

Similarity Detection in Java Programming
Assignments

Mohamed El Bachir Menai, Nailah Salah Al-Hassoun
Department of Computer Science

CCIS - King Saud University
P.O. Box 51178, Riyadh 11543, Saudi Arabia

menai@ksu.edu.sa

Abstract— Similarity detection tools are nowadays commonly
used by instructors to prevent student cheating and to enforce
academic integrity. Systems identifying similarity in
programming assignments are generally classified as either
attribute-based or structure-based systems. Attribute-based
methods make statistical analysis of the program attributes to
detect lexical changes. Whereas structure-based methods
complete a deeper analysis of the program structure to detect
hidden structural similarities. Both methods can be useful for
student programming assignments which consist generally of
small to medium size source codes. In this paper, we introduce
a method that encompasses both approaches to fit
characteristics of student Java programming assignments.
Similarities between pairs of programs can be detected by
either profiling their source codes and measuring their
distance or parsing them and comparing their encodings using
a method inspired by DNA sequencing. We describe our
experimental prototype, called CAPlag (Computing
Assignment Plagiarism), and illustrate the results of some
exploratory experiments. We demonstrate that our method is
able to accurately find similarities in Java programs by
comparing our results against those obtained with JPlag, a
Web based service, and show that our system can be useful for
instructors to deal with different programming assignment
cases.

Keywords- Similarity detection, Programming assignment, Java,
Attribute-based method, Structure-based method

I. INTRODUCTION
Plagiarism is an attempt to pass off someone's work, in a

whole or part, as his/her own work without giving credit
[26, 22]. Most frequent cases appear among university
students who copy materials from different sources
(journals, books, peer course work, etc.) without citing
references. Program source code can be particularly
reproduced easily by including a small number of changes
without a need to a detailed understanding. This means that
with a few simple editor operations it is possible to produce
a plagiarized program with a very different visual
appearance [3, 7].

Changes in program code fall into two main categories:
lexical and structural changes. Lexical changes require little
knowledge of the programming language and generally

there is no need to program parsing. These changes might
include rewording, adding or deleting comments, changing
formatting and changing variable names [16]. Structural
changes require knowledge of the programming language to
be able to change the structure without altering the program
significance. This is highly language dependent and might
include replacement of equivalent iteration structures or
operand ordering [16]. Faidhi and Robinson [12]
characterize six levels of program modification in a
plagiarism spectrum. Level 0 is the original program
without modifications. In level 1, only comments and
indentation are changed. In level 2, identifier names are
changed. In level 3, positions of variables, constants, and
procedures are modified. In level 4, some combinations and
separations are introduced to the procedures. In level 5,
program statements are changed. In level 6, loop control
structures are changed to an equivalent form using different
control structures [26, 4, 32].

While similarity can be detected manually for isolated
cases, it is often made automatically. Manual detection
methods are often costly in time and effort especially as
class sizes and assignments length increase. Manual
detection is difficult but it could be efficient to assess the
plagiarism case once an automatic tool has been used [11,
26, 24]. Indeed, the usage of automatic methods of detection
aids the manual inspection of suspect assignments by
reducing the effort required in comparing a large number of
assignments.

There are three different classes of similarity detection
methods: quiz methods, writing style methods, and
comparison methods with original sources [18, 5, 26]. In
this paper, we focus on the last class of methods, since an
instructor compares student's programming assignments
against a collection of other works.

The rest of the paper is organized as follows. In Section
2, we present existing comparison methods and existing
program-code similarity detection systems. In Section 3, we
describe the proposed system, CAPlag, and discuss its
details. In Sections 4, we present some experimental results
including comparative results of CAPlag and JPlag. We
conclude and discuss future work in Section 5.

978-1-4244-6005-2/10/$26.00 ©2010 IEEE

The 5th International Conference on
Computer Science & Education
Hefei, China. August 24–27, 2010

 356

ThA3.6

II. RELATED WORK

A. Existing methods
Comparison methods can be roughly grouped into two

categories: Text-based methods and code-based methods.
The most used text-based methods include fingerprinting
[11, 5, 28], Greedy String Tiling (GST) [31, 15, 21], and
Running Karp-Rabin Matching and Greedy String Tiling
(RKR-GST) [24, 31]. RKR-GST appears to be the principle
algorithm that is used in most commercial plagiarism
detection systems. It is a string searching algorithm that uses
hashing to find the longest possible string common to two
documents.

Code-based methods fall in two categories: Attribute-
based and structure-base methods [3, 5]. Attribute-based
methods consist of extracting various metrics which capture
a simple quantitative analysis of some program attributes,
such as the number of tokens, distribution of identifiers, and
other authors or program specific characteristics, such as the
usage of a particular reserved word. The earliest attribute-
counting metric systems used Halstead’s software metrics
[14] to measure the level of similarity between programs.
These methods are easy to implement and to use. However,
they are not very effective, since it is difficult to select
rationally a set of metrics to profile a program.

Structure-based methods [5, 25, 15, 30] have been
introduced to capture the logical structure of a program.
They consist of comparing string representations of the
programs, rather than comparing measures extracted from
their structure. Programs are typically converted into
sequences of tokens (string representation) using a
language-dependent parser. This process of normalization is
used to reduce the effect of differences due to systematic
changes, such as renaming identifiers, and to characterize
the essence of a program's structure (which is difficult to
change by a plagiarist). Structure-based methods give an
improved measure of similarity. They have been shown to
be more effective than attribute-based methods in similarity
detection [3, 5]. Recent research tends to focus on efficient
program encodings into a normalized stream of tokens
rather than finding additional comparison methods.

B. Existing systems
This section presents some of the most popular similarity

detection tools for source code. The first tool was developed
by Ottenstein [25] to detect similarities in FORTRAN
programs based on Halstead’s metrics [14]. Most of modern
tools implement structure-based methods [4, 15].

1) MOSS (Measure Of Software Similarity)
MOSS is a free online similarity detection tool (available at
www.cs.berkeley.edu/˜aiken/moss.html). MOSS was
developed in 1994 by Alex Aiken at UC Berkeley. It works
with programs written in C, C++, Java, Pascal, ML, Lisp,
Ada, or Scheme [1, 28]. Neither information nor test results
are provided about the algorithm except what is mentioned
on MOSS Web site: “… more sophisticated than systems

based on counting the frequency of certain words in the
program text”.

2) JPlag
JPlag is an online similarity detection tool (available at

http://www.jplag.de) developed by Guido Malpohl in 1996 at
the University of Karlsruhe. JPlag finds similarities between
pairs of programs written in Java, C, C++, Scheme, and free
text. It uses Greedy String Tiling comparison algorithm [31],
adds different optimizations for improving its run time
efficiency [21], and provides a powerful graphical interface.
However, no test results are published.

3) CodeMatch
CodeMatch is a commercial similarity detection tool

produced as part of the CodeSuite software (available at
http://www.safe-corp.biz/products_codematch.htm).
CodeMatch compares thousands of source code files in
multiple directories and subdirectories to determine which
files are the most highly correlated. It works with different
programming languages, such as C, C++, C#, Delphi, Java,
JavaScript, and Pascal. CodeMatch uses several string
matching algorithm to determine similarity between two
source code files.

4) CPD (Copy/Paste Detector)
The PMD open source tool (http://sourceforge.net

/projects/pmd/) provides a Copy/Paste Detector (CPD) tool
for finding duplicate code. CPD [6] uses the Karp-Rabin
string matching algorithm. It works with Java, JSP, C, C++,
Fortan and PHP code. It provides guidance on how to add
other programming languages to the tool. This tool scans the
files themselves for duplicate code, also it is successful in
returning similar code across different files.

III. PROPOSED SYSTEM
Source code implemented by Bachelor students are

characterized by several common traits, since they are
generally related to the same programming assignments. In
particular, those related to the first graduate levels (first
programming courses) could not be checked correctly using
a structure-based tool, as their global structures are almost
the same. A system that provides tools to compare program
profiles and/or program structures might help instructors to
detect lexical and structural changes. Moreover, such a
system might limit the number of false positives and balance
the tradeoff between the speed and the reliability of the
algorithms used. Indeed, for short programming assignments,
it might be useless to compare source code structures.

CAPlag (Computing Assignment Plagiarism) is the
similarity detection system we propose for Java programs,
based around a two phase-algorithm. The first phase consists
of a fast screening process that determines program profiles
and compares them. The second phase could be useful to
detect more intricate plagiarism cases by parsing the
programs and comparing them.

A. First phase: Attribute-based comparison
A program profile is represented by a set of features

extracted from its source code according to different
software metrics [13, 20]. Specific metrics have been

 357

ThA3.6

introduced for different programming languages, such as
Java [9], C [17], and C++ [20]. Three classes of software
metrics for Java source code have been statistically derived
for authorship identification [9]: programming layout
metrics (STY), programming style metrics (PRO), and
programming structure metrics (PSM). The layout metrics
have been shown to play a more important role in the
classifications than the style and structure metrics [9]. Our
study of software metrics leads us to consider those having
the highest impact on the similarity measure [26, 19, 23, 9].
Table 1 gives a description of the program metrics used in
CAPlag.

We measure the similarity between two programs A and
B by the Weighted Mean (WM) of each class of metrics.
Given a program P and n layout metrics, m style metrics,
and p structure metrics, the weighted means for each class
of metrics are defined by the equations (1), (2), and (3).

 () ��
==

⋅=
n

i
ii

n

i
iLayout wSTYwPWM

11

 (1)

 () ��
==

⋅=
m

i
ii

m

i
iStyle wPROwPWM

11

 (2)

 () ��
==

⋅=
p

i
ii

p

i
iStructure wPSMwPWM

11

 (3)

The match percentage between A and B, M (A, B), can be
evaluated for every WM as follows.
• Match according to programming layout:

 () () ()
() () 100

),(
1, ×�

�

�

�

�
�

�

� −
−=

BWMAWMMax

BWMAWM
BAM

LayoutLayout

LayoutLayout

Layout
 (4)

• Match according to programming style:

 ()
() ()

() () 100
),(

1,Style ×�
�

�

�

�
�

�

� −
−=

BWMAWMMax

BWMAWM
BAM

StyleStyle

StyleStyle (5)

• Match according to programming structure:

 () () ()
() () 100

),(
1, ×��

�

�
��
�

� −
−=

BWMAWMMax
BWMAWM

BAM
StructureStructure

StructureStructure
Structure

 (6)

Overall, it can be estimated by M (A, B):

 () () ()
() () 100

),(
1, ×�

�
�

�
�
�
�

� −
−=

BWMAWMMax
BWMAWM

BAM (7)

TABLE I. PROGRAM METRICS USED IN CAPLAG [9]

Program Measure (metric)
Metric Description Weight

STY1c Percentage of open braces ({) that are the last
character in a line

0.39

STY1e Percentage of close braces (}) that are the first
character in a line

0.41

STY1f Percentage of close braces (}) that are the last
character in a line

0.29

STY1g Average indentation in white spaces after open
braces ({)

0.25

STY1h Average indentation in tabs after open braces ({)

0.4

STY2a Percentages of pure comment lines among lines
containing comments

0.39

STY2b Percentages of End Of Line style comments
among End Of Line and Traditional style
comments
‘‘//’’ End Of Line style comment and
‘‘/*’’ Traditional style comment

0.23

STY4 Average white spaces to the left side of
operators: One of (= > < ! ~ ? : == <= >= != &&
|| ++ - + - & | ^ % << >> >>> += -= &= |= ^=
%= <<= >>= >>>=)

0.38

STY5 Average white spaces to the right side of
operators

0.4

PRO1 Mean program line length in terms of characters

0.14

PRO2b Mean function name length

0.22

PSM5 Ratio of primitive variable count to lines of non-
comment code
Primitive variable : One of (Int, Long, Float,
Double, Boolean, Char)

0.32

PSM6 Ratio of function count to lines of non-comment
code

0.03

PSM7c Ratio of keyword ‘‘class’’ to lines of non-
comment code

0.1

PSM7e Ratio of keyword ‘‘implements’’ to lines of non-
comment code

0.38

PSM7j Ratio of keyword ‘‘new’’ to lines of non-
comment code

0.2

PSM7l Ratio of keyword ‘‘private’’ to lines of non-
comment code

0.27

where WM (P) is defined by the equation (8).

 ()
�

�
++

=

++

=

⋅
= pnm

i
i

pnm

i
ii

w

metricw
PWM

1

1 (8)

B. Second phase: Structure-based comparison
The structure-based comparison in CAPlag consists of a

normalizing and alignment processes. First, a parser
generates a string representing the structure of the input
program code. Next, program string encodings are aligned
using a DNA local alignment method [8, 27].

Similarity has both quantitative and qualitative aspects. A
similarity measure gives a quantitative answer, saying that
two sequences show a certain degree of similarity. An
alignment is a mutual arrangement of two sequences which
is a sort of qualitative answer it exhibits where the two

 358

ThA3.6

sequences are similar and where they differ. Optimal
alignment is evaluated in CAPlag using dynamic
programming alignment [2, 10]. An optimal alignment is
the one with the maximum number of matches and minimum
number of mismatches and gaps between the two sequences.

There are two types of dynamic programming
algorithms: Global and local. Global sequence alignment
compares two sequences throughout their lengths. This is
clearly not the case when comparing a program sequence
against an entire program [27].

In CAPlag, we use the Smith-Watermann local sequence
alignment algorithm [29]. It computes the best score and
finds the highest possible scoring substrings. This algorithm
is described as follows.

1. Initialization:
The two normalized strings are assigned to variables,
A and B and their lengths to i and j.

2. Create a Scoring Matrix:
A matrix V of dimensions (i+1) by (j+1) is created to
save the scores, using the following scoring matrix:

a. Perfectly matched get a high score
() 1=matchw

b. Matches between related get a modest score
() 1−=mismatchw

c. Matches with gaps get a low score
() 2−=gapw . Finding the local alignments

of two sequences starts from the highest
score of a block until zero.

 []
[]
[]
[]

	
	

	
	
�

�

++
++

+

=++

0
,1

1,V
or ,

max1.1
gapjiV
gapji

mismatchmatchjiV

jiV (9)

3. Finding the optimal alignments of two sequences.
The score between two sequences is the maximum
score among all alignments.

4. Calculate similarity measure. A similarity measure
(%) between two sequences A and B is defined as
follows (normalized formula):

 () ()
() ()() 100

,score,score
,score2, ×��

�

�
��
�

�
+

⋅=
BBAA

BABAM (10)

Figure 1 shows a block diagram of our algorithm.

IV. EXPERIMENTAL EVALUATION
CAPlag was implemented in Java programming language

and tested on more than 200 Java code source programs of
various sizes grouped in 3 sets. They consist of a dummy
test set created by hand, with modified levels in plagiarism
spectrum (level 1 to level 6; level 0 represents the original
program).

Figure 1. Block diagram of CAPlag algorithm

Program sizes range from small to large: small (average
number of lines without comments: 10-50); medium
(average number of lines without comments: 51-150); large
(average number of lines without comments: 151-300).

Figures 2-4 present the results obtained in terms of
average similarity percentage for each level of plagiarism
when attribute-based or structure-based comparisons are
used. Overall, the structure-based comparison method
outperforms the attribute-counting one. Both methods return
high similarity percentage for the plagiarism levels 1-2.
Moreover, their performances for the other plagiarism levels
are closely related on small programs.

CAPlag was compared against JPlag on the same test
sets. Figure 5 illustrates the results obtained. JPlag
outperforms CAPlag on medium and large programs.
However, the performance of CAPlag with the structure-
based comparison method remains comparable to JPlag’s
performance. Average results obtained with CAPlag on
small programs with attribute-based or structure-based
comparison methods are much better than those obtained
with JPlag.

 359

ThA3.6

Figure 2. Histogram of similarity % (y-axis) against plagiarism levels (x-
axis) for small Java programs.

Figure 3. Histogram of similarity % (y-axis) against plagiarism levels
(x-axis) for medium Java programs.

Figure 4. Histogram of similarity % (y-axis) against plagiarism levels (x-
axis) for large Java programs.

V. CONCLUSION AND FUTURE WORK
We introduced a new similarity detection system

(CAPlag) allowing both attribute-based and structure-based
comparisons of Java source codes.. Attribute-based
comparison consists of programs’ profiling and comparing
their software metric features. Structure-based comparison
is based on programs’ normalization and alignment using a
dynamic programming alignment method.

Figure 5. Histogram of similarity % (y-axis) against test set size (x-axis)
comparing CAPlag with JPlag.

Experimental results demonstrate the effectiveness of
CAPlag. Its comparison against JPlag proves its
competitiveness. Moreover, we show that attribute-based
comparison method can be useful for student programming
assignments, even if it is not regarded in modern plagiarism
detection systems. Indeed, programming assignments of the
first graduate levels are generally characterized by their
small size, and a fast shallow parsing might be sufficient to
detect similarities in the source codes. Structure-based
comparison method is suitable for larger programs. CAPlag
can be used by instructors to detect lexical and structural
similarities in their students’ programming assignments
through an interactive and easy-to-use graphical interface.

The performance of CAPlag could be improved by
expanding the set of metrics used for program profiling.
Indeed, a statistical analysis of student programming
assignments might lead to derive specific metrics. CAPlag
could be also easily extended to handle other programming
languages.

REFERENCES
[1] W. K. Bowyer and O. L. Hall, "Experience Using 'MOSS' to

Detect Cheating On Programming Assignments," In Proc.
29th ASEE/IEEE Frontiers in Education Conference, pp.18 -
22, 1999.

[2] G. M. Cannarozzi, "String alignment using dynamic
programming", 2005. http://biorecipes.com/DynProgBasic/
code.html

[3] X. Chen, B. Francia, M. Li, B. Mckinnon, and A. Seker,
"Shared Information and Program Plagiarism Detection,"
IEEE Transactions on Information Theory, vol.50, no. 7, pp.
1545-1551, 2004.

[4] P. Clough, "Plagiarism in Natural and Programming
Languages: An Overview of Current Tools and
Technologies," Research Memoranda, Department of
Computer Science, University of Sheffield, UK, Tech. Rep.
CS-00-05, 2000.

[5] P. Clough, "Old and new challenges in automatic plagiarism
detection," Plagiarism Advisory Service, Department of
Information Studies, University of Sheffield, UK, 2003.

[6] T. Copeland, "Detecting Duplicate Code with PMD's CPD,"
OnJava, March 2003. http://www.onjava.com/pub/
a/onjava/2003/03/12/pmd_cpd.htm

 360

ThA3.6

[7] F. Culwin, A. MacLeod, and T. Lancaster, "Source Code
Plagiarism in UK HE Computing Schools, Attitudes and
Tools, " South Bank University, London, Tech. Rep. (SBU-
CISM-01-01), 2001.

[8] D. Das and D. Dey, "A New Algorithm for Local Alignment
in DNA Sequencing," In Proc. of the IEEE INDICON 2004,
vol.1, no. 20-22, pp. 410 – 413, 2004.

[9] H. Ding and M. H. Samadzadeh, "Extraction of Java program
fingerprints for software authorship identification," Journal of
Systems and Software, vol.72, no.1, pp.49-57, June 2004.

[10] S. R. Eddy, "What is dynamic programming?," Nature
BioTechnology, vol. 22, no. 7, 2004.

[11] S. Engels, V. Lakshmanan, and M. Craig, "Plagiarism
Detection Using Feature-Based Neural Networks," Artificial
intelligence, vol. 39, no. 1, pp. 34 -38, 2007.

[12] J. A. W. Faidhi and S. K. Robinson, ”An empirical approach
for detecting program similarity and plagiarism within a
university programming environment,” Comput. Educ., vol.
11, pp. 11-19, 1987.

[13] A.Gray, P. Sallis, S. MacDonell, "IDENTIFIED (integrated
dictionary-based extraction of non-language-dependent token
information for forensic identification, examination, and
discrimination): a dictionary-based system for extracting
source code metrics for software forensics," In Proc. of
Software Engineering: Education & Practice Conf., pp. 252–
259, 1998.

[14] M. H. Halstead. Elements of Software Science. New York:
Elsevier,1977.

[15] M. Hoffmann, "The Plagiarism Detector COPY-D-TEC,"
Department of Computer Science, University of Stellenbosch,
South Africa, Tech. Rep. Final Project Report, 2004.

[16] M. S. Joy and M. Luck, "Plagiarism in programming
assignments," IEEE Transactions on Education, vol. 42, no. 2,
pp.129-133, 1999.

[17] I. Krsul, E.H. Spafford, "Authorship Analysis: Identifying the
Author of a Program," Purdue University, West Lafayette, IN,
Tech. Rep. (CSD-TR-96-052), 1996.

[18] T. Lancaster and F. Culwin, "Classifications of Plagiarism
Detection Engines," ITALICS, vol. 4 , no.2, 2005.

[19] H. F. Li, "An Empirical Study of Software Metrics," IEEE
Transactions On Software Engineering, vol. 13, no. 6, pp.
697-708, 1987.

[20] S. G. McDonell, A. R. Gray, G. McLennan, and P. J. Sallis,
"Software forensics for discriminating between program

authors using case based reasoning, feed forward neural
networks, and multiple discriminate analysis," In Proc. of the
6th Inter. Conf. on Neural Information, vol. 1, pp. 66–71,
1999.

[21] G. Malpohl, L. Prechelt, and M. Phlippsen, "Finding
plagiarisms among a set of programs with JPlag," Journal of
Universal Computer Science, vol. 8, no. 11, pp. 1016-1038,
2002.

[22] H. Maurer, F. Kappe, and B. Zaka, "Plagiarism - A Survey,"
Journal of Universal Computer Science, vol. 12, no. 8, pp.
1050-1084, 2006.

[23] E. Merlo, "Detection of Plagiarism in University Projects
Using Metrics-based Spectral Similarity," in Proc. Of
Dagstuhl Seminar 06301: Duplication, Redundancy, and
Similarity in Software, Dagstuhl, Germany, 10pp, 2007.

[24] E. Noynaert, "Plagiarism Detection Software," In Proc. Of
38th Annual Midwest Instruction and Computing Symposium,
Eau Claire, Wisconsin, 2005.

[25] K. J. Ottenstein, "An algorithmic approach to the detection
and prevention of plagiarism," SIGCSE Bull., vol. 8, no. 4,
pp. 30-41, 1976.

[26] A. Parker and J. Hamblen, "Computer Algorithms for
Plagiarism Detection," IEEE Transactions on Education, vol.
32, no. 2, pp. 94–99, 1989.

[27] E.C. Rouchka, "Aligning DNA sequences using dynamic
programming," ACM Crossroads, vol.13, no.1, pp.18-22,
2006.

[28] S. Schleimer, D. Wilkerson, and A. Aiken, "Winnowing:
Local Algorithms for Document Fingerprinting," In Proc. of
the ACM SIGMOD Inter. Conf. on Management of Data, pp.
76-85, 2003.

[29] T. F. Smith, and M. S. Waterman, "Identification of Common
Molecular Subsequences," Journal of Molecular Biology, vol.
147, pp. 195–197, 1981.

[30] G. Whale, "Identification of program similarity in large
populations," The Computer Journal, vol. 33, no. 2, pp.140–
146 , 1990.

[31] M. J. Wise , "String similarity via greedy string tiling and
running Karp-Rabin matching," ftp://ftp.cs.su.oz.au/
michaelw/doc/RKR GST.ps, 1993.

[32] L. Zhang, Y. Zhang, and Z. Yuan, "A Program Plagiarism
Detection Model Based on Information Distance and
Clustering," In Proc. of Intelligent Pervasive Computing, pp.
431-436, 2007.

 361

ThA3.6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

