(D 6 mA

Considering the effect of the 9-V voltage source (Fig. 9.18):

7 E 9V

= = = 0.5mA
* R, +R, 6kQ+12kQO > H

Since I’, and I”; have the same direction through R,. the desired cur-
rent is the sum of the two:
Iz =171 rz + Iﬂz
=2mA + 0.5mA
= 2.5 mA




EXAMPLE 9.5 Find the current through the 2-{) resistor of the net-
work of Fig. 9.19. The presence of three sources will result in three dif-
ferent networks to be analyzed.

Solution: Considering the effect of the 12-V source (Fig. 9.20).

, E, 12V

o B 12V
' R,+R, 20+40Q 60

=2A

Considering the effect of the 6-V source (Fig. 9.21):

E, 6V

" = = = - = 1 _r_%
' R,+R, 20+4Q 6Q
Considering the effect of the 3-A source (Fig. 9.22):
Applying the current divider rule,
» R  (4()3A) 12A _ A

"R, +R 20+4Q 6

4102 R,

I 3A
12V 6V E,
o _T
II
E, =
, —_—
t 4 & T 102 R,
3
v 9 2
il i
I
E, =
-
| 51 10< R,
Q§R1
‘I] Q .i.r"‘]_ 61* E2
B _T
| 4102 R,
Q§R1 I T 3A
‘I"I’l




The total current through the 2-{) resistor appears in Fig. 9.23. and

Same direction Opposite direction
as [, in Fig 9.19 to ] in Fig 0.19
.r‘"‘_'”l"_"‘.

I] :Inl_|_ Iml _I;I
= 1A+ 2A - 2A =1A

R1§:n I I'=1A I"’1=2A#’R1§l’ﬂ I

I
[ ]
e




9.3 THEVENIN’S THEOREM

Any two-terminal, linear bilateral dc network can be

replaced by an equivalent circuit consisting of a voltage ‘g‘f“ e
source and a series resistor, as shown. o
_|_

_'TET”
the Thévenin equivalent circuit provides an equivalence
at the terminals only—the internal construction and o)
characteristics of the original network and the
Thévenin equivalent are usually quite different.
The Thévenin equivalent circuit can be
found quite directly by simply , ‘0
combining the series batteries and —A—wW “ Wy “
resistors. gﬁuﬂ" _—p |
To apply the theorem, the network to be i : )
reduced to the Thévenin equivalent - °’ °f
form must be isolated as shown in the (a) )
figure, and the two “holding” terminals
identified.




The voltage, current, or resistance readings between the two “holding” terminals IS
the same whether the original or the Thévenin equivalent circuit is connected to the

left of terminals a and Db.
The theorem achieves two important objectives:

1- It allows us to find any particular voltage or current in a linear network as the
previous methods.

2- We can concentrate on a specific portion of the network by replacing the
remaining with an equivalent circuit



by finding the Thévenin equivalent circuit
for the network in the shaded area, we can
quickly calculate the change in current
through or voltage across the variable
resistor R, for the various values that it may
assume.

the current through or voltage across R,
must be the same for either network for any
value of Ry.

Lt




Preliminary:

1. Remove the portion of the network across which the Thévenin equivalent
circuit is to be found.
2. Mark the terminals of the remaining two-terminal network.

Rn:

3. Calculate Ry, by first setting all sources to zero (voltage sources are
replaced by short circuits, and current sources by open circuits) and then
finding the resultant resistance between the two marked terminals. (If the
internal resistance of the voltage and/or current sources is included in the
original network, it must remain when the sources are set to zero.)

E+:

4. Calculate E1, by first returning all sources to their original position and
finding the open-circuit voltage between the marked terminals.

Conclusion:

5. Draw the Thévenin equivalent circuit with the portion of the circuit
previously removed replaced between the terminals of the equivalent circuit.



EXAMPLE 9.6 Find the Thévenin equivalent circuit for the network in

the shaded area of the network of Fig. 9.27. Then find the current AN i
through R; for values of 2 ). 10 €. and 100 (). 30
- +
Solution: E==ov g, gﬁ - gﬂl
Steps 1 and 2 produce the network of Fig. 9.28. Note that the load resis-
tor R; has been removed and the two “holding” terminals have been
defined as a and b. *
Step 3: Replacing the voltage source E, with a short-circuit equivalent
yields the network of Fig. 9.29(a). where R,
(3 0)(6 ) ¢ a
Ry =R/ ||Rh=—"7""-=20Q
Th R, 30460 30
+
E\T= oV R1§6ﬂ
e b
R
L a
30 W ™
R, § 6Q <— Ry, 3
L o 5 I o
] =
b b

(a)




Step 4: Replace the voltage source (Fig. 9.30). For this case, the open-
circuit voltage Ep;, is the same as the voltage drop across the 6-() resis-
tor. Applying the voltage divider rule,
R,E, GMHOV) 54V
Ep = =— = =6V
™ R,+R, 60+3Q 9
Step 5 (Fig. 9.32):
Egy
I = ___—Th
R, + R;
: 6V
R; =2 (). Iy = : = 15A
- F20+20
6V
R; = 10 ): Iy = : —=05A
- 20+100
6V W il
R, =100Q: I, = — =0.059 A Ry =290 |z
20 + 100 Q .
== Ep, =6V ?Rﬂ
® b




EXAMPLE 9.7 Find the Thévenin equivalent circuit for the network in
the shaded area of the network of Fig. 9.33.

Solution:
Steps 1 and 2 are shown in Fig. 9.34.

Step 3 1s shown in Fig. 9.35. The current source has been replaced with
an open-circuit equivalent. and the resistance determined between ter-
minals a and b.

In this case an ohmmeter connected between terminals a and b
would send out a sensing current that would flow directly through R;
and R, (at the same level). The result is that R, and R, are in series and
the Thevenin resistance is the sum of the two.

Step 4 (Fig. 9.36): In this case, since an open circuit exists between the
two marked terminals, the current is zero between these terminals and
through the 2-() resistor. The voltage drop across R, is. therefore,

Vz — Isz - (O)Rz =0V

and Ep=V,=LR =1IR, = (12A)(4 Q) = 48V

R, )
Wy *
20
1= -
12A<D Ry =40 Rs§*ﬂ
'_
b
R,
My
20
R1§4ﬁ “— Rp
ob
+V, =0V —
W—=
TY¥R, =20 1=01"
_l’_

I=12A




Step 5 1s shown in Fig. 9.37.




EXAMPLE 9.8 Find the Thévenin equivalent circuit for the network in
the shaded area of the network of Fig. 9.38. Note in this example that

there is no need for the section of the network to be preserved to be at
the “end” of the configuration.

Solution: Ry
. My
Steps 1 and 2: See Fig. 9.39. | ia

R3§2n




Step 3: See Fig. 9.40. Steps 1 and 2 are relatively easy to apply. but
now we must be careful to “hold” onto the terminals a and b as the
Thevenin resistance and voltage are determined. In Fig. 9.40. all the
remaining elements turn out to be in parallel. and the network can be
redrawn as shown.

(60)4Q) 240 _

Rp =R || Ry = 2.4Q
m=RllB= 0 0" 10
R, Circuit redrawn:
M l
L, 40 a
T &
R1§6n Rp, R3§ QO -

A

2
l ‘\ Th
T b T “Short circuited” T b
S

Rr=0Q[2Q =00




Step 4. See Fig. 9.41. In this case. the network can be

redrawn as

shown 1n Fig. 9.42, and since the voltage is the same across parallel ele-

ments, the voltage across the series resistors R; and R, is E;, or 8 V.
Applying the voltage divider rule,
R\E 60)8V 48V
Ep = —— _ 6HBY) _ = 48V
R, + R, 60+ 40 10
R,
l Wy
- El—-—SV Rgglﬂ
Epm, Em R 6 () Ejmmme 8% R 210 - "
l T} 1§ 1 * 3 § Ep RS 60
bT + - N
Step 5: See Fig. 9.43. .
Rp = 240

The importance of marking the terminals should be obvious from
Example 9.8. Note that there is no requirement that the Thévenin volt-

age have the same polarity as the equivalent circuit originally intro-
duced.

——Ep, = 48V




EXAMPLE 9.10 (Two sources) Find the Thévenin circuit for the net-
work within the shaded area of Fig. 9.49.

Solution: The network is redrawn and steps I and 2 are applied as
shown 1 Fig. 9.50.

Step 3: See Fig. 9.51.

Ry, =Ry + Ry |[ Ry || Rs
— 14KQ + 08 KO || 4KQ || 6 kO
= 14kQ + 0.8KkQ || 2.4 kQ
= 14k0 + 0.6 k()
=2Kk()

Ry
R l
1.4k0
Ry S 0810 = 4kO :
Ry =6k Ry,
Tb

24k0 =




Step 4: Applying superposition. we will consider the effects of the
voltage source E; first. Note Fig. 9.52. The open circuit requires that
V4 - JT4R4 - (O)R4 =0V and
E'p =73
Rr=R,||R;3 =4kQ || 6kQ) =24Kk0O

Applying the voltage divider rule,

24k V) 144V
24kQ + 0.8k 3.2
Ep=Vs=45V
For the source E,. the network of Fig. 9.53 will result. Again, ¥, =
IL,LR, = (0)R, = 0V, and

45V

E”Th: €
R'r=Ry || R; = 0.8k || 6 k€)= 0.706 k()

R7TE, (0706 KQ)(10V)  7.06V
0706k + 4kQ  4.706

E”Tfi' - V3 =15V

=15V

and Vy; =

R +R,

Since E'p, and E”5, have opposite polarities.

Ep =E'm — E'py
=45V —15V
=3V (polarity of E'z,)

Step 5: See Fig. 9.54.

Ry I4t=0
R0 1.4 kO l B
R, = 0.8k —
R3§6 k() Vs Eiﬂ!
E===_6Y + T N
+ V-
I1i=0 Ry
1.4k i
BSika -
RMiSoskn +
RZ6KO Ty EY,
E, T v - T _
Ry
2k0
Ep == 3V §R£




9.4 NORTON’S THEOREM

Any two-terminal linear bilateral dc network can be replaced by an equivalent
circuit consisting of a current source and a parallel resistor, as shown in Fig.

FIG. 9.58
Norton equivalent circuit.



Preliminary:

1. Remove the portion of the network across which the Norton equivalent
circuit is to be found.
2. Mark the terminals of the remaining two-terminal network.

Rn:

3. Calculate Ry by first setting all sources to zero (voltage sources are replaced
by short circuits, and current sources by open circuits) and then finding the
resultant resistance between the two marked terminals. (If the internal
resistance of the voltage and/or current sources is included in the original
network, it must remain when the sources are set to zero.) Since Ry = R,
the procedure and value obtained using the approach described for
Thévenin’s theorem will determine the proper value of Ry.

4, Calculate Iy by first returning all sources to their original position and
finding the short-circuit current between the marked terminals.

Conclusion:

5. Draw the Norton equivalent circuit with the portion of the circuit previously
removed replaced between the terminals of the equivalent circuit.



=
=T

FIG. 9.59
Converting between Thévenin and Norton equivalent circuits.

EXAMPLE 9.13 (Two sources) Find the Norton equivalent circuit for
the portion of the network to the left of a-b in Fig. 9.71.

[

R; <90
(|, w0

By 12V

FIG. 9.71
Example 9.13.



Solution:
Steps 1 and 2: See Fig. 9.72.

Step 3 is shown in Fig. 9.73, and

(40)60) _ 240 _

40 +60

10

24 Q)




Step 4: (Using superposition) For the 7-V battery (Fig. 9.74).

E, 7V
=—=—"—=175A
R, 40
For the 8-A source (Fig. 9.75), we find that both R; and R, have been
“short circuited” by the direct connection between a and b, and

-
Iy

I'yv=1=8A
The result is
Iy=I"y—I'y=8A—-175A=625A
Step 5: See Fig. 9.76.

Short cirfuited

—_—
I ;_rn..,'
O

R2§6ﬂ

I :x_r

o

&0




9.5 MAXIMUM POWER TRANSFER THEOREM

A load will receive maximum power from a
linear bilateral dc network when its total
resistive value is exactly equal to the Thévenin
resistance of the network as “seen” by the load.

R; = Ry, °
Ry — i conditions for maximum power to a
E load using the Thévenin circuit,
Th
I =
Ry + R; G
1]
d P, = IR, = -2 Vg
an L = L—(Rm+RL) I I T Rhé gﬂﬂ
EmnR;
so that =
Y (Bpm + Ry’ L ¢
conditions for maximum power to a
load using the Norton circuit.
ETp Ry
-t~
Rrp+R, L= Rpp+r, " Th




T Th

9.5 MAXIMUM POWER TRANSFER THEOREM

When designing a circuit, it is often important to be able to answer one
of the following questions:

What load should be applied to a system to ensure that the load is
receiving maximum power from the system?

and, conversely:

For a particular load, what conditions should be imposed on the
source to ensure that it will deliver the maximum power available?

Even if a load cannot be set at the value that would result in maximum
power transfer, it is often helpful to have some idea of the value that will
draw maximum power so that you can compare it to the load at hand. For
instance, if a design calls for a load of 100 (), to ensure that the load re-
ceives maximum power, using a resistor of 1 ) or 1 k() results in a power
transfer that is much less than the maximum possible. However, using a
load of 82 Q) or 120 ) probably results in a fairly good level of power
transfer.

Fortunately, the process of finding the load that will receive maximum
power from a particular system is quite straightforward due to the
maximum power transfer theorem, which states the following:

A load will receive maximum power from a network when its
resistance is exactly equal to the Thévenin resistance of the network
applied to the load. That is,

02
In other words, for the Thévenin equivalent circuit in Fig. 9.78, when the
load is set equal to the Thévenin resistance, the load will receive maxi-
mum power from the network.

Using Fig. 9.78 with R; = Ry;, the maximum power delivered to the
load can be determined by first finding the current:

__Em _  Em  _ En
Ry, + R, Ry, + Ry, 2Ry,

I

Then substitute into the power equation:

Ey, )2 Ef, Ry,
P, =R = —% =
L LIk <2RTh (R) 4R72"h
Ei
and P, = 9.3)
Lipax 4RTh

To demonstrate that maximum power is indeed transferred to the load un-
der the conditions defined above, consider the Thévenin equivalent cir-
cuit in Fig. 9.79.

Before getting into detail, however, if you were to guess what value
of R, would result in maximum power transfer to R;, you may think that
the smaller the value of R, , the better, because the current reaches a max-
imum when it is squared in the power equation. The problem is, how-
ever, that in the equation P, = I7R,, the load resistance is a multiplier.
As it gets smaller, it forms a smaller product. Then again, you may sug-
gest larger values of R;, because the output voltage increases and power
is determined by P, = V7/R,. This time, however, the load resistance

MAXIMUM POWER TRANSFER THEOREM 11| 367

Ry =Ry,

FIG. 9.78
Defining the conditions for maximum power to a
load using the Thévenin equivalent circuit.

RTh PL
90 I /
+ +
Ep == 60V Zrov,
FIG. 9.79

Thévenin equivalent network to be used to validate
the maximum power transfer theorem.
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T Th

is in the denominator of the equation and causes the resulting power to
decrease. A balance must obviously be made between the load resistance
and the resulting current or voltage. The following discussion shows that

maximum power transfer occurs when the load voltage and current
are one-half of their maximum possible values.

For the circuit in Fig. 9.79, the current through the load is deter-
mined by
ETh 60 V
I, = =
Ry, + R, 9Q +R,

The voltage is determined by
_ REn R, (60 V)
R TRy R+ Ry,

L
and the power by

60 V >2( ) :( 3600R,

PL=IR, =|— ——
bt (9Q+RL 90 + R,)>

If we tabulate the three quantities versus a range of values for R; from
0.1 Q to 30 €}, we obtain the results appearing in Table 9.1. Note in par-
ticular that when R, is equal to the Thévenin resistance of 9 (), the power
has a maximum value of 100 W, the current is 3.33 A or one-half its max-

TABLE 9.1
R, () P (W) 1. (A) Vi (V)
0.1 4.35 6.60 0.66
0.2 8.51 6.52 1.30
0.5 19.94 6.32 3.16
1 36.00 6.00 6.00
2 59.50 5.46 10.91
3 75.00 5.00 15.00
4 85.21 4.62 18.46
5 91.84 4.29 21.43
6 96.00 4.00 24.00
7 98.44 | Increase 3.75 | Decrease 26.25 | Increase
8 99.65Y 353 Y 2823 Y
9 (Ry)  100.00 Maximum) — 3.33 (Z,,,,/2) 30.00 (E;;,/2)
10 99.72 3.16 31.58
11 99.00 3.00 33.00
12 97.96 2.86 34.29
13 96.69 2.73 35.46
14 95.27 2.61 36.52
15 93.75 2.50 37.50
16 92.16 2.40 38.40
17 90.53 2.31 39.23
18 88.89 2.22 40.00
19 87.24 2.14 40.71
20 85.61 2.07 41.38
25 77.86 1.77 44.12
30 71.00 1.54 46.15
40 59.98 1.22 48.98
100 30.30 0.55 55.05
500 6.95 | Decrease 0.12 | Decrease 58.94 | Increase
1000 3.54Y 0.06 Y 5947 Y




Consider an example where: TABLE 9.1
|
R (1)) P (W) I; (A) Fr (V)
E:, =60 V and
0.1 435 6.59 0.66
— 0.2 8.51 6.52 1.30
Rin =9 Q 0.5 19.94 6.32 3.16
1 36.00 6.00 6.00
2 59.50 5.46 10.91
3 75.00 5.00 15.00
P E%hRE 3600R; 4 85.21 4.62 18.46
= = : 5 01.84 | Increase 429 | Decrease 21.43 | Increase
' Rm+R)  (OQ+R) 6 96.00 4.00 24.00
7 98.44 3.75 26.25
/ Ep, 60V 8 99.65 3.53 28.23
L= = : 9 (R;;) 100.00 Maximum)  3.33 (I,../2) 30.00 (E;,/2)
Ry + Ry 90 + R, 10 99.72 3.16 31.58
11 99.00 3.00 33.00
R;(60V) R;(60V) 12 97.96 2.86 34.29
L= — - 13 96.69 2.73 35.46
Ry + Ry 90 + R, 14 95.27 2.61 36.52
15 93.75 2.50 37.50
16 92.16 2.40 38.40
17 90.53 | Decrease 2.31 | Decrease 39.23 | Increase
18 88.89 222 40.00
19 87.24 2.14 40.71
20 85.61 2.07 41.38
25 77.86 1.77 44.12
30 71.00 1.54 46.15
40 59.08 1.22 48.08
100 30.30 0.55 55.05
500 6.95 0.12 58.94
1000 3.54 0.06 4 59.47 )




0 5 9 10 15 20 25 30 R; ()

FIG. 9.80
P; versus R; for the network of Fig. 9.79.



Maximum Power Obtained When: RL. = R, =9 Q
e R, <Rqy. The increase in power is very fast = small change in R, give a
large change in P,.
e R, >Ry, The decrease in power is very slow = small change in R, give a
small change in P_.

AtR =Ry I =" and Jj = =2k



YAGNAN
50 —
8 —
7L 7
] IL\
40 Iy = Ep/R; = 6.6TA
6 —
IL
30 - 5 {Ep,/2
|
|
|
4 - |
|
| ;
20 — Iax/2
3ir |
|
|
|
2 - |
|
10 | RL = Rﬂ? = gﬂ
|
1+ |
|
|
|
1 ! ! ! | 1 ! | | ! 1 1 ! | ! ! 1 1 | 1 ! | | -
0 0 5 9 10 15 20 25 30 R(Q)
FIG. 9.81

V; and I versus R; for the network of Fig. 9.79.



The dc operating efficiency of a system is defined by the ratio of the
power delivered to the load to the power supplied by the source: that is,

o, — FL 5.
1% = —= X 100% 9.5)

5

For the situation defined by Fig. 9.77.

IR,

1% = 2 X 100% = ——= X 100%
5 LT
R
and % = ———— X 100%

T " Ry + R,

For R; that is small compared to Ry, Ry, = R; and Ry, + R = Ry,
with

R
% = R‘; X 100% = (J%E)RL X 100% = kR, X 100%
'\—r_p'
Constant

R; > Ry and Ry, + R = R;.

R x ,
1% = —— X 100% = 100%
Ry
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FIG. 9.82
Efficiency of operation versus increasing values of R;.



The power delivered to R; under maximum power conditions (R; = Rp,) 18

[= Ep  _ Em
Rm + R; 2Ry,
.. [ Ep 2 EnRp,
P, =1IR; = (_ZRm) Ry, = —4R2ﬂ;
E2
and Pr .. = 4;; (watts. W)

For the Norton circuit of Fig. 9.78.

IZR
Pl =g | W
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FIG. 9.83
P, and P; versus R; for the network of Fig. 9.79.





