Series Circuit

5.2 SERIES CIRCUITS

Two elements are in series if:

- 1- They have only one terminal in common
- 2- The common point between them is not connected to another current carrying element.

Once
$$R_T$$
 is known the circuit can be replaced
by the one shown: and then
$$I_s = \frac{E}{R_T} \quad (\text{amperes, A})$$

E is fixed: $\Rightarrow I_s$ depends on R_T .
 $V_1 = I_s \cdot R_1 \quad V_2 = I_s \cdot R_2 , \dots$
 $P_1 = V_1 \cdot I_1 = I_1^2 \cdot R_1 = \frac{V_1^2}{R_1}, \dots$
 $P_{del} = E \cdot I_s$
The total power delivered to a resistive
circuit is equal to the total power dissipated
by the resistive elements.
 $P_{del} = P_1 + P_2 + P_3 + \dots + P_N$

1 1 2

1 1 3

EXAMPLE 5.1

- a. Find the total resistance for the series circuit of Fig. 5.7.
- b. Calculate the source current I_s .
- c. Determine the voltages V_1 , V_2 , and V_3 .
- d. Calculate the power dissipated by R_1 , R_2 , and R_3 .
- e. Determine the power delivered by the source, and compare it to the sum of the power levels of part (d).

Solutions:

a. $R_T = R_1 + R_2 + R_3 = 2 \ \Omega + 1 \ \Omega + 5 \ \Omega = 8 \ \Omega$

b.
$$I_s = \frac{E}{R_T} = \frac{20 \text{ V}}{8 \Omega} = 2.5 \text{ A}$$

c.
$$V_1 = IR_1 = (2.5 \text{ A})(2 \Omega) = 5 \text{ V}$$

 $V_2 = IR_2 = (2.5 \text{ A})(1 \Omega) = 2.5 \text{ V}$
 $V_3 = IR_3 = (2.5 \text{ A})(5 \Omega) = 12.5 \text{ V}$

d.
$$P_1 = V_1 I_1 = (5 \text{ V})(2.5 \text{ A}) = 12.5 \text{ W}$$

 $P_2 = I_2^2 R_2 = (2.5 \text{ A})^2 (1 \Omega) = 6.25 \text{ W}$
 $P_3 = V_3^2 / R_3 = (12.5 \text{ V})^2 / 5 \Omega = 31.25 \text{ W}$

e.
$$P_{del} = EI = (20 \text{ V})(2.5 \text{ A}) = 50 \text{ W}$$

 $P_{del} = P_1 + P_2 + P_3$
 $50 \text{ W} = 12.5 \text{ W} + 6.25 \text{ W} + 31.25 \text{ W}$
 $50 \text{ W} = 50 \text{ W}$ (checks)

EXAMPLE 5.2 Determine R_T , *I*, and V_2 for the circuit of Fig. 5.8.

Solution: Note the current direction as established by the battery and the polarity of the voltage drops across R_2 as determined by the current direction. Since $R_1 = R_3 = R_4$,

$$R_T = NR_1 + R_2 = (3)(7 \ \Omega) + 4 \ \Omega = 21 \ \Omega + 4 \ \Omega = 25 \ \Omega$$
$$I = \frac{E}{R_T} = \frac{50 \ V}{25 \ \Omega} = 2 \ A$$
$$V_2 = IR_2 = (2 \ A)(4 \ \Omega) = 8 \ V$$

 $4 k\Omega$ **EXAMPLE 5.3** Given R_T and I, calculate R_1 and E for the circuit of ₩ ₩ Fig. 5.9. R_1 R_2 $R_{\tau} = 12 \,\mathrm{k}\Omega$ Solution: $R_3 \ge 6 \mathrm{k}\Omega$ Ε $R_T = R_1 + R_2 + R_3$ I = 6 mA $12 \mathrm{k}\Omega = R_1 + 4 \mathrm{k}\Omega + 6 \mathrm{k}\Omega$ $R_1 = 12 \,\mathrm{k}\Omega - 10 \,\mathrm{k}\Omega = 2 \,\mathrm{k}\Omega$ $E = IR_T = (6 \times 10^{-3} \text{ A})(12 \times 10^3 \Omega) = 72 \text{ V}$

5.3 VOLTAGE SOURCES IN SERIES

Voltage sources can be connected in series to increase or decrease the total voltage applied:

The net voltage is determined simply by summing the sources with the same polarity and subtracting the total of the sources with the opposite polarity.

Net polarity \equiv polarity of the larger sum.

5.4 KIRCHHOFF'S VOLTAGE LAW

Kirchhoff's voltage law (KVL) states that the algebraic sum of the potential rises and drops around a closed loop (or path) is zero.

A **closed loop** is any continuous path that leaves a point in one direction and returns to that same point from another direction without leaving the circuit.

 $\Sigma_{\rm C} V = 0$

(Kirchhoff's voltage law in symbolic form)

The applied voltage of a series circuit equals the sum of the voltage drops across the series elements:

 $\Sigma_{\rm C} V_{\rm rises} = \Sigma_{\rm C} V_{\rm drops}$

The application of Kirchhoff's voltage law need not follow a path that includes currentcarrying elements.

$$+12V - V_{\chi} - 8V = 0 \implies V_{\chi} = 4V$$

!!!!! Polarity is very important when applying KVL !!!!!

EXAMPLE 5.4 Determine the unknown voltages for the networks of the Figures.

5.5 INTERCHANGING SERIES ELEMENTS

The elements of a series circuit can be interchanged without affecting the total resistance, current, or power to each element.

5.6 VOLTAGE DIVIDER RULE

In a series circuit: the voltage across the resistive elements will divide as the magnitude of the resistance levels.

$$R_{I} = 1000 R_{2} \implies V_{I} = 1000 V_{2}$$

$$R_{I} = 10000R_{3} \implies V_{I} = 10000V_{3}$$

$$I = \frac{E}{R_{T}} = \frac{100}{1001100} \cong 99.89 \ \mu A$$

$$V_{1} = IR_{1} = 99.89 \ V$$

$$V_{2} = IR_{2} = 99.89 \ mV$$

$$V_{3} = IR_{3} = 9.989 \ mV$$

$$= 100 \ V$$

$$R_{2} = \frac{100}{1000} \frac{1}{V_{3}} = \frac{100}{V_{3}} = \frac{100}{V_{3}}$$

The voltage across a resistor in a series circuit is equal to the value of that resistor times the total impressed voltage across the series elements divided by the total resistance of the series elements.

5.7 NOTATION

Voltage Sources and Ground:

FIG. 5.31 *Ground potential.*

Double-Subscript Notation

Voltage is always <u>across</u> (between) two points resulted in a double –subscript notation that defines the first subscript as the higher potential

FIG. 5.36 Defining the sign for double-subscript notation.

The double-subscript notation V_{ab} specifies point "a" as the higher potential. If this is not the case, a negative sign must be associated with the magnitude of V_{ab} .

The voltage V_{ab} is the voltage at point "a" with respect to (w.r.t.) point "b".

Single-Subscript Notation:

If one of the point is specified as ground (reference) then a single subscript is employed, that provide the voltage with respect to ground.

If the voltage is less than zero volts, a negative sign must be associated with the magnitude of V_a .

