Lab#1 BCH 471

Separation of Plasma and Serum and Their Proteins from Whole Blood

Objectives:

- To separate plasma and serum from whole blood.
- To separate blood proteins using salting-out method.
- Identification of blood proteins using Biuret and heat coagulation method.

Whole Blood:

Whole blood contains: (red blood cells, white blood cells, and platelets) suspended in fluid called plasma.

-The general functions of blood are in metabolism and its regulation (e.g., osmotic balance), transport, and defense or protaction.

- **Plasma:** is the liquid portion of the blood in which red and white blood cells and platelets are <u>suspended</u> before the centrifugation. (contain albumin, globulins and **fibrinogen**).

- **Serum:** resembles plasma in composition but lacks the coagulation factors (such as fibrinogen). But it will still contain active thrombin.

-Serum, can be obtained by, letting a blood specimen clot prior to centrifugation or by centrifugation of plasma to precipitate Fibrinogen and the liquid phase will be the serum.

Serum = Plasma - Fibrinogen

In order for the blood to clot.....

-leukocytes. -platelets(Thrombocytes) -erythrocytes

Collection of Blood Specimens

Tube Cap Color		Additive	Function of Additive	Common Lab Tests
	Green	Heparin	It inhibits the formation of thrombin from prothrombin and thus preventing the formation of fibrin.	-Routine Chemistry Tests -Cytogenetic
f	Purple	EDTA	It is a chelating agent, it binds calcium, which is essential for the clotting mechanism.	-Hematology -Molecular Tests
	Light Blue	Sodium Citrate	It inhibits blood coagulation by converting calcium into a non- ionized form, and hence prevent clotting of blood.	Coagulation Test
	Dark Gray	Potassium Oxalate	It inhibits blood coagulation by forming insoluble complexes with calcium ions.	-Preserve glucose in whole blood -Some Chemistry Tests.
	Light Gray	Sodium Fluoride	It has been used chiefly as a preservative since it inhibits red cell metabolism and bacterial action.	

• If whole blood or plasma is desired, an anticoagulant must be added to the specimen.

Blood Collection Tube Red Cap: (No Additive Tube)

Used for serum determinations in chemistry, serology and immunohematology.

Note: Serum is preferred for many tests (e.g. determination of lactate dehydrogenase). as the anticoagulants in plasma can sometimes interfere with the results.

Biochemical Changes in Blood Upon Storage:

- Loss of carbon dioxide.
- Conversion of glucose to lactic acid (glycolysis).
- Increase in plasma inorganic phosphate.
- Formation of ammonia from nitrogenous substances.
- Passage of substances through the red cell envelope.
- Conversion of pyruvate into lactate.

Plasma proteins:

The main 3 plasma proteins are:

1- Albumin, (36-50 g/l), MWt 66.241 kDa.

-It is the most abundant protein in the plasma.

-It has some functions such as:

- Maintenance of the blood osmatic pressure.
- Adjusting blood pH.

- Act as transporter, transport free fatty acids, bilirubin, drugs, steroids hormones, calcium and copper in the blood.

2-Globulins, (18-32 g/l), MWt of globulins cover a wide rang.

Sub classified in to four types (α - globulins, α_2 - globulins, β – globulins and γ -globulins). α_1, α_2 , and β -globulins, which serve as carrier proteins. and γ -globulins, which include the **immunoglobulins** responsible for immune responses.

3-Fibrinogen, (2-4 g/l), MWt 340 kDa.

- Fibrinogen (or Factor I) is a soluble glycoprotein, with a central role in blood clotting.
- It is converted to fibrin by thrombin, during blood clotting.

Site of synthesis of plasma proteins

All plasma proteins are synthesized in the liver

except

Gamma globulin (immunoglobulin) are made by B cells

Note: All plasma proteins are water soluble

Major Serum Proteins:

- Total serum protein consists of two main fractions, albumin (A) and globulin(G).
- In normal people the A/G ratio is from 1.2 to 1.5.
- Generally, the <u>decrease in total protein</u> is due to <u>decrease in albumin</u> fraction and <u>increase</u> is due to <u>increase in globulin</u> components.
- Dehydration is one condition in which the increase in total protein is due to increase in both albumin and globulin fractions because of haemoconcentration → In this case the <u>A / G ratio remains unaltered</u>.

A low serum albumin may be due to:

- A heavy loss of albumin in urine.
- Malabsorption of protein from the digestive tract.
- Decrease of synthesis by the liver. (defective liver).
- Increase catabolism of protein
- Insufficient intake of protein in diet.

A high serum globulin occurs commonly in:

- Advanced liver disease.
- Certain types of cancer, such as multiple myeloma. (**γ**-globulins),
- number of chronic infections.

Serum and plasma proteins can be separated from each other by:

Salting out

Ultracentrifugation

Electrophoresis

Practical Part

For the separation part in the lab:

Salting Out will be used

Principle:

-When the proteins precipitate at high concentration of salts it called Salting out. The salt molecules <u>compete</u> with the protein molecules in binding with water.

In this case, the protein molecules tend to associate with each other because protein-protein interactions become energetically more favorable than protein-solvent interaction.

For the identification part in the lab:

1. Biuret test

Protein + Biuret reagent → violet/blue color

 The intensity of the color is <u>proportional</u> to the number of peptide bonds and thus is a measure of the concentrations of proteins.

2. Heat coagulation

Protein + weak acid

protein precipitate (cloudiness)

