king Saud University
College of Computer &Information Science
CSC111 - Lab
Object - Il -
All Sections

Objectives:

® To describe objects and classes, and use classes to model objects.
® To use UML graphical notation to describe classes and objects.

®* To demonstrate how to define classes and create objects.

® To create objects using default constructors.

® To access objects via object reference variables.

®* To define a reference variable using a reference type.

® To access an object’s data and methods using the object member
access operator (.).

Lab Exercise 1

Introduction

In this lab we will define a new class and call it TV and we will initialize three properties

for this class. As we go, we will keep adding new methods to the TV class such as

turnOn () and turnOff () methods for tuning the TV off and on.

Part 1

Write a class and call it TV with two integer variables channel and
volumeLevel ,and one boolean variable on. Write the variables by
completing the following pseudo code:

public class TV
{
// data members
// define instance variables channel, volumelLevel,
on
/* modifier datatype variable name*/



/* modifier datatype variable name*/
/* modifier datatype variable name*/

Part 2

In the previous part you have defined a new class with a variable to store
the channel, a variable to store the volume level and a variable to store
status of the TV on. In this part you will use methods to modify the
variable on rather than modifying the variable directly.

Add to the TV class you defined in part 1 two methods for modifying the
variables which are turnon () and turnoff (). When you want to turn the
TV on you call turnon () (i.e. you set on to true) and turnoff () for
turning the TV off (i.e. you set on to false).

(Note that both methods do NOT return any value and do NOT have any
parameter)

public class TV
{
// data members
// define instance variables channel, volumelLevel, on
/* modifier datatype variable name*/
/* modifier datatype variable name*/
/* modifier datatype variable name*/

//turn on the tv
public void turnOn() {
on = true;

}

//turn off the tv
public /* returntype */ /* method name */() {
//set on to false



Part 3

Now write a method 1s0On () to check weather the TV is on or off (i.e.
return the value of the variable on). See the example below:

public class TV

{
// data members
// define instance variables channel, volumelLevel, on
/* modifier datatype variable name*/
/* modifier datatype variable name*/
/* modifier datatype variable name*/
//turn on the tv
public void turnOn() {
on = true;
by
//turn off the tv
public /* returntype */ /* method name */() {
//set on to false
by
// returns true of tv is turned on
/*modifier */ /* returntype */ 1sOn(){
//return value of on
by
by
Part 4

Now add two more methods that take an integer as a parameter and
modify volume level by that integer. volumeLevelUp (int vol) and
volumeLevelDown (int vol) should raise or lower the volume level by

vol number of levels. For example if volumeLevel is 5 and you called

volumeLevelUp (3) the new volumeLevel should be equaI to5+3=8.

The volume level must be between 0 and 8.

public class TV



// data members

// define instance variables channel, volumelLevel, on
/* modifier datatype variable name*/

/* modifier datatype variable name*/

/* modifier datatype variable name*/

//turn on the tv
public void turnOn(Q) {
on = true;

}

//turn off the tv
public /* returntype */ /* method name */() {
//set on to false

}

// returns true of tv is turned on
/*modifier */ /* returntype */ 1isOn(){
//return value of on

}

// raises volume up such that it does not exceed 8
public void volumelLevelUp(int vol) {
/* calculate new volume level */
if (/* value of new volume level less than 8 */){
/* set volumelevel value to new volume level */

}
1

// lowers volume down such that it does not go below @
/*modifier */ /* returntype */ /* method name */(
/*parameters*/) {
//method body similar to volumelLevelUp

}

Part 5

Now add two more methods that take an integer as a parameter and
modify volume level by that integer. channelUp (int ch) and
channelDown (int ch) should increment or decrement the channel by
ch number of channels. For example if channel is 5 and you called
channelUp (10) the new channel value should be equalto 5+ 10 = 15.
The channel must be between 0 and 100.



public class TV
{
// data members
// define instance variables channel, volumelLevel, on
/* modifier datatype variable name*/
/* modifier datatype variable name*/
/* modifier datatype variable name*/

//turn on the tv
public void turnOn(Q) {
on = true;

}

//turn off the tv
public /* returntype */ /* method name */() {
//set on to false

}

// returns true of tv is turned on
/*modifier */ /* returntype */ 1isOn(){
//return value of on

}

// raises volume up such that it does not exceed 8
public void volumelLevelUp(int vol) {
/* calculate new volume level */
if (/* value of new volume level less than 8 */){
/* set volumelevel value to new volume level */
ks
¥

// lowers volume down such that it does not go below @
/*modifier */ /* returntype */ /* method name */(
/*parameters*/) {
//method body similar to volumelLevelUp

}

// channelUp method goes here

// channelDown method goes here



Part 6

Add a new method toString () that returns all current information of the
TV itself. It should return the TV info in a format similar to the following
example:

TV is on and current channel is 5 and current
volume level is 8.

Part 7

Test your program by creating a new class TestTv with a main method. In
this class you do the following:
1- Create a TV object.
2- Turn the tv on.
3- Go to channel 20 (java always initializes your int data members to O,
so the value of the channel when you create the TV object is 0).
4- Raise the volume by 4.

5- Check if the TV is on and if so print its information using method
toString () .

6- Turn the TV off.

Sample Run

TV is on and current channel is 20 and current
volume level is 4.

public class TestTV {

public static void main(String[] args) {
/* create the object tvl */
tvl.turnOn();//turn on the tv
// go to channel 20
// raise volume by 4
if (/* check if tv is on */) {

System.out.println(/*get tv info using
toString() */




Lab Exercise 2 (Optional)

Design a class named LinearEquation for a 2 x 2 system of linear
equations:

ax+by=e
cx+dy=f

A system of linear equations can be solved using Cramer’s rule as
following:

ed—bf __af-ec

ad—bc y ad—bc

The class contains:
e Data fieldsa, b, ¢, d, e,andf.

* A method named isSolvable() that returns true if ad - bc is
not 0.

* Methods solveX() and solveY() that return the solution for
the equation.

Draw the UML diagram for the class and then implement the class.
Write a test program that prompts the user to entera, b, c, d,
e, and f and displays the solution. If ad - bc is 0, report that ”The
system has no solution.”

Sample Run 1

Enter a, b, ¢, d, e, f: 94 3 -5 -6 -21 «
X 1s -2.0 and y is 3.0

Sample Run 2

Enter a, b, ¢, d, e, f: 1 2 2 455
The system has no solution




UML

Unlike previous program, in this program we are going to solve everything
at once, i.e., write the whole class at once. First phase is to design your
program as an OOP program. Draw UML diagrams for the two classes,

LinearEquationand TestLinearEquation.

\ LinearEquation

a: double

b: double

c: double

d: double

e: double

f: double
isSolvable(): boolean
solveX(): double
solveY(): double

TestlinearEquation

main(): void

Solution
Now write your program. Construct two classes LinearEquation and

TestLinearEquation.



import java.util.Scanner;

public class TestLinearEquation {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);

/* create object equation */

System.out.print("Enter a, b, c, d, e, f: ");
equation.a = input.nextDouble();
//read remaining fields b, c, d, e, f

if (/*check if equation is solvable */) {
System.out.println("x is " +
/* call method solveX */ + " and y 1s " +
/*call method solveY */);
ks
else {
System.out.println("The system has no solution");
System.exit(0);
ks
ks

}

class LinearEquation {
//data members

public /* return type */ isSolvable() {
return /* boolean expression to check if solvable */;

}

/*modifier*/ /*return type*/ solveX() {
double x = /* calculate the solution */
/* return the solution */

}

//write method solveY()



