WFM 5201: Data Management and Statistical Analysis © Dr. Akm Saiful Islam

Descriptive Statistics Measures of Symmetry and Peakedness

Descriptive Statistics

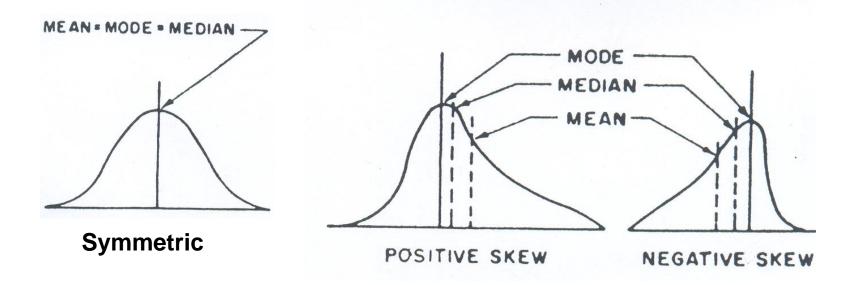
- Measures of Central Tendency
- Measures of Location
- Measures of Dispersion
- Measures of Symmetry
- Measures of Peakedness

Skewness

- The term skewness refers to the lack of symmetry. The lack of symmetry in a distribution is always determined with reference to a normal or Gaussian distribution. Note that a normal distribution is always symmetrical.
- The skewness may be either positive or negative. When the skewness of a distribution is positive (negative), the distribution is called a positively (negatively) skewed distribution. Absence of skewness makes a distribution symmetrical.
- It is important to emphasize that skewness of a distribution cannot be determined simply my inspection.

Measures of Symmetry

Skewness


Symmetric distribution

Positively skewed distribution

□ Negatively skewed distribution

Measures of Skewness

- If Mean > Mode, the skewness is positive.
- If Mean < Mode, the skewness is negative.</p>
- If Mean = Mode, the skewness is zero.

Measures of Symmetry

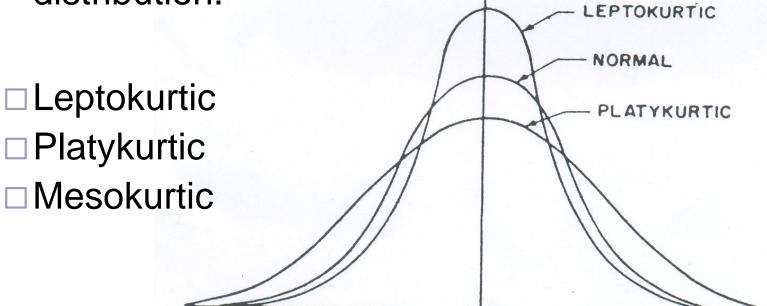
- Many distribution are not symmetrical.
- They may be tail off to right or to the left and as such said to be skewed.
- One measure of absolute skewness is difference between mean and mode. A measure of such would not be true meaningful because it depends of the units of measurement.
- The simplest measure of skewness is the Pearson's coefficient of skewness:

Measures of Skewness

Mean-Mode Pearson's coefficient of skewness = -Standard deviation Pearson's coefficient of skewness = $\frac{3(Mean - Median)}{Standard deviation}$ Kelley's coefficient of skewness = $\frac{D_9 + D_1 - 2M_e}{D_0 - D_1}$ Bowley's coefficient of skewness = $\frac{(Q_3 + Q_1) - 2M_e}{Q_2 - Q_1}$ Moment based coefficient of skewness = $\frac{\mu_3^2}{\mu_2^3}$

Central Moments

 $\mu_1 = \frac{\sum f(x - \bar{x})}{N}$ **First Moment** $\mu_2 = \frac{\sum f(x - \bar{x})^2}{n}$ Second Moment $\mu_3 = \frac{\sum f(x - \bar{x})^3}{N}$ Third Moment $\mu_4 = \frac{\sum f(x - \bar{x})^4}{N}$ Fourth Moment


Exercise-1: Find coefficient of Skewness using Pearson's, Kelly's and Bowley's formula

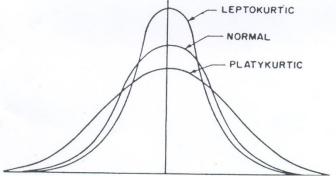
Income of daily Labour	Frequency (f)	(x)		
40-50	3	45		
50-60	5	55		
60-70	10	65		
70-80	8	75		
80-90	4	85		
90-100	4	95		
100-110	1	105		
Sum	N=35			

Measures of Peakedness

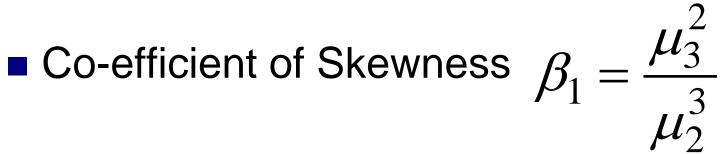
Kurtosis:

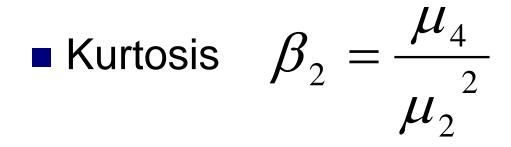
is the degree of peakedness of a distribution, usually taken in relation to a normal distribution.

Kurtosis


- A curve having relatively higher peak than the normal curve, is known as Leptokurtic.
- On the other hand, if the curve is more flat-topped than the normal curve, it is called Platykurtic.
- A normal curve itself is called Mesokurtic, which is neither too peaked nor too flattopped.

Measures of Kurtosis


If β₂-3>0, the distribution is leptokurtic.
If , β₂-3<0 the distribution is platykurtic.
If , β₂-3=0 the distribution is mesokurtic.


The most important measure of kurtosis based on the second and fourth moments is

$$\beta_2 = \frac{\mu_4}{{\mu_2}^2}$$

Co-efficient of Skewness and Kurtosis using Moments

WFM 5201: Data Management and Statistical Analysis © Dr. Akm Saiful Islam

Exercise-2: Find coefficient of skewness and Kurtosis using moments

Class	Frequency (f)	x	fx	f(x-µ)	f(x-µ) ²	f(x-µ) ³	f(x-µ) ⁴
25-30	2						
30-35	8						
35-40	18						
40-45	27						
45-50	25						
50-55	16						
55-60	7						
60-65	2						
Sum	N=35						