~% COURSE TECHNOLOGY

1 &» CENGAGE Learning

Linux Operations and
Administration
Ahmad AlRjoub

ahmadrj@ksu.edu.sa

Chapter Five

Creating Shell Scripts and Displaying
File Contents

ODbjectives

 ldentify and change Linux file permissions
* Create and run shell scripts
* Display the contents of a text file

Linux Operations and Administration

An Overview of Linux File Permissions

* Viewing file permissions
— less -1 command

« User, group, and other permissions:
— User—the file owner

— Group—a group of users; users are divided into
groups to facilitate administrative tasks

— Other—everyone else on the Linux system

Linux Operations and Administration 3

An Overview of Linux File Permissions

(cont'd.)

[
|

| —
WX TWX TWX

user group other

Figure 5-1 File permissions
©Engage Learning 2013

Linux Operations and Administration

read

write

execute

An Overview of Linux File Permissions
(cont'd.)

 Read, write, and execute

— Functions of these permissions differ, depending on
whether they’re applied to files or directories

« Table 5-1
— Defines permissions for files and directories

Linux Operations and Administration 5

An Overview of Linux File Permissions
(cont'd.)

m Permission for files Permission for directories

r (read) Gives users permission to open a file Allows users to list a directory's contents with
and view its contents commands such as 1=

w (write) Gives users permission to open a file Allows users to add or remove files and
and edit its contents subdirectories

% (execute) Allows users to run the file (as long as Allows users to switch to the directory with the
it's a program or script) ed command; to read a directory's contents and

add or remove files and subdirectories, you must
have execute permission

Table 5-1 Linux file and directory permissions

Linux Operations and Administration 6

An Overview of Linux File Permissions
(cont'd.)

 Example:
— —rw—-r—-—-r—— 1 martin users 0 2012-04-11 09:20 filel

— User category of permissions is set to rw-
* Hyphen (-) represents no permission
« Read, write, not execute

— Group category is set to r—-

« Group has read permission but not write and execute
permissions

— Other category is set to r—-

« Every user on the system has read permission but not
write or execute

Linux Operations and Administration 7

Permission Commands

« chmod (change mode) command
— Change permissions on files and directories
— Syntax: chmod permissions file/directory
— Permissions argument
 Information used to change permissions
— File/directory argument
« Specifies the file or directory you want to change
* Notations
— Symbolic notation
— Numeric notation

Linux Operations and Administration

Permission Commands (cont'd.)

e Symbolic notation

— Uses criteria such as categories and operators to
change file permissions

— Described in Table 5-2
— Example: chmod o-wx filed
 Numeric notation

— Uses numbers from O to 7 to represent file
permissions

— Shown in Table 5-3
— Example: chmod 774 filel

Linux Operations and Administration

Permission Commands (cont'd.)

| catogory | operator [eemisson

u (user) + (add to existing permissions) r (read)

g (group) (remove from existing permissions) w (write)

o (other) = (assign absolute permissions) x (execute)

a (all) One of the preceding operators One or more of the preceding permissions

Table 5-2 Symbolic notation

Linux Operations and Administration 10

Permission Commands (cont'd.)

]

x 1
- 2
Wi 3
Y-- 4
r-x 5
rw- b
WX 7

Table 5-3 Numeric notation

Linux Operations and Administration

Permission Commands (cont'd.)

WX WX [I--

user group other
wE=4+2+1 =7 rmw=4+2+1=7 r-=4+0+0=4

Figure 5-2 File permissions in numeric notation
©Engage Learning 2013

Linux Operations and Administration

12

Creating Shell Scripts

« Shell script
— Contains a sequence of commands to execute line
by line
— Used in troubleshooting

— Some scripts run when the Linux system starts

* Need to know how to manage these scripts if
problems occur during the boot process

* Programming language

— Set of rules for instructing a computer how to
perform specific tasks

Linux Operations and Administration 13

Creating Shell Scripts (cont'd.)

* Machine code
— Consists of binary 1s and Os and
— Language a computer’'s CPU understands

« Scripts can be considered compiled programs or
Interpreted programs

— Compiled program: all the source code is converted
to machine code and stored in a binary file before
the user runs the script

— Interpreted program: source code is converted to

machine code, line by line, as the user runs the
script

Linux Operations and Administration 14

Creating Shell Scripts (cont'd.)

* In Chapter 5: BASH shell interpreter

* Create a shell script:
— Create afile
— Assign execute permission for it

* Run a shell script:

— Enter the absolute or relative path to where it's
stored

— Example: run a script called scr1 that's stored in
your current directory
e ./scrl

Linux Operations and Administration

15

Creating Shell Scripts (cont'd.)

« Activity 5-1: Creating a Shell Script
— Create and run a shell script
— #!/bin/bash command
« Specifies running the script in the BASH shell

— Comment

« Add documentation information for users and anyone
else who might need to modify the script

Linux Operations and Administration

16

Variables

Environment variable
— Placeholder for data that can change

— Gets its value automatically from the OS startup or
the shell being used

— Each user has his or her own environment variables

« Table 5-4

— Describes some common environment variables

Linux Operations and Administration 17

Variables (cont’'d.)

p—

HOME Home directory
USEE Legin name
PATH Gives the search path, which is the list of directories (separated by : symbols) the

shell uses when searching for executable commands

HOST Computer name

Table 5-4 Environment variables

Linux Operations and Administration 18

Variables (cont’'d.)

e env cOmmand

— Display a list of all environment variables and their
stored values

« echo command with $ symbol before the variable
name

— Display value of particular environment variable
— echo S$SHOME returns the value of the HOME variable

Linux Operations and Administration 19

Variables (cont’'d.)

 Shell variable
— Similar to an environment variable
— Value is usually assigned in a shell script

— Related to a particular script
* Not necessarily the global environment

Linux Operations and Administration

20

Direct Assignment

« Direct assignment method

— Specify the variable’s value in the command
— For example, COLOR=blue

« Activity 5-2: Using the Direct Assignment Method

— Use the direct assignment method to store a value in
a variable

Linux Operations and Administration 21

Direct Assignment (cont'd.)

opsm | crmte | ot

-name find / -name hosts Starts in the root directory (/) and searches for files named hosts

-type d find . -type d Starts in the current directory (indicated by the .) and searches
for all subdirectories

-type £ find /home -type £ Starts in the /home directory and searches for all files

-type 1 find /etec -type 1 Starts in the /etc directory and searches for all symbolic links

~group find . -group users Starts in the current directory and searches for all files belonging
to the users group

-usger find /home -user Starts in the /home directory and searches for all files belonging

jasmine to the user jasmine

-1 num find / -inum 3911 Starts in the root directory (/) and searches for all files with the
inode number 3911

-mmin n find / -mmin 10 Starts in the root directory (/) and searches for all files that have

been modified in the past 10 minutes

Table 5-5 Options for the find command

Linux Operations and Administration 22

The Prompt Method

* Prompt method
— User Is asked to enter a value for the variable

* Activity 5-3: Using the Prompt Method

— Create a script with the prompt method for storing a
value in a variable

Linux Operations and Administration

23

Positional Parameters

* Positional parameter method

— Uses the order of arguments in a command to
assign values to variables on the command line

— Variables from $0 to $9 are available
* Values are defined by what the user enters

 Example:
— ./scrl /home #!/bin/bash
_ clear
51 to be /home echo "Searching for $1"
find $1

Linux Operations and Administration 24

Positional Parameters (cont'd.)

* Table 5-6
— Describes positional parameters

« Activity 5-4: Using Positional Parameters

— Create a script that uses positional parameters to
assign values to variables

Linux Operations and Administration

25

Positional Parameters (cont'd.)

—— p— (|

$0 Represents the name of the script . /sex4 (. /ecr4 is position 0)

51 to 59 $1 represents the first argument, 52 ./ecr4 /home (./scr4 is position 0
represents the second argument, and and /home is position 1)
SO on ./scxra /home scri (. /scrais

position 0, /home is position 1, and
scrl is position 2)

S Represents all the positional /home serl (just /home and scrl)
parameters except 0

S# Represents the number of arguments ./scx4 /home scrl
that have a value echo S# (S* represents positions

1 and 2, which are /home and scri)

Table 5-6 Positional parameters

Linux Operations and Administration

26

Exit Status Codes

EXxit status code is sent to the shell
— When you quit a program or a command

Successful commands usually return the code 0
Failures return a value greater than O

Code isn’t actually displayed onscreen
— Reference it with $?

echo $°7?

0

cd baddir

bash: cd: baddir: No such file or
directory

echo $°?

1

Linux Operations and Administration 27

Conditions

« Tell interpreter to skip commands based on a
condition

e 1f Statement

— Carry out certain commands based on testing a
condition

Linux Operations and Administration

28

Conditions (cont'd.)

« Common condition statements used in scripts:
- if statement—starts the condition being tested

— then statement—starts the portion of code
specifying what to do if the condition evaluates to
true

- else statement—starts the portion of code
specifying what to do if the condition evaluates to
false

- fi statement—indicates the end of the condition
being tested

Linux Operations and Administration

29

Conditions (cont'd.)

if statement

false true
else then
Portion of code Portion of code
executed if the executed if the
condition is false condition is true

i statement

Figure 5-3 A flowchart of the if statement
©Engage Learning 2013

Linux Operations and Administration

Conditions (cont'd.)

* Activity 5-5: Using Condition Statements
— Create a script with i £, then, and else statements

« Table 5-7

— Lists file attribute operators available in the BASH
shell

Linux Operations and Administration 31

Conditions (cont'd.)

File attribute operator Description

-a Checks whether the file exists
d Checks whether the file is a directory
-f Checks whether the file is a regular file

r Checks whether the user has read permission for the file

-8 Checks whether the file contains data
W Checks whether the user has write permission for the file
-x Checks whether the user has execute permission for the file
o Checks whether the user is the owner of the file
-3 Checks whether the user belongs to the group owner of the file
filel -nt file2 Checks whether £ilel is newer than £ile2
filel -ot file2 Checks whether £ilel is older than £ile2

Table 5-7 File attribute operators in the BASH shell

Linux Operations and Administration 32

Menu Scripts

« Menu scripts

— Allows users to choose from a list of options
* Activity 5-6: Creating a Menu Script

— Create a menu script with i £ and then statements
« elif statement

— Combines the else and if statements

— Create multiple conditions without closing each
condition

Linux Operations and Administration

33

The case Statement

e case Statement

— Uses one variable to specify multiple values and
matches a portion of the script to each value

¢ Syntax:

case SVARIABLE in
valuel) code for specified valuel

o o
r 7

value?) code for specified value?2
valuen) code for specified valuen
*)code for value not matching any

specified choices ;;
esac

Linux Operations and Administration

34

The case Statement (cont'd.)

* Double semicolon (; ;)

— Marks the end of each code portion matching a
specific value

e *) character

— Runs if the value the user enters doesn’t match any
of the choices specified in the case statement

Linux Operations and Administration 35

The case Statement (cont'd.)

* Activity 5-7: Using case Statements in a Menu
Script
— Create a menu script with case statements

Linux Operations and Administration

36

Looping

* Perform a set of commands repeatedly

* Looping statements:

— while statement—interpreter continues executing
the code in the while loop portion of the script as
long as the condition is true

— until statement—interpreter continues executing

the code in the until loop portion of the script as long
as the condition is false

Linux Operations and Administration 37

Looping (cont'd.)

— for statement—specifies the number of times to
execute the portion of code

— do statement—indicates the beginning of the code to
be repeated

— done statement—indicates the end of the code to be
repeated

Linux Operations and Administration 38

The while Loop

« while loop

— Repeats commands between do and done
statements

— As long as the tested condition is true

 When the command after the while statement
returns an exit status code greater than 0

- while statement fails

— Program executes commands after done statement
» Activity 5-8: Creating a while Loop

— Create a while loop in a script

Linux Operations and Administration 39

The while Loop (cont'd.)

while

statement
true false

¥

do
[
Execute
commands
between do
and done

|
done

l

Figure 5-4 A while loop
©Engage Learning 2013

Linux Operations and Administration

The until Loop

« until loop
— Repeats commands between do and done
— As long as the tested condition is false
* When the command following the until statement
has the exit status code O
— until loop fails
— Program executes commands after done statement
* Activity 5-9: Creating an until Loop in a Menu
Script

— Create a menu script that continues running until the
user decides to exit

Linux Operations and Administration 41

The until Loop (cont'd.)

» | until

statement
false true

do
|
Execute
commands
between do
and done

I
done

l

Figure 5-5 An until loop
©Engage Learning 2013

Linux Operations and Administration

The for Loop

« for loop

— Repeats the commands between do and done a
specified number of times

— Each time the script carries out the commands in the
loop, a new value is given to a variable

— Assign this value in the command with positional
parameters

* Activity 5-10: Creating a for Loop

— Create a script that repeats the commands between
do and done a specified number of times

Linux Operations and Administration 43

Displaying the Contents of a Text File

 List a file’'s contents without actually opening the
file In a text editor

Linux Operations and Administration 44

The cat and tic Commands

« cat (concatenation) command

— Displays an entire file’s contents at once

— Typically used to display the contents of a small text
file

— Can be used to display the contents of multiple files
at once

« —n option
— Display line numbers in a text file:
— cat -n scrl

Linux Operations and Administration 45

The cat and tic Commands (cont'd.)

e tic command

— Display a text file’'s contents in reverse order
— Main purpose to display log files

Linux Operations and Administration 46

The head and tail Commands

« head command
— Displays the first 10 lines of a text file
— head scr8
— Can display more than 10 lines: head -15 scr8
« tail command
— Displays the last 10 lines of a text file
— tailil scr8
— Can display more than 10 lines: tail - 15 scr8
— + operator

 Start displaying text at a specified line number all the

way to the end of the file
Linux Operations and Administration 47

The more and 1ess Commands

e more command

— Displays a file’s contents one screen at a time

* Table 5-8
— Lists options you can use with the more command

e less command

— Displays a file’s contents one screen at a time

— Allows you to navigate the file by using arrow keys
or the mouse wheel

Linux Operations and Administration 48

The more and 1ess Commands
(cont'd.)

#!/bin/bash

until [SCHOICE -eq 4]

do

Clear

echo Flease select = menu item

echo echo CHDICE is $CHOICE

echo

echo "1)Di1splay your current working directory”
echo "2)Display your home directory"

echo "3)List the contents of your current working directory”
echo "4)Exit the program"

echo

read CHOICE

case $CHOICE 1in

Figure 5-6 Output of the more command
©Engage Learning 2013

Linux Operations and Administration

49

The more and 1ess Commands
(cont'd.)

Spacebar Displays the next screen
#+spacebar Displays the next # lines
Enter Displays the next line

| Exits the more command

= Displays the current line number

Displays help

Table 5-8 Options for the more command

Linux Operations and Administration

50

The more and 1ess Commands
(cont'd.)

#! /binsbash

until [SCHOICE -eqg 4 |

o

clear

echo Please select a menu ftem

echo echo CHOLCE 1s JCHUICE

echo

echo "LiDisplay your current working directory”
echo "2)Display your home directory”

echo "3)List the contents of your current working directory"
ecno "4)Exi1t the program”

echo

read CHOICE

case SCHOLCE n

1) pwd:

2) =cho $HOME;:

Figure 5-7 Output of the less command
©Engage Learning 2013

Linux Operations and Administration

Summary

* Linux file permissions

— Assigned in the user, group, and other categories
— Changed by using the chmod command

« Shell scripts

— Values are assigned to variables by direct
assignment, positional parameters, or the prompt
method

— Condition statements

« Used to run specified portions of a script matching the
condition

Linux Operations and Administration 52

Summary (cont'd.)

— Loops used in shell scripts are while, until, and
for
* Listing file contents
- cat and tic
 Print entire file contents
— headand tail
* View beginning or end of file
— more and less
* View file screen by screen

Linux Operations and Administration

53

