King Saud University Department of Mathematics

151 Second Midterm, December 2014

NAME:

Group Number:

ID:

Onerting	Grade
Question	Grade
Ι	
II	
III	
IV	
Total	

Question	1	2	3	4	5	6	7	8
Answer								

I) Choose the correct answer (write it on the table above):

1) If $J = \{\{1\}, \{2,3\}\}$ is a partition of the set $A = \{1, 2, 3\}$, then the equivalence relation associated with J is

(A) $\{(1,2),(1,3)\}$	$(B) \{((1,1),(2,2), (2,3), (3,2), (3,3)\}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
(D) None of the previous		

2) Let R be the relation defined on \mathbb{Z} by

$$aRb \iff a - b \ge 0.$$

The relation R is

(A) an equivalence relation	(B) a partial order relation	(C) symmetric	(D) None of the previous

3) Which pair is comparable for the relation R, on \mathbb{Z}^+ , defined by

 $aRb \iff a+b$ is a perfect square?

(An integer number n is called *perfect square* if there exists an integer a, such that $n = a^2$).

(A) $(3,5)$	(B) (7,2)	(C) $(11,3)$	(D) None of the
			previous

4) The partition of \mathbb{Z} corresponding to the relation

$$R = \{(a, b) : a \equiv b \mod 5\}$$

is

$(A) \\ \{\mathbb{N}, \{0\}, \mathbb{Z}^-\}$	(B) $\{[0], [1], [2], [3], [4]\}$	(C) $\{[1], [2], [3], [4]\}$	(D) None of the previous
--	-----------------------------------	------------------------------	--------------------------------

For the following four questions, consider the relations

$$R_1 = \{(a, b) \in \mathbb{R}^2 : a \ge b\}$$

and

$$R_2 = \{(a, b) \in \mathbb{R}^2, a \le b\}.$$

5) $R_1 \cap R_2$ is

$(A) \\ \{(a,b) \in \mathbb{R}^2 : a \neq b\}$	$(B) \\ \{(a,b) \in \mathbb{R}^2 : a = b\}$	(C) Ø	(D) None of the previous
--	---	-------	--------------------------------

6) $R_1 \cup R_2$ is

$(A) \\ \{(a,b) \in \mathbb{R}^2 : a \neq b\}$	$(B) \\ \{(a,b) \in \mathbb{R}^2 : a = b\}$	(C) \mathbb{R}^2	(D) None of the previous
--	---	--------------------	--------------------------------

7) $R_1 - R_2$ is

$(A) \\ \{(a,b) \in \mathbb{R}^2 : a > b\}$	$(B) \\ \{(a,b) \in \mathbb{R}^2 : a < b\}$	(C) Ø	(D) None of the previous
---	---	-------	--------------------------------

8) R_2^2 is

$(A) R_1 \qquad (B) R_2$	(C) $R_1 \cup R_2$	(D) None of the previous
--------------------------	--------------------	--------------------------------

II) Prove that, for all positive integers $n \ge 4$, $3^n < (n+1)!$, using the first principle of mathematical induction.

III) Let

$$R = \{(1,1), (2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}$$

be a relation on the set $A = \{1, 2, 3, 4\}.$

- a) Represent R using a diagraph;
- b) Is R reflexive? Justify the answer;
- c) Is R symmetric? Justify the answer;
- d) Is R transitive? Justify the answer;
- e) Find the reflexive closure, the symmetric closure and the transitive closure of R.

IV) Let R be the relation on \mathbb{Z} , defined by

 $aRb \iff a-b$ is an even number.

- a) Prove that R is an equivalence relation;
- b) Compute [0] and [1];
- c) Find the partition of \mathbb{Z} determined by R.