Introduction to Geomatics Engineering SE 312

CLASS PROBLEM

Tacheometry – (Stadia System)

From point Q two points: P and A have been observed using a tacheometer (with multiplication constant, K =100 and additive constant, C=0). Data are given in table below. Given: reduced level of station Q = 620.00m; Height of instrument at Q=1.60m

Compute:

- 1- Horizontal distances from **Q** to staff points **P** and **A**
- 2- Reduced levels of P and A
- 3- Distance AP
- 4- Coordinates of points **P** and **A** if coordinates of station **Q** are:

(500.00m; 200.00m; 600.00m).

Staff	Azimuth	Vertical	Stadia readings		Stadia	Horizontal	V
stat.		angle α	(m)		interce	Distance	(777)
			L	M U	pt s	from Q (m)	(m)
			L	W C	(m)	$100 \mathrm{s} \cos^2 \alpha$	100 s cos α
						100 5 COS W	sin α
P	30° 00'	06° 00'	1.00:	1.60; 2.20	1.2		
_					1.2		
A	120° 00'	00° 00'	1.30;	1.90; 2.50			

SOLUTION

Tacheometer Formulea

 $SD = K s cos \alpha + C$

 $HD = K s \cos^2 \alpha + C \cos \alpha$

 $VD = K s \cos \alpha \sin \alpha + C \sin \alpha$

For K = 100 & C = 0;

SD = 100 s cos α ; HD = 100 s cos² α ; VD = 100 s cos α sin α