
Semantic Analysis 



Where We Are? 

• Program is lexically well-formed: 
– Identifiers have valid names. 

– Strings are properly terminated. 

–  No stray characters. 

• Program is syntactically well-formed: 
– Class declarations have the correct structure. 

– Expressions are syntactically valid. 

• Does this mean that the program is legal 
(valid)? 



Consider the following program:  
It is syntactically correct, but is it error free? 





• Semantic analysis is our last line of defense. 

• Parsing cannot catch all errors 

• This is because CFG are not expressive 
enough to describe everything we are 
interested in in a language. 

• i.e., some language constructs are not 
context free. 

 



Limitations of CFGs 

• Using CFGs: 

• How would you prevent duplicate class 
definitions? 

• How would you differentiate variables of one 
type from variables of another type? 

• How would you ensure classes implement all 
interface methods? 

• For most programming languages, these are 
provably impossible. 



Implementing Semantic Analysis 

• Attribute Grammars 

– Augment rules to do checking during  parsing. 

– Approach suggested in the Compilers book. 

– Has its limitations; more on that later. 

• Recursive AST Walk 

– Construct the AST, then use virtual functions and 
recursion to explore the tree. 

– The approach we'll take in this class. 



Abstract Syntax Tree: AST 

• Much of the semantic analysis can be expressed as a 
recursive descent of an AST. 

• When we traverse an AST some operations are performed 
on a node before we process its children and some 
operations are performed after we process its children  
– Before: process an AST node n 
– Recurse: Process the children of n 
– After: Finish processing the AST node n 

• This is called Recursive Decent Traversal of a Tree 
– Sometimes we process a node before its children, sometimes 

after, and sometimes both. 

• When performing semantic analysis on a portion of the 
AST, we need to know which identifiers are defined 



Types of Checks 

• Scope-Checking 
– How can we tell what object a particular identifier 

refers to? 

– How do we store this information? 

 

• Type-Checking 
– How can we tell whether expressions have valid 

types? 

– How do we know all function calls have valid 
arguments? 



Scope 

• The same name in a program may refer to 
fundamentally different things: 

• This is perfectly legal Java code: 
 

public class A { 
 char A; 
 A A(A A) { 
  A.A = 'A'; 
  return A((A) A); 
 } 
} 



public class A{ 

 char A; 

 A A(A A) { 

  A.A= 'A'; 

  return A((A) A); 

 } 

} 



• This is perfectly legal C++ code: 
int Awful() { 
 int x= 137; 
 { 
  string x= "Scope!" 
  if (float x= 0) 
   double x= x; 
 } 
 if (x== 137) cout << "Y"; 
} 



Scope 

• The scope of an entity is the set of locations in 
a program where that entity's name refers to 
that entity. 

 

• The introduction of new variables into scope 
may hide older variables. 

 

• How do we keep track of what's visible? 



Symbol Tables 

• A symbol table is a mapping from a  name to the 
thing that name refers to. 

• As we run our semantic analysis, continuously 
update the symbol table  with information about 
what is in scope. 

• Questions: 

– What does this look like in practice? 

– What operations need to be defined on it? 

– How do we implement it? 





























































Type-Checking 

• Type errors. 

 

• What are types? 

 

• What is type-checking? 

 

• A simple type system. 





What is a Type? 

 

• “The notion varies from language to language. 

 

• The consensus: 
– A set of values. 

– A set of operations on those values” 

 

• Type errors arise when operations are performed 
on values that do not support  that operation. 







Typing in Decaf 















Type Checking as Proofs 

• We can think of typing checking as proving 
claims about the types of expressions. 

• We begin with a set of axioms, then apply our 
inference rules to determine the types of 
expressions. 

• Many type systems can be thought of a proof 
systems. 








































































































