Series Circuit

5.2 SERIES CIRCUITS

Two elements are in series if:
1- They have only one terminal in common
2- The common point between them is not connected to another current carrying element.

In the circuit E, R_{1} and R_{2} are in series.
All elements in the circuit are in series: \Rightarrow Series Circuit

The current is the same through series elements.

A branch of a circuit is any portion of the circuit having one or more elements in series.

(a) Series circuit
R_{1} and R_{2} are not in series because at point (b) the common between them is connected to R_{3} which carries a current

The total resistance of a series circuit is the sum of the resistance levels.
$R_{T}=R_{1}+R_{2}+R_{3}+\cdots+R_{N} \quad($ ohms, $\Omega)$

If $R_{1}=R_{2}=R_{3}=\ldots . .=R_{N}=R \quad \Longrightarrow$

$$
R_{T}=N \cdot R
$$

FIG. 5.5
Resistance "seen" by source.

Once R_{T} is known the circuit can be replaced by the one shown: and then

$$
\begin{equation*}
I_{s}=\frac{E}{R_{T}} \tag{amperes,A}
\end{equation*}
$$

E is fixed: $\Rightarrow I_{s}$ depends on R_{T}.
$V_{1}=I_{S} \cdot R_{1} \quad V_{2}=I_{s} \cdot R_{2}, \ldots$.
$P_{1}=V_{1} \cdot I_{1}=I_{1}^{2} \cdot R_{1}=\frac{V_{1}^{2}}{R_{1}}, \ldots \ldots$
$P_{d e l}=E \cdot I_{s}$
The total power delivered to a resistive circuit is equal to the total power dissipated by the resistive elements.

$$
P_{\mathrm{del}}=P_{1}+P_{2}+P_{3}+\cdots+P_{N}
$$

FIG. 5.6
Replacing the series resistors R_{1} and R_{2} of Fig. 5.5 with the total resistance.

EXAMPLE 5.1

a. Find the total resistance for the series circuit of Fig. 5.7.
b. Calculate the source current I_{s}.
c. Determine the voltages V_{1}, V_{2}, and V_{3}.
d. Calculate the power dissipated by R_{1}, R_{2}, and R_{3}.
e. Determine the power delivered by the source, and compare it to the sum of the power levels of part (d).

Solutions:

a. $R_{T}=R_{1}+R_{2}+R_{3}=2 \Omega+1 \Omega+5 \Omega=\mathbf{8} \Omega$
b. $I_{s}=\frac{E}{R_{T}}=\frac{20 \mathrm{~V}}{8 \Omega}=\mathbf{2 . 5} \mathrm{A}$
c. $V_{1}=I R_{1}=(2.5 \mathrm{~A})(2 \Omega)=\mathbf{5} \mathbf{V}$
$V_{2}=I R_{2}=(2.5 \mathrm{~A})(1 \Omega)=\mathbf{2 . 5} \mathbf{V}$
$V_{3}=I R_{3}=(2.5 \mathrm{~A})(5 \Omega)=\mathbf{1 2 . 5} \mathrm{V}$

d. $P_{1}=V_{1} I_{1}=(5 \mathrm{~V})(2.5 \mathrm{~A})=\mathbf{1 2 . 5} \mathbf{~ W}$
$P_{2}=I_{2}^{2} R_{2}=(2.5 \mathrm{~A})^{2}(1 \Omega)=6.25 \mathrm{~W}$
$P_{3}=V_{3}^{2} / R_{3}=(12.5 \mathrm{~V})^{2} / 5 \Omega=31.25 \mathrm{~W}$
e. $P_{\text {del }}=E I=(20 \mathrm{~V})(2.5 \mathrm{~A})=50 \mathbf{W}$
$P_{\text {del }}=P_{1}+P_{2}+P_{3}$
$50 \mathrm{~W}=12.5 \mathrm{~W}+6.25 \mathrm{~W}+31.25 \mathrm{~W}$
$50 \mathrm{~W}=50 \mathrm{~W}$ (checks)

EXAMPLE 5.2 Determine R_{T}, I, and V_{2} for the circuit of Fig. 5.8.
Solution: Note the current direction as established by the battery and the polarity of the voltage drops across R_{2} as determined by the current direction. Since $R_{1}=R_{3}=R_{4}$,

$$
\begin{aligned}
R_{T} & =N R_{1}+R_{2}=(3)(7 \Omega)+4 \Omega=21 \Omega+4 \Omega=\mathbf{2 5} \Omega \\
I & =\frac{E}{R_{T}}=\frac{50 \mathrm{~V}}{25 \Omega}=\mathbf{2} \mathbf{A} \\
V_{2} & =I R_{2}=(2 \mathrm{~A})(4 \Omega)=\mathbf{8} \mathbf{V}
\end{aligned}
$$

EXAMPLE 5.3 Given R_{T} and I, calculate R_{1} and E for the circuit of Fig. 5.9.

Solution:

$$
\begin{aligned}
R_{T} & =R_{1}+R_{2}+R_{3} \\
12 \mathrm{k} \Omega & =R_{1}+4 \mathrm{k} \Omega+6 \mathrm{k} \Omega \\
R_{1} & =12 \mathrm{k} \Omega-10 \mathrm{k} \Omega=\mathbf{2} \mathbf{k} \boldsymbol{\Omega} \\
E & =I R_{T}=\left(6 \times 10^{-3} \mathrm{~A}\right)\left(12 \times 10^{3} \Omega\right)=\mathbf{7 2} \mathbf{~ V}
\end{aligned}
$$

5.3 VOLTAGE SOURCES IN SERIES

Voltage sources can be connected in series to increase or decrease the total voltage applied:

The net voltage is determined simply by summing the sources with the same polarity and subtracting the total of the sources with the opposite polarity.

Net polarity \equiv polarity of the larger sum.

5.4 KIRCHHOFF'S VOLTAGE LAW

Kirchhoff's voltage law (KVL) states that the algebraic sum of the potential rises and drops around a closed loop (or path) is zero.

A closed loop is any continuous path that leaves a point in one direction and returns to that same point from another direction without leaving the circuit.

$$
\begin{array}{ll}
\Sigma_{C} V=0 & \begin{array}{l}
\text { (Kirchhoff's voltage law } \\
\text { in symbolic form) }
\end{array}
\end{array}
$$

The applied voltage of a series circuit equals the sum of the voltage drops across the series elements:

$$
\Sigma_{\mathrm{C}} V_{\text {rises }}=\Sigma_{\mathrm{C}} V_{\text {drops }}
$$

abcda \equiv closed loop
$+E-V_{1}-V_{2}=0 \Rightarrow E=V_{1}+V_{2}$

| The application of Kirchhoff's voltage law |
| :--- | :--- |
| need not follow a path that includes current- |
| carrying elements. |
| $+12 \mathrm{~V}-V_{x}-8 \mathrm{~V}=0 \Rightarrow V_{x}=4 \mathrm{~V}$ |

!!!!! Polarity is very important when applying KVL !!!!!

EXAMPLE 5.4 Determine the unknown voltages for the networks of the Figures.
Application of Kirchhoff's voltage law in clockwise direction results in:

$$
\begin{gathered}
+E_{1}-V_{1}-V_{2}-E_{2}=0 \\
V_{1}=E_{1}-V_{2}-E_{2}=0 \\
V_{1}=16 \mathrm{~V}-4.2 \mathrm{~V}-9 \mathrm{~V}=2.8 \mathrm{~V}
\end{gathered}
$$

1- $\quad E-V_{1}-V_{x}=0 \Rightarrow$

$$
V_{x}=E-V_{1}=32 \mathrm{~V}-12 \mathrm{~V}=20 \mathrm{~V}
$$

or

2-

$$
\begin{aligned}
& V_{x}-V_{2}-V_{3}=0 \Rightarrow \\
& V_{x}=V_{2}+V_{3}=6 \mathrm{~V}+14 \mathrm{~V}=20 \mathrm{~V}
\end{aligned}
$$

(a)

(b)

EXAMPLE 5.5 Find V_{1} and V_{2} for the network of Fig. 5.15.
Solution: For path 1, starting at point a in a clockwise direction:
$+25 \mathrm{~V}-V_{1}+15 \mathrm{~V}=0$
and $\quad V_{1}=40 \mathrm{~V}$
For path 2, starting at point a in a clockwise direction:

$$
-V_{2}-20 \mathrm{~V}=0
$$

and

$$
V_{2}=\mathbf{- 2 0} \mathbf{V}
$$

The minus sign simply indicates that the actual polarities of the poten-

5.5 INTERCHANGING SERIES ELEMENTS

The elements of a series circuit can be interchanged without affecting the total resistance, current, or power to each element.

5.6 VOLTAGE DIVIDER RULE

In a series circuit: the voltage across the resistive elements will divide as the magnitude of the resistance levels.

$$
R_{1}=2 R_{2} \Longrightarrow V_{1}=2 V_{2}
$$

$R_{2}=3 R_{3} \Rightarrow V_{2}=3 V_{3}$
The current I change by the values of R 's, but the voltage remain the same.

$$
\begin{aligned}
& R_{l}=1000 R_{2} \Longrightarrow V_{l}=1000 V_{2} \\
& R_{l}=10000 R_{3} \Longrightarrow V_{l}=10000 V_{3} \\
& I=\frac{E}{R_{T}}=\frac{100}{1001100} \cong 99.89 \mu \mathrm{~A} \\
& V_{1}=I R_{1}=99.89 \mathrm{~V} \\
& V_{2}=I R_{2}=99.89 \mathrm{mV} \\
& V_{3}=I R_{3}=9.989 \mathrm{mV}
\end{aligned}
$$

The voltage across a resistor in a series circuit is equal to the value of that resistor times the total impressed voltage across the series elements divided by the total resistance of the series elements.

EXAMPLE 5.10 Determine the voltage V_{1} for the network of Fig. 5.27.

Solution: Eq. (5.10):

$$
V_{1}=\frac{R_{1} E}{R_{T}}=\frac{R_{1} E}{R_{1}+R_{2}}=\frac{(20 \Omega)(64 \mathrm{~V})}{20 \Omega+60 \Omega}=\frac{1280 \mathrm{~V}}{80}=\mathbf{1 6} \mathrm{V}
$$

EXAMPLE 5.11 Using the voltage divider rule, determine the voltages V_{1} and V_{3} for the series circuit of Fig. 5.28.

Solution:

$$
\begin{aligned}
V_{1} & =\frac{R_{1} E}{R_{T}}=\frac{(2 \mathrm{k} \Omega)(45 \mathrm{~V})}{2 \mathrm{k} \Omega+5 \mathrm{k} \Omega+8 \mathrm{k} \Omega}=\frac{(2 \mathrm{k} \Omega)(45 \mathrm{~V})}{15 \mathrm{k} \Omega} \\
& =\frac{\left(2 \times 10^{3} \Omega\right)(45 \mathrm{~V})}{15 \times 10^{3} \Omega}=\frac{90 \mathrm{~V}}{15}=\mathbf{6} \mathrm{V} \\
V_{3} & =\frac{R_{3} E}{R_{T}}=\frac{(8 \mathrm{k} \Omega)(45 \mathrm{~V})}{15 \mathrm{k} \Omega}=\frac{\left(8 \times 10^{3} \Omega\right)(45 \mathrm{~V})}{15 \times 10^{3} \Omega} \\
& =\frac{360 \mathrm{~V}}{15}=\mathbf{2 4} \mathbf{V}
\end{aligned}
$$

$V^{\prime}=\frac{R^{\prime} E}{R_{T}}=\frac{(2 \mathrm{k} \Omega+5 \mathrm{k} \Omega)(45 \mathrm{~V})}{15 \mathrm{k} \Omega}=\frac{(7 \mathrm{k} \Omega)(45 \mathrm{~V})}{15 \mathrm{k} \Omega}=\mathbf{2 1} \mathrm{V}$

5.7 NOTATION

Voltage Sources and Ground:

FIG. 5.31
Ground potential.

Double-Subscript Notation

Voltage is always across (between) two points resulted in a double -subscript notation that defines the first subscript as the higher potential

(a)

(b)

FIG. 5.36
Defining the sign for double-subscript notation.

The double-subscript notation $V_{a b}$ specifies point "a" as the higher potential. If this is not the case, a negative sign must be associated with the magnitude of $V_{a b}$.

The voltage $V_{a b}$ is the voltage at point "a" with respect to (w.r.t.) point "b".

Single-Subscript Notation:

If one of the point is specified as ground (reference) then a single subscript is employed, that provide the voltage with respect to ground.

If the voltage is less than zero volts, a negative sign must be associated with the magnitude of V_{a}.

