Methods of Analysis and Selected Topics (dc)

8.11 BRIDGE NETWORKS

The bridge network has many application:

- DC and AC meters
- In electronic rectifying circuit (convert AC to DC)

The bridge may appear in any of the three forms shown:

The network is called symmetrical lattice network if:

$$
\boldsymbol{R}_{2}=\boldsymbol{R}_{3} \quad \text { and } \quad \boldsymbol{R}_{1}=\boldsymbol{R}_{4}
$$

Let's examine the standard bridge configuration shown using mesh and nodal analysis:

Mesh analysis (Fig. 8.65) yields

$$
\begin{aligned}
& (3 \Omega+4 \Omega+2 \Omega) I_{1}-(4 \Omega) I_{2}-(2 \Omega) I_{3}=20 \mathrm{~V} \\
& (4 \Omega+5 \Omega+2 \Omega) I_{2}-(4 \Omega) I_{1}-(5 \Omega) I_{3}=0 \\
& (2 \Omega+5 \Omega+1 \Omega) I_{3}-(2 \Omega) I_{1}-(5 \Omega) I_{2}=0 \\
& \hline
\end{aligned}
$$

and

$$
\begin{aligned}
& 9 I_{1}-4 I_{2}-2 I_{3}=20 \\
&-4 I_{1}+11 I_{2}-5 I_{3}=0 \\
&-2 I_{1}-5 I_{2}+8 I_{3}=0 \\
& \hline
\end{aligned}
$$

with the result that

$$
\begin{aligned}
I_{1} & =\mathbf{4} \mathrm{A} \\
I_{2} & =\mathbf{2 . 6 6 7} \mathrm{A} \\
I_{3} & =\mathbf{2 . 6 6 7} \mathrm{A}
\end{aligned}
$$

The net current through the $5-\Omega$ resistor is

Let's examine the standard bridge configuration shown using mesh and nodal analysis:

Mesh analysis (Fig. 8.65) yields

$$
\begin{aligned}
& (3 \Omega+4 \Omega+2 \Omega) I_{1}-(4 \Omega) I_{2}-(2 \Omega) I_{3}=20 \mathrm{~V} \\
& (4 \Omega+5 \Omega+2 \Omega) I_{2}-(4 \Omega) I_{1}-(5 \Omega) I_{3}=0 \\
& (2 \Omega+5 \Omega+1 \Omega) I_{3}-(2 \Omega) I_{1}-(5 \Omega) I_{2}=0 \\
& \hline
\end{aligned}
$$

and

$$
\begin{aligned}
& 9 I_{1}-4 I_{2}-2 I_{3}=20 \\
&-4 I_{1}+11 I_{2}-5 I_{3}=0 \\
&-2 I_{1}-5 I_{2}+8 I_{3}=0 \\
& \hline
\end{aligned}
$$

with the result that

$$
\begin{aligned}
I_{1} & =\mathbf{4 A} \\
I_{2} & =\mathbf{2 . 6 6 7} \mathrm{A} \\
I_{3} & =\mathbf{2 . 6 6 7} \mathrm{A}
\end{aligned}
$$

The net current through the $5-\Omega$ resistor is

wh

$$
I_{5 \Omega}=I_{2}-I_{3}=\mathbf{2 . 6 6 7} \mathrm{A}-\mathbf{2 . 6 6 7} \mathrm{A}=\mathbf{0} \mathrm{A}
$$

Nodal analysis (Fig. 8.66) yields

$$
\begin{aligned}
& \left(\frac{1}{3 \Omega}+\frac{1}{4 \Omega}+\frac{1}{2 \Omega}\right) V_{1}-\left(\frac{1}{4 \Omega}\right) V_{2}-\left(\frac{1}{2 \Omega}\right) V_{3}=\frac{20}{3} \mathrm{~A} \\
& \left(\frac{1}{4 \Omega}+\frac{1}{2 \Omega}+\frac{1}{5 \Omega}\right) V_{2}-\left(\frac{1}{4 \Omega}\right) V_{1}-\left(\frac{1}{5 \Omega}\right) V_{3}=0 \\
& \left(\frac{1}{5 \Omega}+\frac{1}{2 \Omega}+\frac{1}{1 \Omega}\right) V_{3}-\left(\frac{1}{2 \Omega}\right) V_{1}-\left(\frac{1}{5 \Omega}\right) V_{2}=0
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\frac{1}{3 \Omega}+\frac{1}{4 \Omega}+\frac{1}{2 \Omega}\right) V_{1}-\left(\frac{1}{4 \Omega}\right) V_{2}-\left(\frac{1}{2 \Omega}\right) V_{3}=\frac{20}{3} \mathrm{~A} \\
& -\left(\frac{1}{4 \Omega}\right) V_{1}+\left(\frac{1}{4 \Omega}+\frac{1}{2 \Omega}+\frac{1}{5 \Omega}\right) V_{2}-\left(\frac{1}{5 \Omega}\right) V_{3}=0 \\
& -\left(\frac{1}{2 \Omega}\right) V_{1}-\left(\frac{1}{5 \Omega}\right) V_{2}+\left(\frac{1}{5 \Omega}+\frac{1}{2 \Omega}+\frac{1}{1 \Omega}\right) V_{3}=0
\end{aligned}
$$

$$
V_{1}=\mathbf{8} \mathbf{V}
$$

$V_{2}=2.667 \mathrm{~V}$ and $V_{3}=2.667 \mathrm{~V}$

Nodal analysis (Fig. 8.66) yields

$$
\begin{aligned}
& \left(\frac{1}{3 \Omega}+\frac{1}{4 \Omega}+\frac{1}{2 \Omega}\right) V_{1}-\left(\frac{1}{4 \Omega}\right) V_{2}-\left(\frac{1}{2 \Omega}\right) V_{3}=\frac{20}{3} \mathrm{~A} \\
& \left(\frac{1}{4 \Omega}+\frac{1}{2 \Omega}+\frac{1}{5 \Omega}\right) V_{2}-\left(\frac{1}{4 \Omega}\right) V_{1}-\left(\frac{1}{5 \Omega}\right) V_{3}=0 \\
& \left(\frac{1}{5 \Omega}+\frac{1}{2 \Omega}+\frac{1}{1 \Omega}\right) V_{3}-\left(\frac{1}{2 \Omega}\right) V_{1}-\left(\frac{1}{5 \Omega}\right) V_{2}=0
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\frac{1}{3 \Omega}+\frac{1}{4 \Omega}+\frac{1}{2 \Omega}\right) V_{1}-\left(\frac{1}{4 \Omega}\right) V_{2}-\left(\frac{1}{2 \Omega}\right) V_{3}=\frac{20}{3} \mathrm{~A} \\
& -\left(\frac{1}{4 \Omega}\right) V_{1}+\left(\frac{1}{4 \Omega}+\frac{1}{2 \Omega}+\frac{1}{5 \Omega}\right) V_{2}-\left(\frac{1}{5 \Omega}\right) V_{3}=0 \\
& -\left(\frac{1}{2 \Omega}\right) V_{1}-\left(\frac{1}{5 \Omega}\right) V_{2}+\left(\frac{1}{5 \Omega}+\frac{1}{2 \Omega}+\frac{1}{1 \Omega}\right) V_{3}=0
\end{aligned}
$$

$$
V_{1}=\mathbf{8} \mathbf{V}
$$

$$
V_{2}=\mathbf{2 . 6 6 7} \mathrm{V} \text { and } V_{3}=\mathbf{2 . 6 6 7} \mathrm{V}
$$

and the voltage across the $5-\Omega$ resistor is

$$
V_{5 \Omega}=V_{2}-V_{3}=2.667 \mathrm{~V}-2.667 \mathrm{~V}=\mathbf{0} \mathrm{V}
$$

R_{5} can be replaced by a short circuit since $\boldsymbol{V}_{\boldsymbol{R} 5}=\mathbf{0}$.

We obtain the same voltages at the nodes:
Using voltage divider rule:

$$
\begin{aligned}
V_{1 \Omega} & =\frac{(2 \Omega \| 1 \Omega) 20 \mathrm{~V}}{(2 \Omega \| 1 \Omega)+(4 \Omega \| 2 \Omega)+3 \Omega} \\
& =\frac{\frac{2}{3}(20 \mathrm{~V})}{\frac{2}{3}+\frac{8}{6}+3}=\frac{\frac{2}{3}(20 \mathrm{~V})}{\frac{2}{3}+\frac{4}{3}+\frac{9}{3}} \\
& =\frac{2(20 \mathrm{~V})}{2+4+9}=\frac{40 \mathrm{~V}}{15}=\mathbf{2 . 6 6 7} \mathrm{V}
\end{aligned}
$$

VR3=VR4, they are in parallel!!!

R_{5} can be replaced by a open circuit since $\boldsymbol{I}_{R 5}=\mathbf{0}$.

We obtain the same voltages and currents:

$$
\begin{gathered}
V_{3 \Omega}=\frac{(6 \Omega \| 3 \Omega)(20 \mathrm{~V})}{6 \Omega \| 3 \Omega+3 \Omega}=\frac{2 \Omega(20 \mathrm{~V})}{2 \Omega+3 \Omega}=8 \mathrm{~V} \\
V_{1 \Omega}=\frac{1 \Omega(8 \mathrm{~V})}{1 \Omega+2 \Omega}=\frac{8 \mathrm{~V}}{3}=\mathbf{2 . 6 6 7} \mathrm{V}
\end{gathered}
$$

The bridge network is balanced when the condition: $\mathbf{I}=\mathbf{0}$ or $\mathbf{V}=\mathbf{0}$ exists in the middle branch.
$\mathrm{V}=0$: short circuit between a and b :
$V_{1}=V_{2} \Rightarrow I_{1} \cdot R_{1}=I_{2} \cdot R_{2} \Rightarrow I_{1}=I_{2} \cdot \frac{R_{2}}{R_{1}}$
In addition when $\mathrm{V}=0$:
$V_{3}=V_{4} \Rightarrow I_{3} \cdot R_{3}=I_{4} \cdot R_{4} \Rightarrow I_{3}=I_{4} \cdot \frac{R_{4}}{R_{3}}$
If we set $\mathrm{I}=0: \Rightarrow I_{3}=I_{1}$ and $I_{4}=I_{2}$ Thus:

$$
\frac{R_{1}}{R_{3}}=\frac{R_{2}}{R_{4}}
$$

This is the condition for the bridge to be balanced and therefore: $\mathrm{V}=0$ and $\mathrm{I}=0$.

8.12 Y- $\Delta(\mathrm{T}-\pi)$ AND $\Delta-\mathrm{Y}(\pi-\mathrm{T})$ CONVERSIONS

- There are circuit configurations where resistors do not appear to be in series or parallel.
- May be necessary to convert the circuit from one form to another to easier find solutions.
- Two such configuration are: WYE (Y) and DELTA (Δ) configurations

(a)
- They are also referred as TEE (T) and PI (π), the pi is an inverted delta

(b)
- Develop equations to convert from Y to Δ and vice versa
- Using these equations we can replace a Y to Δ (or Δ to Y) whichever is more convenient.
- Find R_{1}, R_{2} and R_{3} in terms of R_{A}, R_{B} and R_{C} and vice versa, which will ensure that the resistance between any two terminals is the same.

FIG. 8.73
Introducing the concept of $\Delta-Y$ or $Y-\Delta$ conversions.

FIG. 8.74
Finding the resistance R_{a-c} for the Y and Δ configurations.
The two configuration are equivalent if:

$$
R_{a-c}(\mathrm{Y})=R_{a-c}(\Delta)
$$

$$
R_{a-c}=R_{1}+R_{3}=\frac{R_{B}\left(R_{A}+R_{C}\right)}{R_{B}+\left(R_{A}+R_{C}\right)}
$$

Similarly for R_{a-b} and R_{b-c} :

$$
\begin{aligned}
& R_{a-b}=R_{1}+R_{2}=\frac{R_{C}\left(R_{A}+R_{B}\right)}{R_{C}+\left(R_{A}+R_{B}\right)} \\
& R_{b-c}=R_{2}+R_{3}=\frac{R_{A}\left(R_{B}+R_{C}\right)}{R_{A}+\left(R_{B}+R_{C}\right)}
\end{aligned}
$$

$$
\left(R_{1}+R_{2}\right)-\left(R_{1}+R_{3}\right)=\left(\frac{R_{C} R_{B}+R_{C} R_{A}}{R_{A}+R_{B}+R_{C}}\right)-\left(\frac{R_{B} R_{A}+R_{B} R_{C}}{R_{A}+R_{B}+R_{C}}\right)
$$

$$
R_{2}-R_{3}=\frac{R_{A} R_{C}-R_{B} R_{A}}{R_{A}+R_{B}+R_{C}}
$$

$$
\left(R_{2}+R_{3}\right)-\left(R_{2}-R_{3}\right)=\left(\frac{R_{A} R_{B}+R_{A} R_{C}}{R_{A}+R_{B}+R_{C}}\right)-\left(\frac{R_{A} R_{C}-R_{B} R_{A}}{R_{A}+R_{B}+R_{C}}\right)
$$

$$
2 R_{3}=\frac{2 R_{B} R_{A}}{R_{A}+R_{B}+R_{C}} \quad \Rightarrow \quad R_{3}=\frac{R_{A} R_{B}}{R_{A}+R_{B}+R_{C}}
$$

Similarly we find:	$R_{1}=\frac{R_{B} R_{C}}{R_{A}+R_{B}+R_{C}}$

Note that each resistor of the Y is equal to the product of the resistors in the two closest branches of the Δ divided by the sum of the resistors in the Δ.

To obtain the converse relations:

$$
\begin{array}{cc|c|}
\frac{R_{3}}{R_{1}}=\frac{\left(R_{A} R_{B}\right) /\left(R_{A}+R_{B}+R_{C}\right)}{\left(R_{B} R_{C}\right) /\left(R_{A}+R_{B}+R_{C}\right)}=\frac{R_{A}}{R_{C}} & \Rightarrow & R_{A}=\frac{R_{C} R_{3}}{R_{1}} \\
\hline \frac{R_{3}}{R_{2}}=\frac{\left(R_{A} R_{B}\right) /\left(R_{A}+R_{B}+R_{C}\right)}{\left(R_{A} R_{C}\right) /\left(R_{A}+R_{B}+R_{C}\right)}=\frac{R_{B}}{R_{C}} & \Rightarrow & R_{B}=\frac{R_{3} R_{C}}{R_{2}} \\
\hline
\end{array}
$$

Substituting for R_{A} and R_{B} in the equation of R_{2} yields:

$$
\begin{array}{rlrl}
R_{2} & =\frac{\left(R_{C} R_{3} / R_{1}\right) R_{C}}{\left(R_{3} R_{C} / R_{2}\right)+\left(R_{C} R_{3} / R_{1}\right)+R_{C}} & \text { Placing these over a common denominator, we obtain } \\
& =\frac{\left(R_{3} / R_{1}\right) R_{C}}{\left(R_{3} / R_{2}\right)+\left(R_{3} / R_{1}\right)+1} & R_{2} & =\frac{\left(R_{3} R_{C} / R_{1}\right)}{\left(R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}\right) /\left(R_{1} R_{2}\right)} \\
& =\frac{R_{2} R_{3} R_{C}}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}
\end{array}
$$

$$
R_{C}=\frac{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}{R_{3}}
$$

We follow the same procedure for R_{B} and R_{A} :

$$
R_{A}=\frac{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}{R_{1}}
$$

and

$$
R_{B}=\frac{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}{R_{2}}
$$

Note that the value of each resistor of the Δ is equal to the sum of the possible product combinations of the resistances of the Y divided by the resistance of the Y farthest from the resistor to be determined.
If all resistor are equal ($R_{1}=R_{2}=R_{3}=R_{Y}$) and ($R_{A}=R_{B}=R_{C}=R_{\Delta}$) then

$$
R_{\mathrm{Y}}=\frac{R_{\Delta}}{3}
$$

$$
R_{\Delta}=3 R_{\mathrm{Y}}
$$

If only two elements of a Y (or a Δ) are the same, the corresponding Δ (or Y) of each will also have two equal elements.

The Y and the Δ will often appear as shown in Fig. 8.75. They are then referred to as a tee (\mathbf{T}) and a pi $(\boldsymbol{\pi})$ network, respectively.

FIG. 8.75
The relationship between the Y and T configurations and the Δ and π configurations.

EXAMPLE 8.27 Convert the Δ of Fig. 8.76 to a Y.

Solution:

$$
\begin{aligned}
& R_{1}=\frac{R_{B} R_{C}}{R_{A}+R_{B}+R_{C}}=\frac{(20 \Omega)(10 \Omega)}{30 \Omega+20 \Omega+10 \Omega}=\frac{200 \Omega}{60}=\mathbf{3}^{\frac{1}{3}} \Omega \\
& R_{2}=\frac{R_{A} R_{C}}{R_{A}+R_{B}+R_{C}}=\frac{(30 \Omega)(10 \Omega)}{60 \Omega}=\frac{300 \Omega}{60}=\mathbf{5} \Omega \\
& R_{3}=\frac{R_{A} R_{B}}{R_{A}+R_{B}+R_{C}}=\frac{(20 \Omega)(30 \Omega)}{60 \Omega}=\frac{600 \Omega}{60}=\mathbf{1 0} \Omega
\end{aligned}
$$

The equivalent network is shown in Fig. 8.77 (page 298).

EXAMPLE 8.28 Convert the Y of Fig. 8.78 to a Δ.

Solution:

$$
\begin{aligned}
R_{A} & =\frac{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}{R_{1}} \\
& =\frac{(60 \Omega)(60 \Omega)+(60 \Omega)(60 \Omega)+(60 \Omega)(60 \Omega)}{60 \Omega} \\
& =\frac{3600 \Omega+3600 \Omega+3600 \Omega}{60}=\frac{10,800 \Omega}{60} \\
R_{A} & =\mathbf{1 8 0} \Omega
\end{aligned}
$$

However, the three resistors for the Y are equal, permitting the use of Eq. (8.8) and yielding

$$
R_{\Delta}=3 R_{\mathrm{Y}}=3(60 \Omega)=180 \Omega
$$

and

$$
R_{B}=R_{C}=180 \Omega
$$

The equivalent network is shown in Fig. 8.79.

EXAMPLE 8.29 Find the total resistance of the network of Fig. 8.80, where $R_{A}=3 \Omega, R_{B}=3 \Omega$, and $R_{C}=6 \Omega$.

Solution:

$$
\begin{aligned}
& \text { Two resistors of the } \Delta \text { were equal; } \\
& \text { therefore, two resistors of the } Y \text { will } \\
& \text { be equal. } \\
& R_{1}=\frac{R_{B} R_{C}}{R_{A}+R_{B}+R_{C}}=\frac{(3 \Omega)(6 \Omega)}{3 \Omega+3 \Omega+6 \Omega}=\frac{18 \Omega}{12}=1.5 \Omega \longleftarrow \\
& R_{2}=\frac{R_{A} R_{C}}{R_{A}+R_{B}+R_{C}}=\frac{(3 \Omega)(6 \Omega)}{12 \Omega}=\frac{18 \Omega}{12}=\mathbf{1} .5 \Omega \\
& R_{3}=\frac{R_{A} R_{B}}{R_{A}+R_{B}+R_{C}}=\frac{(3 \Omega)(3 \Omega)}{12 \Omega}=\frac{9 \Omega}{12}=\mathbf{0 . 7 5 \Omega}
\end{aligned}
$$

Replacing the Δ by the Y , as shown in Fig. 8.81, yields

$$
\begin{aligned}
R_{T} & =0.75 \Omega+\frac{(4 \Omega+1.5 \Omega)(2 \Omega+1.5 \Omega)}{(4 \Omega+1.5 \Omega)+(2 \Omega+1.5 \Omega)} \\
& =0.75 \Omega+\frac{(5.5 \Omega)(3.5 \Omega)}{5.5 \Omega+3.5 \Omega} \\
& =0.75 \Omega+2.139 \Omega \\
R_{T} & =\mathbf{2 . 8 8 9} \Omega
\end{aligned}
$$

EXAMPLE 8.30 Find the total resistance of the network of Fig. 8.82.
Solutions: Since all the resistors of the Δ or Y are the same, Equations (8.8a) and (8.8b) can be used to convert either form to the other.
a. Converting the Δ to a Y. Note: When this is done, the resulting d^{\prime} of the new Y will be the same as the point d shown in the original figure, only because both systems are "balanced." That is, the resistance in each branch of each system has the same value:

$$
\begin{equation*}
R_{\mathrm{Y}}=\frac{R_{\Delta}}{3}=\frac{6 \Omega}{3}=2 \Omega \tag{Fig.8.83}
\end{equation*}
$$

The network then appears as shown in Fig. 8.84.

$$
R_{T}=2\left[\frac{(2 \Omega)(9 \Omega)}{2 \Omega+9 \Omega}\right]=\mathbf{3 . 2 7 2 7 \Omega}
$$

FIG. 8.84
Substituting the Y configuration for the converted Δ into the network of Fig. 8.82.
b. Converting the Y to $a \Delta$:

$$
\begin{align*}
R_{\Delta} & =3 R_{\mathrm{Y}}=(3)(9 \Omega)=27 \Omega \tag{Fig.8.85}\\
R_{T}^{\prime} & =\frac{(6 \Omega)(27 \Omega)}{6 \Omega+27 \Omega}=\frac{162 \Omega}{33}=4.9091 \Omega \\
R_{T} & =\frac{R_{T}^{\prime}\left(R_{T}^{\prime}+R_{T}^{\prime}\right)}{R_{T}^{\prime}+\left(R_{T}^{\prime}+R_{T}^{\prime}\right)}=\frac{{R_{T}^{\prime}}^{2} R_{T}^{\prime}}{3 R_{T}^{\prime}}=\frac{2 R_{T}^{\prime}}{3} \\
& =\frac{2(4.9091 \Omega)}{3}=3.2727 \Omega
\end{align*}
$$

which checks with the previous solution.

FIG. 8.85
Substituting the converted Y configuration into the network of Fig. 8.82.

General rules concerning Power:

