King Saud University

Department of Mathematics

151
Second Midterm, December 2014

NAME:

Group Number:

ID:

Question	Grade
I	
II	
III	
IV	
Total	

Question	1	2	3	4	5	6	7	8
Answer								

I) Choose the correct answer (write it on the table above):

1) If $J=\{\{1\},\{2,3\}\}$ is a partition of the set $A=\{1,2,3\}$, then the equivalence relation associated with J is

(A) $\{(1,2),(1,3)\}$	(B) $\{((1,1),(2,2)$, $(2,3),(3,2),(3,3)\}$	(C) $\{(1,1),(1,2),(1,3)$, $(2,1),(2,2),(2,3)$, $(3,1),(3,2),(3,3)\}$
(D) None of the previous		

2) Let R be the relation defined on \mathbb{Z} by

$$
a R b \Longleftrightarrow a-b \geq 0
$$

The relation R is

(A) an equivalence relation	(B) a partial order relation	(C) symmetric	(D) None of the previous

3) Which pair is comparable for the relation R, on \mathbb{Z}^{+}, defined by

$$
a R b \Longleftrightarrow a+b \quad \text { is a perfect square? }
$$

(An integer number n is called perfect square if there exists an integer a, such that $n=a^{2}$).

$(\mathrm{A})(3,5)$	(B) $(7,2)$	(C) $(11,3)$
(D) None of the previous		

4) The partition of \mathbb{Z} corresponding to the relation

$$
R=\{(a, b): a \equiv b \quad \bmod 5\}
$$

is
(A)
$\left\{\mathbb{N},\{0\}, \mathbb{Z}^{-}\right\}$
(B) $\{[0],[1],[2],[3],[4]\}$
(C) $\{[1],[2],[3],[4]\}$
(D) None of the previous

For the following four questions, consider the relations

$$
R_{1}=\left\{(a, b) \in \mathbb{R}^{2}: a \geq b\right\}
$$

and

$$
R_{2}=\left\{(a, b) \in \mathbb{R}^{2}, a \leq b\right\}
$$

5) $R_{1} \cap R_{2}$ is

| (A) |
| :---: | :---: | :---: |
| $\left\{(a, b) \in \mathbb{R}^{2}: a \neq b\right\}$ |
| $\left\{(a, b) \in \mathbb{R}^{2}: a=b\right\}$ | | (D) None
 of the
 previous |
| :---: | :---: |

6) $R_{1} \cup R_{2}$ is

(A)
$\left\{(a, b) \in \mathbb{R}^{2}: a \neq b\right\}$

(B)
$\left\{(a, b) \in \mathbb{R}^{2}: a=b\right\}$
(C) \mathbb{R}^{2}
(D) None of the previous
7) $R_{1}-R_{2}$ is
(A)
$\left\{(a, b) \in \mathbb{R}^{2}: a>b\right\}$
(B)
$\left\{(a, b) \in \mathbb{R}^{2}: a<b\right\}$
(C) \emptyset
(D) None of the previous
8) R_{2}^{2} is
(A) R_{1}
(B) R_{2}
(C) $R_{1} \cup R_{2}$
(D) None of the previous
II) Prove that, for all positive integers $n \geq 4,3^{n}<(n+1)$!, using the first principle of mathematical induction.
III) Let

$$
R=\{(1,1),(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}
$$

be a relation on the set $A=\{1,2,3,4\}$.
a) Represent R using a diagraph;
b) Is R reflexive? Justify the answer;
c) Is R symmetric? Justify the answer;
d) Is R transitive? Justify the answer;
e) Find the reflexive closure, the symmetric closure and the transitive closure of R.
IV) Let R be the relation on \mathbb{Z}, defined by

$$
a R b \Longleftrightarrow a-b \quad \text { is an even number. }
$$

a) Prove that R is an equivalence relation;
b) Compute [0] and [1];
c) Find the partition of \mathbb{Z} determined by R.

