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Introduction

This booklet contains problems used in the training and selection of the Saudi
team for the International Mathematics Olympiad. The training was supported by
The Ministry of Education, which commissioned Mawhiba, the main establish-
ment in Saudi Arabia that cares for the gifted students, to do the task. Mawhiba
is an independent establishment, presided by the King of Saudi Arabia, with the
Minister of Education as Vice President. We thank King Saud University for giving
the opportunity to trainers to contribute in the training of the Saudi Team.

The Saudi team had four main training camps during the academic year 2012-
2013 beside the full-time training period that started on April 1, 2013. The team
participated in the Asian Pacific Olympiad in March 12, 2013, and in the Gulf
Mathematical Olympiad, which was held in Qatar in the period April 1-5, 2013.

It is our pleasure to share these training and selection problems with other IMO
teams, hoping it will contribute to a future cooperation.

Dr. Fawzi A. Al-Thukair
Leader of the Saudi Math Olympiad Team
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Chapter 1

Preselection tests for the
full-time training

The students who attended the full-time training that started on April 1, 2013,
were chosen according to their combined performance in this set of tests during
the October camp at Riyadh. These tests are prepared by Abdullah Alghamdi,
Abdulaziz Bin Obaid, Safwat Eltanany, Abdallah Laradji, and Malik Talbi.

1.1 Day I - October 16, 2013

Allowed time: 3 hours

1. Let −1 ≤ x, y ≤ 1. Prove the inequality

2
»
(1− x2)(1− y2) ≤ 2(1− x)(1− y) + 1.

2. Let x, y be two non-negative integers. Prove that 47 divides 3x − 2y if and
only if 23 divides 4x+ y.

3. Ten students take a test consisting of 4 different papers in Algebra, Geometry,
Number Theory and Combinatorics. First, the proctor distributes randomly
the Algebra paper to each student. Then the remaining papers are distributed
one at a time in the following order: Geometry, Number Theory, Combina-
torics in such a way that no student receives a paper before he finishes the
previous one. In how many ways can the proctor distribute the test papers
given that a student may for example finish the Number Theory paper before

13
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another student receives the Geometry paper, and that he receives the Com-
binatorics paper after that the same other student receives the Combinatorics
papers.

4. ABC is a triangle, G its centroid and A′, B′, C ′ the midpoints of its sides
BC,CA,AB, respectively. Prove that if the quadrilateral AC ′GB′ is cyclic
then

AB · CC ′ = AC ·BB′.

1.2 Day II - October 19, 2013

Allowed time: 3 hours

1. Prove that if a is an integer relatively prime with 35 then

(a4 − 1)(a4 + 15a2 + 1) ≡ 0 mod 35.

2. The quadratic equation ax2 + bx + c = 0 has its roots in the interval [0, 1].
Find the maximum of

(a− b)(2a− b)

a(a− b+ c)
.

3. The positive integer a is relatively prime with 10. Prove that for any positive
integer n, there exists a power of a whose last n digits are 0 · · · 0︸ ︷︷ ︸

n−1

1.

4. ∆ABC is a triangle and Ib, Ic its excenters opposite to B,C. Prove that
∆ABC is right at A if and only if its area is equal to 1

2AIb ·AIc.

1.3 Day III - October 21, 2013

Allowed time: 3 hours

1. Let f : R → R be a function satisfying f(f(x)) = 4x+ 1 for all real number
x. Prove that the equation f(x) = x has a unique solution.

2. Let a1, a2, . . . , a9 be integers. Prove that if 19 divides a91 + a92 + · · ·+ a99 then
19 divides the product a1a2 · · · a9.

Saudi Arabia Mathematical Competitions
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3. The points of the plan have been colored by 2013 different colors. We say
that a triangle ∆ABC has the color X if its three vertices A,B,C has the
color X. Prove that there are infinitely many triangles with the same color
and the same area.

4. ∆ABC is a triangle with AB < BC, C its circumcircle, K the midpoint of the
minor arc C̄A of the circle C and T a point on C such thatKT is perpendicular
to BC. If A′, B′ are the intouch points of the incircle of ∆ABC with the sides
BC,AC, prove that the lines AT,BK,A′B′ are concurrent.

1.4 Day IV - October 23, 2013

Allowed time: 3 hours

1. Let a1, a2, a3, ... be a sequence of real numbers which satisfy the relation

an+1 =
»
a2n + 1.

Suppose that there exists a positive integer n0 such that a2n0 = 3an0 . Find
the value of a46.

2. Let x, y be two integers. Prove that if 2013 divides x1433 + y1433 then 2013
divides x7 + y7.

3. How many permutations (s1, s2, · · · , sn) of (1, 2, . . . , n) are there satisfying
the condition si > sj for all i ≥ j + 3 when n = 5 and when n = 7?

4. ∆ABC is a triangle, M the midpoint of BC, D the projection of M on AC
and E the midppoint of MD. Prove that the lines AE,BD are orthogonal if
and only if AB = AC.

Saudi Arabia Mathematical Competitions
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Chapter 2

Selection tests for the Gulf
Mathematical Olympiad 2013

The KSA 2013 Gulf MO team members were chosen according to their com-
bined performance in this set of tests during the January camp at Riyadh. These
tests are prepared by Zuming Feng, Ian Le, Carlos Shine, Malik Talbi, and Pin Yu.

Members of the KSA 2013 Gulf MO team were Sameh Zawawi, Mahdi Alshaikh,
Alzubair Habibullah, Ibraheem Khan, Salman Tawfik, Abdallah Alnashwan. The
total team scores was 162 out of 240, and was ranked 1st place among the 7
participating teams. The team’s individual performances were as follows:

Sameh Zawawi GOLD Medallist
Mahdi Alshaikh GOLD Medallist
Alzubair Habibullah SILVER Medallist
Ibraheem Khan SILVER Medallist
Salman Tawfik SILVER Medallist
Abdallah Alnashwan SILVER Medallist
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2.1 Day I - January 22, 2013

Allowed time: 4 hours and half

1. Tarik wants to choose some distinct numbers from the set S = {2, . . . , 111}
in such a way that each of the chosen numbers cannot be written as the
product of two other distinct chosen numbers. What is the maximum number
of numbers Tarik can choose?

2. For positive real numbers a, b and c, prove that

a3

a2 + ab+ b2
+

b3

b2 + bc+ c2
+

c3

c2 + ca+ a2
≥ a+ b+ c

3
.

3. Define a regular n-pointed star to be a union of n lines segments P1P2, P2P3,
. . . , PnP1 such that

• the points P1, P2, . . . , Pn are coplanar and no three of them are collinear;

• each of the n line segments intersects at least one of the other line
segments at a point other than an endpoint;

• all of the angles at P1, P2, . . . , Pn are congruent;

• all of the n line segments P1P2, P2P3, . . . , PnP1 are congruent; and

• the path P1P2 . . . PnP1 turns counterclockwise at an angle less than 180◦

at each vertex.

There are no regular 3-pointed, 4-pointed, or 6-pointed stars. All regular
5-pointed star are similar, but there are two non-similar regular 7-pointed
stars. Find all possible values of n such that there are exactly 29 non-similar
regular n-pointed stars.

4. In acute triangle ABC, points D and E are the feet of the perpendiculars
from A to BC and B to CA, respectively. Segment AD is a diameter of
circle ω. Circle ω intersects sides AC and AB at F and G (other than A),
respectively. Segment BE intersects segments GD and GF at X and Y
respectively. Ray DY intersects side AB at Z. Prove that lines XZ and BC
are perpendicular.

Saudi Arabia Mathematical Competitions
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2.2 Day II - January 26, 2013

Allowed time: 4 hours and half

1. An acute triangle ABC is inscribed in circle ω centered at O. Line BO and
side AC meet at B1. Line CO and side AB meet at C1. Line B1C1 meets
circle ω at P and Q. If AP = AQ, prove that AB = AC.

2. Let f(X) = anX
n + an−1X

n−1 + · · · + a1X + p be a polynomial of integer
coefficients where p is a prime number. Assume that

p >
n∑

i=1

|ai|.

Prove that f(X) is irreducible.

3. Find the largest integer k such that k divides n55 − n for all integer n.

4. Let F0 = 0, F1 = 1 and Fn+1 = Fn + Fn−1, for all positive integer n, be
the Fibonacci sequence. Prove that for any positive integer m there exist
infinitely many positive integers n such that

Fn + 2 ≡ Fn+1 + 1 ≡ Fn+2 mod m.

2.3 Day III - January 29, 2013

Allowed time: 3 hours and half

1. Find all functions f : R → R which satisfy

f
(√

3
3 x

)
=

√
3f(x)− 2

√
3

3 x,

f(x)f(y) = f(xy) + f
Ä
x
y

ä
,

for all x, y ∈ R, with y 6= 0.

2. Find all values of n for which there exists a convex cyclic non-regular polygon
with n vertices such that the measures of all its internal angles are equal.

3. ABC is a triangle, H its orthocenter, I its incenter, O its circumcenter and
ω its circumcircle. Line CI intersects circle ω at point D different from C.
Assume that AB = ID and AH = OH. Find the angles of triangle ABC.

Saudi Arabia Mathematical Competitions
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4. Find all pairs of positive integers (a, b) such that a2 + b2 divides both a3 + 1
and b3 + 1.

Saudi Arabia Mathematical Competitions



Chapter 3

Selection tests for the Balkan
Mathematical Olympiad 2013

The KSA 2013 Balkan MO team members were chosen according to their com-
bined performance in this set of tests during the March-April camp at Riyadh.
These tests are prepared by Zuming Feng, Yunhao Fu, and Malik Talbi.

Members of the KSA 2013 Balkan MO team were Abdallah Alnashwan, Ali
Alnasser, Mahdi Alshaikh, Alzubair Habibullah, Ibraheem Khan, and Sameh Za-
wawi. However, the team could not take part to the competition this year because
of its schedule.

Members of the KSA 2012 Balkan MO team were Saleh Algamdi, Abdulrahman
Alharbi, Doha Aljeddawi, Hasan Eid, Husain Eid, Alyazeed Basuni. Dr. Fawzi Al-
Thukair (King Saud University, Riyadh) and Dr. Abdul Aziz bin Obaid (Mawhiba,
Riyadh) served as team leader and deputy leader, respectively. The team was also
accompanied by Dr. Malik Talbi (King Saud University, Riyadh), Dr. Abdulaziz
Al-Harthi (MAWHIBA, Riyadh), Adel Mohammad Alghadir, and Mrs. Abeer
Kawther as observers of the KSA delegation. The total team scores was 131 out
of 240, and was ranked 14th place among the 22 participating teams. The team’s
individual performances were as follows:

Alyazeed Basuni SILVER Medallist
Saleh Algamdi BRONZE Medallist
Abdulrahman Alharbi BRONZE Medallist
Doha Aljeddawi BRONZE Medallist
Hasan Eid BRONZE Medallist
Husain Eid

21
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3.1 Day I - April 7, 2013

Time allowed: 5 hours

1. The set G is defined by the points (x, y) with integer coordinates, 1 ≤
x ≤ 5 and 1 ≤ y ≤ 5. Determine the number of five-point sequences
(P1, P2, P3, P4, P5) such that for 1 ≤ i ≤ 5, Pi = (xi, i) is in G and |x1−x2| =
|x2 − x3| = |x3 − x4| = |x4 − x5| = 1.

2. For positive integers a and b, gcd(a, b) denote their greatest common divisor
and lcm(a, b) their least common multiple. Determine the number of ordered
pairs (a, b) of positive integers satisfying the equation

ab+ 63 = 20 lcm(a, b) + 12 gcd(a, b).

3. Solve the following equation where x is a real number:

bx2c − 10bxc+ 24 = 0.

4. ABCDEF is an equiangular hexagon of perimeter 21. Given that AB = 3,
CD = 4, and EF = 5, compute the area of hexagon ABCDEF .

5. Let k be a real number such that the product of real roots of the equation

X4 + 2X3 + (2 + 2k)X2 + (1 + 2k)X + 2k = 0

is −2013. Find the sum of the squares of these real roots.

6. Let ABC be a triangle with incenter I, and let D,E, F be the midpoints
of sides BC,CA,AB, respectively. Lines BI and DE meet at P , and lines
CI and DF meet at Q. Line PQ meets sides AB and AC at T and S,
respectively. Prove that AS = AT .

7. Ayman wants to color the cells of a 50× 50 chessboard into black and white
so that each 2× 3 or 3× 2 rectangle contains an even number of white cells.
Determine the number of ways Ayman can color the chessboard.

8. Prove that the ratio

11 + 33 + 55 + · · ·+
(
22013 − 1

)(22013−1)

22013

is an odd integer.
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3.2 Day II - April 9, 2013

4 Time allowed: 5 hours

1. In triangle ABC, AB = AC = 3 and ∠A = 90◦. Let M be the midpoint
of side BC. Points D and E lie on sides AC and AB respectively such that
AD > AE and ADME is a cyclic quadrilateral. Given that triangle EMD
has area 2, find the length of segment CD.

2. Find all functions f : R → R which satisfy for all x, y ∈ R the relation

f(f(f(x) + y) + y) = x+ y + f(y).

3. Find all positive integers x, y, z such that

2x + 21y = z2.

4. Ten students are standing in a line. A teacher wants to place a hat on each
student. He has two colors of hats, red and white, and he has 10 hats of each
color. Determine the number of ways in which the teacher can place hats such
that among any set of consecutive students, the number of students with red
hats and the number of students with blue hats differ by at most 2.

5. We call a positive integer good if it doesn’t have a zero digit and the sum
of the squares of its digits is a perfect square. For example, 122 and 34 are
good and 304 and 12 are not not good. Prove that there exists a n-digit good
number for every positive integer n.

6. Let a, b, c be positive real numbers such that ab+ bc+ ca = 1. Prove that

a
√
b2 + c2 + bc+ b

√
c2 + a2 + ca+ c

√
a2 + b2 + ab ≥

√
3.

7. The excircle ωB of triangle ABC opposite B touches side AC, rays BA and
BC at B1, C1 and A1, respectively. Point D lies on major arc Ă1C1 of ωB.
Rays DA1 and C1B1 meet at E. Lines AB1 and BE meet at F . Prove that
line FD is tangent to ωB (at D).

8. A social club has 101 members, each of whom is fluent in the same 50 lan-
guages. Any pair of members always talk to each other in only one language.
Suppose that there were no three members such that they use only one lan-
guage among them. Let A be the number of three-member subsets such
that the three distinct pairs among them use different languages. Find the
maximum possible value of A.
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3.3 Day III - April 14, 2013

Time allowed: 4 hours

1. ABCD is a cyclic quadrilateral and ω its circumcircle. The perpendicular line
to AC at D intersects AC at E and ω at F . Denote by ` the perpendicular
line to BC at F . The perpendicular line to ` at A intersects ` at G and ω
at H. Line GE intersects FH at I and CD at J . Prove that points C,F, I,
and J are concyclic.

2. Define Fibonacci sequence {F}∞n=0 as F0 = 0, F1 = 1 and Fn+1 = Fn +
Fn−1 for every integer n > 1. Determine all quadruples (a, b, c, n) of positive
integers with a < b < c such that each of a, b, c, a+ n, b+ n, c+ 2n is a term
of the Fibonacci sequence.

3. Let T be a real number satisfying the property: For any nonnegative real
numbers a, b, c, d, e with their sum equal to 1, it is possible to arrange them
around a circle such that the products of any two neighboring numbers are
no greater than T . Determine the minimum value of T .

4. Let f : Z≥0 → Z≥0 be a function which satisfies for all integer n ≥ 0:

(a) f(2n+ 1)2 − f(2n)2 = 6f(n) + 1, (b) f(2n) ≥ f(n);

where Z≥0 is the set of nonnegative integers. Solve the equation f(n) = 1000.

3.4 Day IV - April 16, 2013

Time allowed: 1 hour 30 minutes

1. ABCD is a cyclic quadrilateral such that AB = BC = CA. Diagonals AC
and BD intersect at E. Given that BE = 19 and ED = 6, find the possible
values of AD.

2. The base-7 representation of number n is abc(7), and the base-9 representation

of number n is cba(9). What is the decimal (base-10) representation of n?

3. Find the area of the set of points of the plane whose coordinates (x, y) satisfy

x2 + y2 ≤ 4|x|+ 4|y|.

4. Find all positive integers n < 589 for which 589 divides n2 + n+ 1.
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Chapter 4

Selection tests for the
International Mathematical
Olympiad 2013

The KSA 2013 IMO team members were chosen according to their combined
performance in this set of tests during the May camp at Riyadh. These tests are
prepared by Zuming Feng, Carlos Shine, and Malik Talbi.

Members of the KSA 2013 IMO team were Alyazeed Basyoni, Sameh Zawawi,
Ibraheem Khan, Abdulrahman Alharbi, Ali Alnasser, Alzubair Habibullah. Dr.
Fawzi Al-Thukair (King Saud University, Riyadh) and Dr. Najla Altwaijry (King
Saud University, Riyadh) served as team leader and deputy leader, respectively.
The team was also accompanied by Dr. Malik Talbi (King Saud University,
Riyadh), Dr. Abdulaziz Al-Harthi (MAWHIBA, Riyadh), Mansour Almoaigel,
and Dr. Abdulrahman Albarak (Ministry of Education) as observers of the KSA
delegation.

Members of the KSA 2012 IMO team were Alyazeed Basuni, Husain Eid, Saleh
Algamdi, Abdulrahman Alharbi, Wael Alsaeed, and Hasan Eid. Dr. Fawzi Al-
Thukair (King Saud University, Riyadh) and Dr. Najla Altwaijry (King Saud
University, Riyadh) served as team leader and deputy leader, respectively. The
team was also accompanied by Dr. Malik Talbi (King Saud University, Riyadh), Dr.
Abdulaziz Al-Harthi (MAWHIBA, Riyadh), Palmer Mebane, Mansour Almoaigel,
and Dr. Abdulrahman Albarak (Ministry of Education) as observers of the KSA
delegation. The total team scores was 105 out of 252, and was ranked 29th place
among the 100 participating teams. The team’s individual performances were as
follows:
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Alyazeed Basuni SILVER Medallist
Husain Eid SILVER Medallist
Saleh Algamdi BRONZE Medallist
Abdulrahman Alharbi BRONZE Medallist
Wael Alsaeed BRONZE Medallist
Hasan Eid

4.1 Day I - May 28, 2013

4 hours 30 minutes

1. Triangle ABC is inscribed in circle ω. Point P lies inside triangle ABC.
Lines AP,BP and CP intersect ω again at points A1, B1 and C1 (other than
A,B,C), respectively. The tangent lines to ω at A1 and B1 intersect at C2.
The tangent lines to ω at B1 and C1 intersect at A2. The tangent lines to ω
at C1 and A1 intersect at B2. Prove that the lines AA2, BB2 and CC2 are
concurrent.

2. Let S = {0, 1, 2, 3, . . .} be the set of the non-negative integers. Find all strictly
increasing functions f : S → S such that n+ f(f(n)) ≤ 2f(n) for every n in
S.

3. A Saudi company has two offices. One office is located in Riyadh and the other
in Jeddah. To insure the connection between the two offices, the company
has designated from each office a number of correspondents so that

(a) each pair of correspondents from the same office share exactly one com-
mon correspondent from the other office.

(b) there are at least 10 correspondents from Riyadh.

(c) Zayd, one of the correspondents from Jeddah, is in contact with exactly
8 correspondents from Riyadh.

What is the minimum number of correspondents from Jeddah who are in
contact with the correspondent Amr from Riyadh?

4. Determine whether it is possible to place the integers 1, 2, . . . , 2012 in a circle
in such a way that the 2012 products of adjacent pairs of numbers leave
pairwise distinct remainders when divided by 2013.
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4.2 Day II - May 29, 2013

4 hours 30 minutes - 4 problems

1. Find the maximum and the minimum values of

S = (1− x1)(1− y1) + (1− x2)(1− y2)

for real numbers x1, x2, y1, y2 with x21 + x22 = y21 + y22 = 2013.

2. Let ABC be an acute triangle, and let AA1, BB1, and CC1 be its altitudes.
Segments AA1 and B1C1 meet at point K. The perpendicular bisector of
segment A1K intersects sides AB and AC at L and M , respectively. Prove
that points A,A1, L, and M lie on a circle.

3. For a positive integer n, we consider all its divisors (including 1 and itself).
Suppose that p% of these divisors have their unit digit equal to 3 (For example
n = 117, has six divisors, namely 1,3,9,13,39,117. Two of these divisors,
namely 3 and 13, have unit digits equal to 3. Hence for n = 117, p =
33.33 · · · ). Find, when n is any positive integer, the maximum possible value
of p.

4. Determine if there exists an infinite sequence of positive integers

a1, a2, a3, . . .

such that

(i) each positive integer occurs exactly once in the sequence, and

(ii) each positive integer occurs exactly once in the sequence |a1−a2|, |a2−
a3|, . . . , |ak − ak+1|, . . .

4.3 Day III - May 30, 2013

4 hours 30 minutes

1. Adel draws an m × n grid of dots on the coordinate plane, at the points of
integer coordinates (a, b) where 1 ≤ a ≤ m and 1 ≤ b ≤ n. He proceeds to
draw a closed path along k of these dots, (a1, b1), (a2, b2), . . . , (ak, bk), such
that (ai, bi) and (ai+1, bi+1) (where (ak+1, bk+1) = (a1, b1)) are 1 unit apart
for each 1 ≤ i ≤ k. Adel makes sure his path does not cross itself, that is,
the k dots are distinct. Find, with proof, the maximum possible value of k
in terms of m and n.
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2. Given an integer n ≥ 2, determine the number of ordered n-tuples of integers
(a1, a2, . . . , an) such that

(a) a1 + a2 + · · ·+ an ≥ n2; and

(b) a21 + a22 + · · ·+ a2n ≤ n3 + 1.

3. Let ABC be an acute triangle, M be the midpoint of BC and P be a point
on line segment AM . Lines BP and CP meet the circumcircle of ABC again
at X and Y , respectively, and sides AC at D and AB at E, respectively.
Prove that the circumcircles of AXD and AY E have a common point T 6= A
on line AM .

4. Find all polynomials p(x) with integer coefficients such that for each positive
integer n, the number 2n − 1 is divisible by p(n).
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H. C �¢Ë@ iJ
 ��Q�K �H@PAJ. �J 	k@
2013

	
��JºÖÏ @ I. K
PY

��JÊË

ë 1433
�èYª�®Ë@ð 	X 30 - È �ð


B@ ÐñJ
Ë @ ÉKA�Ó

�é 	JK
AJ. �JÖÏ @ �I�. �K

@ . −1 ≤ x, y ≤ 1 	áº�JË - 1

2
»
(1− x2)(1− y2) ≤ 2(1− x)(1− y) + 1.

�éÒ��®Ë@ ÉJ. �®K
 3x − 2y P@Y�®ÖÏ @ �	à

@ �I�. �K


@ . 	á�
J. Ë A� Q�
 	« 	á�
jJ
m�� 	áK
XY« x, y 	áºJ
Ë - 2

. 23 úÎ« �éÒ��®Ë@ ÉJ. �®K
 4x+ y P@Y�®ÖÏ @ 	àA¿ @ 	X @ ¡
�® 	̄ð @ 	X @ 47 úÎ«

, X@Y«

@ �é�K
Q 	¢	�ð , �é�Y	Jëð , Q�.g. : �é 	®Ê�J	m× X@ñÓ ©K. P


@ ú


	̄ PAJ. �J 	k@ ú

	̄ H. C

�
£ Qå��« ¼PA ���
 - 3

úÎ« Q�. m.Ì'@ ÉKA�Ó ©K
 	Pñ�JK. I.
�̄ @QÖÏ @


@YJ. K
 . �é

�
Ê�®�J�Ó �é�̄Pð ú


	̄ �èXAÓ
�
É¿ ÉKA�Ó �IªJ.£ . �HAJ. J
»Q�Kð

ÉKA�Ó I.
�̄ @QÖÏ @ éJ
¢ªK
 Q�. m.Ì'@ ÉKA�Ó

�
Ég 	áÓ I. ËA£ ú
æî

�D 	JK
 AÒ
�
Ê¿ . ú


G @ñ ��« I. �
�KQ
��K. H. C

�
¢Ë@

Q�
 	g

B@ ú


	̄ �Õç�' X@Y«

B@ �é�K
Q 	¢	� ÉKA�Ó éJ
¢ªK
 �é�Y	JêË @ ÉKA�Ó

�
Ég 	áÓ úæî �D 	K @ @ 	X @ð , �é�Y	JêË @

úÎ« ÉKA�ÖÏ @ ©K
 	Pñ�K I.
�̄ @QÒÊË 	áºÖß
 �é�®K
Q£ ÕºK. .I. �
�KQ

��Ë @ @ 	YîE. �HAJ. J
»Q��Ë @ ÉKA�Ó éJ
¢ªK

É�m�'
 	à


@ ÉJ. �̄ X @Y«


B@ �éK
Q 	¢	� ÉKA�Ó úÎ« C�JÓ É�m�'
 	à


@ I. ËA¢Ë 	áºÖß
 é�	K


AK. AÒÊ« ,H. C

�
¢Ë@

ÉJ
Ó 	QË @ � 	® 	K É�m�'
 	à

@ YªK. �HAJ. J
»Q��Ë @ ÉKA�Ó úÎ« É�m�'
 	à


@ð , �é�Y	JêË @ ÉKA�Ó úÎ« éÊJ
Ó 	P

. �HAJ. J
»Q��Ë @ ÉKA�Ó úÎ«

BC,CA,AB é«C 	�

@ �HA 	®��J 	JÓ A′, B′, C ′ ð ¡ ��ñ�JÖÏ @ è 	Q»QÓ G ð , �I

�
Ê�JÓ ∆ABC - 4

: �é�̄CªË@ A 	JK
YË
�	àA
	̄ A�K
QK @X AC ′GB′ ú
«AK. QË @

	àA¿ @ 	X @ é�	K

@ �I�. �K


@ .I. �
�KQ

��Ë @ úÎ«
. AB · CC ′ = AC ·BB′

Saudi Arabia Mathematical Competitions



32 SAMC 2013

ë 1433
�é �j. mÌ'@ð 	X 3 - ú


	GA
��JË @ ÐñJ
Ë @ ÉKA�Ó

�	à

@ �I�. �K


A 	̄ , 35 ©Ó A�J
�.�	� A�J
Ë �ð


@ AjJ
m�� @XY« a 	àA¿ @ 	X @ - 1

(a4 − 1)(a4 + 15a2 + 1) ≡ 0 mod 35.

�éÒJ
�®Ë @ Yg. . [0, 1]
�èQ�� 	®Ë @ úÎ« Aë@P 	Yg. �é�J
ªJ
K. Q�K �éËXAªÓ ax2 + bx+ c = 0 	áº�JË - 2

P@Y�®ÒÊË ùÒ 	¢ªË@
(a− b)(2a− b)

a(a− b+ c)
.

iJ
m�� XY«
�
É¾Ë é�	K


@ �I�. �K


@ . 10 ©Ó A�J
�.�	� A�J
Ë �ð


@ AJ.k. ñÓ AjJ
m�� @XY« a 	áºJ
Ë - 3

. · · · 00 · · · 01 K. n Ë @ Aî�EA 	K A 	g ú
æî
�D 	J�K a XYªÊË �è �ñ�̄ Yg. ñ�K , n I. k. ñÓ

�I�. �K

@ . B,C 	á�
�


@QÊË 	á�
�JÊK. A �®ÖÏ @ 	á�
�J�J
k. PA	mÌ'@ éJ
�KQK @YË@ @ 	Q»QÓ Ib, Ic ð , �I

�
Ê�JÓ ∆ABC - 4

1
2AIb ·AIc ø
 ðA�

�� é�JkA�Ó �éÒJ
�̄ �I	KA¿ @ 	X @ ¡
�® 	̄ð @ 	X @ A �


@QË@ Y 	J« Õç'A�̄ ∆ABC �I

�
Ê�JÖÏ @ �	à


@
.

ë 1433
�é �j. mÌ'@ð 	X 5 - �IËA

��JË @ ÐñJ
Ë @ ÉKA�Ó
�	à

@ �I�. �K


@ . ù


�®J
�®k XY« x
�
É¾Ë f(f(x)) = 4x+ 1

����®m��' �éË @X f : R → R 	áº�JË - 1

. YJ
kð
�
Ég AêË f(x) = x

�éËXAªÖÏ @

a91 + a92 + · · ·+ a99 P@Y�®ÖÏ @ 	àA¿ @ 	X @ é�	K

@ �I�. �K


@ . �éjJ
m�� @X@Y«


@ a1, a2, . . . , a9 	áº�JË - 2

. 19 úÎ« �éÒ��®Ë@ ÉJ. �®K
 a1a2 · · · a9 H. Qå	�Ë@ É�Ag �	àA
	̄
19 úÎ« �éÒ��®Ë@ ÉJ. �®K


@ 	Y» 	àñË éË ∆ABC �I
�
Ê�JÖÏ @ �	à@ Èñ�® 	K . A 	®Ê�J	m× A 	KñË 2013 K. ø
 ñ

�J�ÖÏ @ ¡�® 	K 	áK
ñÊ�K �Õç�' - 3

AêË �HA�J
�
Ê�JÖÏ @ 	áÓ é�J 	JÓ Q�
 	« XY« Yg. ñK
 é�	K


@ �I�. �K


@ . 	àñ

�
ÊË @ @ 	YîE. A,B,C

�é�KC�JË @ é�ð ðP �I	KA¿ @ 	X @
. �ékA�ÖÏ @ � 	® 	Kð 	àñ

�
ÊË @ � 	® 	K

	��J 	JÓ �é¢�® 	K K ð , �é¢J
jÖÏ @ é�KQK @X C ð , AB < BC
����®m�'
 �I

�
Ê�JÓ ∆ABC - 4

�I	KA¿ @ 	X @ . BC úÎ« ø
 XñÔ« KT �IJ
m�'. C úÎ« �é¢�® 	K T ð , C �èQK @YË@ 	áÓ C̄A �ñ�®Ë@
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,I. �
�KQ
��Ë @ úÎ« BC,AC 	á�
ªÊ 	�Ë@ ©Ó ∆ABC �I

�
Ê�JÒÊË �é�J
Ê 	g@YË@ �èQK @YË@ �AÖ �ß ú


�æ¢�® 	K A′, B′

. �èYg@ð �é¢�® 	K ú

	̄ ù


�®�JÊ�K AT,BK,A′B′ �HAÒJ
�®�J�ÖÏ @ �	à

@ �I�. �K


A 	̄

ë 1433
�é �j. mÌ'@ð 	X 7 - ©K. @�QË @ ÐñJ
Ë @ ÉKA�Ó

�é�̄CªË@ ����®m��' �é�J
�®J
�®k X@Y«

@ �éJ
ËA�J�JÓ a1, a2, a3, ... 	áº�JË - 1

an+1 =
»
a2n + 1.

. a46 �éÒJ
�̄ Yg. ð

@ . a2n0 = 3an0

�IJ
m�'. n0 I. k. ñÓ iJ
m�� XY« Xñk. ð 	�Q 	® 	JË

@ 	X @ 2013 úÎ« �éÒ��®Ë@ ÉJ. �®K
 x7 + y7 P@Y�®ÖÏ @ �	à

@ �I�. �K


@ . 	á�
jJ
m�� 	áK
XY« x, y 	áºJ
Ë - 2

. 2013 úÎ« �éÒ��®Ë@ ÉJ. �®K
 x1433 + y1433 P@Y�®ÖÏ @ 	àA¿

�
É¾Ë si > sj  Qå��Ë @ ����®m��' (1, 2, . . . , n) Ë (s1, s2, · · · , sn) �HCK
YJ. �K 	áÓ Yg. ñ�K Õ» - 3

? n = 7 AÓY 	J«ð n = 5 AÓY 	J« i ≥ j + 3

úÎ« M
�é¢�® 	JË @ ¡�®�Ó D ð , BC ©Ê 	�ÊË 	��J 	JÖÏ @ �é¢�® 	K M ð , �I

�
Ê�JÓ ∆ABC - 4

@ 	X @ 	àA�K
XñÔ« AE,BD 	á�
ÒJ
�®�J�ÖÏ @ �	à

@ �I�. �K


@ . MD ©Ê 	�ÊË 	��J 	JÖÏ @ �é¢�® 	K E ð , AC ©Ê 	�Ë@

. AB = AC 	àA¿ @ 	X @ ¡�® 	̄ð
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ø
 Xñª
��Ë@ ��K
Q 	®Ë @ iJ
 ��Q�K �H@PAJ. �J 	k@

2013 i. J
Ê
	mÌ'@ ÈðYË �HAJ
 	�AK
QË @ XAJ
J. ÖÏð


B

ë 1434 È �ð

B@ ©J
K. P 10 - È �ð


B@ ÐñJ
Ë @ ÉKA�Ó

S = {1, 2, . . . , 111} �é«ñÒj. ÖÏ @ 	áÓ �é 	®Ê�J 	jÖÏ @ X @Y«

B@ 	�ªK. PA�J	m�'
 	à


@ ��PA£ YK
QK
 −1

Q�.»

@ ñë AÓ . 	á�
 	®Ê�J	m× 	áK
Q 	k

�
@ 	áK
PA�J	m× 	áK
XY« H. Qå 	� É�Am» PA�J	m× XY« �ø



@ �éK. A�J» 	áºÖß
 B �IJ
m�'.

? AëPA�J	m�'
 	à

@ ��PA¢Ë 	áºÖß
 X@Y«


B@ 	áÓ �Ñ»

�é 	JK
AJ. �JÖÏ @ �I�. �K

@ , c ð b ð a

�éJ.k. ñÖÏ @ �é�J
�®J
�®mÌ'@ X@Y«

B@

�
É¾Ë −2

a3

a2 + ab+ b2
+

b3

b2 + bc+ c2
+

c3

c2 + ca+ a2
≥ a+ b+ c

3
.

�éÒJ
�®�J�ÖÏ @ ©¢�®Ë@ 	áÓ n XAm�
��' @ Aî�	E


@ úÎ« �ð ðQË@ 	áÓ n �H@ 	X �éÒ 	¢�J 	JÖÏ @ �éÒj. 	JË @ 	¬�Qª	K −3

����®m��' P1P2, P2P3, . . . , Pn−1Pn, PnP1

úÎ« Aî 	DÓ ¡�® 	K �é�KC�K Yg. ñ�K Bð øñ�J�ÖÏ @ � 	® 	K ú

	̄ ©�®�K P1, P2, . . . , Pn ¡�®	JË @ •

; �èYg@ð �éÓA�®�J�@
;�ð ðQË@ Q�
 	« ú


	̄ øQ 	k

@ �éÒJ
�®�J�Ó �éª¢�̄ É�̄


B@ úÎ« ©¢�®�K �éÒJ
�®�J�Ó �éª¢�̄

�
É¿ •

; �é�®K. A¢�JÓ P1, P2, . . . , Pn �ð ðQË@ Y 	J« AK
 @ð 	QË @
�
É¿ •

@Q�
 	g

@ð ; �é�®K. A¢�JÓ P1P2, P2P3, . . . , PnP1

�éÒJ
�®�J�ÖÏ @ ©¢�®Ë@
�
É¿ •

É�̄

@ �éK
ð@ 	QK. �é«A ��Ë@ H. PA

�®ªË �» AªÓ èAm.�
��'AK. QK
Y�J��
 P1P2 . . . PnP1 ©

�
Ê 	�ÖÏ @ �¡	mÌ'@ •
.�


@P

�
É¿ Y	J« 180◦ 	áÓ

�ð ðP 5 �H@ 	X �éÒ 	¢�J 	JÖÏ @ Ðñj. 	JË @
�
É¿ .�ð ðP 6 ð


@ , 4 ð


@ , 3 �H@ 	X �éÒ 	¢�J 	JÓ Ðñm.�

	' Yg. ñ�KB
n Õæ


�̄ �
É¿ Yg. .�ð ðP 7 �H@ 	X 	á�
�JîE. A ����Ó Q�
 	« 	àA�JÒ 	¢�J 	JÓ 	àA�JÒm.�

	' Yg. ñ�Kð , Aî 	DJ
K. AÒJ
 	̄ �éîE. A ����Ó
.�


@P n �H@ 	X �éîE. A ����Ó Q�
 	« �éÒ 	¢�J 	JÓ �éÒm.�

	' 29 ¡J. 	�ËAK. Yg. ñ�K �IJ
m�'.
�é 	JºÒÖÏ @

	áÓð , BC úÎ« A 	áÓ 	á�
«A 	®�KPB@ AÓY�̄ E ð D 	àA�J¢�® 	JË @ , ABC XAg �I
�
Ê�JÓ ú


	̄ −4

	á�
ªÊ 	�Ë@ ©¢�®�K ω �èQK @YË@ . ω �èQK @YË Q¢�̄ AD
�éÒJ
�®�J�ÖÏ @ �éª¢�®Ë@ .I. �
�KQ

��Ë @ úÎ« , CA úÎ« B
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BE
�éÒJ
�®�J�ÖÏ @ �éª¢�®Ë@ .I. �
�KQ

��Ë @ úÎ« , A 	á« 	á�
�J 	®Ê�J	m× , G ð F 	á�
�J¢�® 	K Y 	J« AB ð AC

©¢�®K
 DY ¨Aª ��Ë@ .I. �
�KQ
��Ë @ úÎ« Y ð X Y	J« GF ð GD 	á�
�JÒJ
�®�J�ÖÏ @ 	á�
�Jª¢�®Ë@ ©¢�®�K
. BC úÎ« �ø
 XñÔ« XZ Õæ


�®�J�ÖÏ @ �	à

@ �I�. �K


@ . Z Y	J« AB ©Ê 	�Ë@

ë 1434 È �ð

B@ ©J
K. P 14 - ú


	GA
��JË @ ÐñJ
Ë @ ÉKA�Ó

©£A�®�JK
 . ω
�èQK @ �YË@ 	Q»QÓ O ð , é�ð ðQK. �èPAÖÏ @ �èQK @ �YË@ ω ð , XAg �I

�
Ê�JÓ ABC −1

. C1 Y	J« AB ©Ê 	�Ë@ ©Ó CO Õæ

�®�J�ÖÏ @ ©£A�®�JK
 . B1 Y	J« AC ©Ê 	�Ë@ ©Ó BO Õæ


�®�J�ÖÏ @
AB = AC

�	à

@ �I�. �K


A 	̄ , AP = AQ 	àA¿ @ 	X @ . Q ð P Y	J« ω

�èQK @ �YË@ ©¢�®K
 B1C1 Õæ

�®�J�ÖÏ @

.

X @Y«

@ Aî�ECÓAªÓ XðYg �èQ�
�J» f(X) = anX

n + an−1X
n−1 + · · ·+ a1X + p 	áº�JË −2
�	à

@ 	�Q 	® 	JË . �ú
Í

�ð

@ XY« p ð �éjJ
m��

p >
n∑

i=1

|ai|.

.(È@ 	Q�� 	gCË) ÉJ
Êj
��JÊË �éÊK. A�̄ Q�
 	« f(X)

�	à

@ �I�. �K


@

. n iJ
m�� XY«
�
É¾Ë n55 − n Õæ��®K
 k �IJ
m�'. k iJ
m�� XY« Q�.»


@ Yg. −3

n I. k. ñÓ iJ
m�� XY«
�
É¾Ë , Fn+1 = Fn + Fn−1 ð , F1 = 1 ð , F0 = 0 	áº�JË −4

X@Y«

B@ 	áÓ é�J 	JÓ Q�
 	« XY« Yg. ñK
 m iJ
m�� XY«

�
É¾Ë é�	K


@ �I�. �K


@ . ú
æ

����A 	KñJ. J
 	̄ �éªK. A�J�JÓ ,
����®m��' ú


�æ
�
Ë @ n �éJ.k. ñÖÏ @ �éjJ
j ��Ë@

Fn + 2 ≡ Fn+1 + 1 ≡ Fn+2 mod m.
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ë 1434 È �ð

B@ ©J
K. P 17 - �IËA

��JË @ ÐñJ
Ë @ ÉKA�Ó
����®m��' ú


�æ
�
Ë @ f : R → R È@ð �YË@

�
É¿ Yg. −1

f
(√

3
3 x

)
=

√
3f(x)− 2

√
3

3 x,

f(x)f(y) = f(xy) + f
Ä
x
y

ä
,

. y 6= 0 �IJ
k , x, y ∈ R
�
É¾Ë

Õæ

�̄ð �


@P n éË Ñ 	¢�J 	JÓ Q�
 	« H.

�Ym× �ø
 Q
K @X ©

�
Ê 	�Ó Yg. ñK
 AêÊg.


B ú


�æ
�
Ë @ n Õæ


�̄ �
É¿ Yg. −2

. �éK
ðA���Ó �é�J
Ê 	g@ �YË@ èAK
 @ð 	P
�
É¿

ω ð ,¡J
jÖÏ @ è 	Q»QÓ O ð , �ú
Î
	g@ �YË@ è 	Q»QÓ I ð , é�KA«A 	®�KP@ ù�®�JÊÓ H ð , �I

�
Ê�JÓ ABC −3

C 	á« �é 	®Ê�J	m× D
�é¢�® 	K Y 	J« ω

�èQK @YË@ ©¢�®K
 CI Õæ

�®�J�ÖÏ @ .( é�ð ðQK. �QÖ

�ß ú

�æ
�
Ë @) �é¢J
jÖÏ @ é�KQK @X

. ABC �I
�
Ê�JÖÏ @ AK
 @ð 	P Yg. . AH = OH ð AB = ID

�	à

@ 	�Q 	® 	JË .

a2 + b2 P@Y�®ÖÏ @ Õæ��®K
 AêÊg.

B ú


�æ
�
Ë @ (a, b) �éJ.k. ñÖÏ @ �éjJ
j�Ë@ X@Y«


B@ h. @ð 	P


@

�
É¿ Yg. −4

. b3 + 1 ð a3 + 1 	áK
P@Y�®ÖÏ @
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ø
 Xñª
��Ë@ ��K
Q 	®Ë @ iJ
 ��Q�K �H@PAJ. �J 	k@

2013 	àA �®ÊJ. Ë @ ÈðYË �HAJ
 	�AK
QË @ XAJ
J. ÖÏð

B

ë 1434 úÍð

B@ øXAÔg. 26 - È �ð


B@ ÐñJ
Ë @ ÉKA�Ó

1 ≤ y ≤ 5 ð 1 ≤ x ≤ 5
�éjJ
j ��Ë@ �HA�J
�K @YgB@ �H@ 	X (x, y) ¡�®	JË @ �é«ñÒm.× G 	áº�JË −1

, 1 ≤ i ≤ 5
�
É¾Ë ����®m��' ú


�æ
�
Ë @ (P1, P2, P3, P4, P5) �Ò	mÌ'@ ¡�® 	JË @ �HAªK. A�J�JÓ XY« X �Yg .

. |x1 − x2| = |x2 − x3| = |x3 − x4| = |x4 − x5| = 1 ð G ú

	̄
Pi = (xi, i)

	QÓQK
ð AÒî 	DJ
K. ¼Q�� ��Ó Õæ�A�̄ Q�.»

B gcd(a, b) 	QÓQK
 , b ð a

�éjJ
j ��Ë@ X@Y«

B@

�
É¾Ë −2

X@Y«

B@ 	áÓ (a, b)

�éJ.
��KQÖÏ @ h. @ð 	P


B@ XY« X �Yg . AÒî 	DJ
K. ¼Q�� ��Ó 	«A 	�Ó Q 	ª�


B lcm(a, b)

�éËXAªÖÏ @ ����®m��' ú

�æ
�
Ë @ �éJ.k. ñÖÏ @ �éjJ
j�Ë@

ab+ 63 = 20 lcm(a, b) + 12 gcd(a, b).

ù

�®J
�®k XY« x �IJ
k �éJ
ËA

��JË @ �éËXAªÖÏ @
�
Ég −3

bx2c − 10bxc+ 24 = 0.

, AB = 3
�	à

@ �IÒÊ« @ 	X@ . 21 ø
 ðA��
 é¢J
m×ð AK
 @ð �	QË @ ��K. A¢�JÓ ABCDEF ú
æ�@Y

��Ë@ −4

. ABCDEF ú
æ�@Y
��Ë@ �ékA�Ó I. �kA 	̄ , EF = 5 ð , CD = 4 ð

�éËXAªÒÊË �é�J
�®J
�®mÌ'@ Pð
	Ym.Ì'@ H. Qå 	� É�Ag ø
 ðA��
 �IJ
m�'. A�J


�®J
�®k @XY« k 	áºJ
Ë −5

X4 + 2X3 + (2 + 2k)X2 + (1 + 2k)X + 2k = 0

. ÈñÊmÌ'@ è 	Yë �HAª�K. QÓ ©Ôg. É�Ag I. �k@ . −2013

¡�®	K F , E , D ð ,( �é�J
Ê 	g@ �YË@) é«C 	�

AK. �é£AjÖÏ @ é�KQK @X 	Q»QÓ I ð �I

�
Ê�JÓ ABC −6

, P Y	J« DE ð BI 	àAÒJ
�®�J�ÖÏ @ ©£A�®�JK
 .I. �
�KQ
���Ë @ úÎ« , AB , CA , BC é«C 	�


@ 	��J 	JÓ

ð T Y	J« AC ð AB 	á�
ªÊ 	�Ë@ ©¢�®K
 PQ Õæ

�®�J�ÖÏ @ . Q Y	J« DF ð CI 	àAÒJ
�®�J�ÖÏ @ ©£A�®�JK
ð

. AS = AT
�	à

@ �I�. �K


@ .I. �
�KQ

���Ë @ úÎ« , S
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�IJ
m�'. Xñ�

B@ð 	�J
K.


B@ 	á�
 	Kñ

�
ÊËAK. l .�

	'Q¢ �� 50× 50
�éËðA£ �HA 	KA 	g 	à �ñÊK
 	à


@ 	áÖß



@ YK
QK
 −7

X �Yg . ZA 	�J
J. Ë @ �HA 	KA 	mÌ'@ 	áÓ ú
k. ð
	P XY« úÎ« 3× 2 ð


@ 2× 3 �AJ
�®Ë@ 	áÓ ÉJ
¢���Ó

�
É¿ ÉÒ�J ���


. l .�
	'Q¢ ��Ë@ �éËðA£ AîE. 	à �ñÊK
 	à


@ 	áÖß



B 	áºÖß
 ú


�æ
�
Ë @ ��Q¢Ë@ XY«

�éÒ��®Ë@ É�Ag �	à

@ �I�. �K


@ −8

11 + 33 + 55 + · · ·+
(
22013 − 1

)(22013−1)

22013

. ø
 XQ
	̄ XY«

ë 1434 úÍð

B@ øXAÔg. 28 - ú


	GA
��JË @ ÐñJ
Ë @ ÉKA�Ó

©Ê �	�Ë@ 	��J 	JÓ �é¢�® 	K M 	áº�JË . ∠A = 90◦ ð AB = AC = 3 , ABC �I
�
Ê�JÖÏ @ ú


	̄ −1

	àñºK
 �IJ
m�'. I. �
�KQ
���Ë @ úÎ« AB ð AC 	á�
ªÊ

�	�Ë@ úÎ« 	àAª�®�K E ð D 	àA�J¢�® 	JË @ . BC

2 ø
 ðA�
�� EMD �I

�
Ê�JÖÏ @ �ékA�Ó �	à


@ �IÒÊ« @ 	X@ . A�K
QK @X A�J
«AK. P ADME 	àñºK
ð AD > AE

? CD
�éÒJ
�®�J�ÖÏ @ �éª¢�®Ë@ Èñ£ Yg. ,

�é�̄CªË@ x, y ∈ R
�
É¾Ë ����®m��' ú


�æ
�
Ë @ f : R → R È@ð �YË@

�
É¿ Yg. −2

f(f(f(x) + y) + y) = x+ y + f(y).

����®m��' ú

�æ
�
Ë @ x, y, z �éJ.k. ñÖÏ @ �éjJ
j ��Ë@ X@Y«


B@

�
É¿ Yg. −3

2x + 21y = z2.

�

@P úÎ« �èQ¢ 	« © 	��
 	à


@ � �PYÓ X@P


@ . Õæ


�®�J�Ó ¡ 	k ú

	̄ 	àñ�	̄ A��JÓ H. C

�
£ Qå��« ¼A 	Jë −4

. 	àñË
�
É¿ 	áÓ �H@Q¢ 	« Qå��« éK
YËð , 	�J
K.


@ 	àñËð QÔg


@ 	àñË , �H@Q¢ 	ªË@ 	áÓ 	àA 	KñË éK
YË .I. ËA£

�
É¿

H. C
�
£ �é«ñÒm.× ø



@ A 	KQ�. �J«@ @ 	X @ �IJ
m�'. �H@Q¢ 	ªË@ © 	�ð 	áÓ ��PYÖÏ @ 	á

�
ºÖ �ß ú


�æ
�
Ë @ ��Q �¢Ë@ XY« Yg.

úÎ« 	áK

	Y
�
Ë @ H. C �¢Ë@ XY«ð Z@QÔg �èQ¢ 	« ÑîD�


@P úÎ« 	áK


	Y
�
Ë @ H. C �¢Ë@ XY« 	á�
K. ��PA 	®Ë @ , 	á�
�J
ËA�J�JÓ

. 2 	PðAj. �JK
 B ZA 	�J
K. �èQ¢ 	« ÑîD�

@P

¨ñÒm.×ð Q 	®� 	á« �é 	®Ê�J	m× é�KA 	K A 	g �I	KA¿ @ 	X @ I. �J
£ é�	K @ I. k. ñÓ iJ
m�� XYªË Èñ�® 	K −5
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	à@XY« 12 ð 304
�	à

@ 	á�
g ú


	̄ , 	àAJ. �J
£ 	à@XY« 34 ð 122 , C�JÔ 	̄ . ÉÓA¿ ©�K. QÓ é�KA 	K A 	g �HAª�K. QÓ
. n I. k. ñÓ iJ
m�� XY«

�
É¾Ë �é 	KA 	g n 	áÓ 	à �ñºÓ I. �J
£ XY« Yg. ñK
 é�	K


@ �I�. �K


@ . 	á�
J. �J
£ Q�
 	«

�	à

@ �I�. �K


@ . ab+ bc+ ca = 1

����®m��' �éJ.k. ñÓ �é�J
�®J
�®k @X@Y«

@ a, b, c 	áº�JË −6

a
√
b2 + c2 + bc+ b

√
c2 + a2 + ca+ c

√
a2 + b2 + ab ≥

√
3.

, AC ©Ê 	�Ë@ ��Ö �ß , B �

@�QË@ �éÊK. A �®Ó ABC �I

�
Ê�JÖÏ @ h. PA 	g

�é£AjÖÏ @ ωB
�èQK @ �YË@ −7

�ñ�®Ë@ úÎ« ©�®�K D �é¢�® 	JË @ .I. �
�KQ
���Ë @ úÎ« , A1 ð , C1 ð , B1 Y	J« BC ð BA 	á�
«Aª ��Ë@ð

BE ð AB1
	àAÒJ
�®�J�ÖÏ @ . E Y	J« 	àAJ
�®�JÊK
 C1B1 ð DA1

	àA«Aª ���Ë@ . ωB Ë Ă1C1
Q�
J.ºË@

.( D Y	J«) ωB Ë �AÜØ FD Õæ

�®�J�ÖÏ @ �	à


@ �I�. �K


@ . F Y	J« 	àAJ
�®�JÊK


	áÓ h. ð 	P
�
É¿ PA�J 	k@ . �é 	ªË 50 Ë @ � 	® 	K 	àñ	J�®�JK
 Ñê

�
Ê¿ @ñ 	�« 101 ú
«AÒ

�Jk. @ ø
 XA
	K �Õæ	��
 −8

AÒJ
 	̄ 	àñ�K �Yj�JK
 ZA 	�«

@ �HC�K Xñk. ð ÐY« 	�Q 	® 	JË . AÒî 	DJ
K. AÒJ
 	̄ AîE. 	àA�K �Yj�JK
 �èYg@ð �é 	ªË ZA 	�«


B@

Ñî 	DJ
K. AÒJ
 	̄ 	àñÒ
�
Ê¾�JK
 ZA 	�«


@ �HC�K 	áÓ �é 	K �ñºÖÏ @ �HA«ñÒj. ÖÏ @ XY« A 	áºJ
Ë . �èYg@ð �é 	ªÊK. Ñî 	DJ
K.

. A Ë �é 	JºÜØ �éÒJ
�̄ Q�.»

@ Yg. . �é 	®Ê�J	m× �HA 	ªË �HC�JK.

ë 1434
�èQ 	k

�
B@ øXAÔg. 4 - �IËA

��JË @ ÐñJ
Ë @ ÉKA�Ó

AC úÎ« ø
 XñÒªË@ Õæ

�®�J�ÖÏ @ . é�ð ðQK. �é¢J
jÖÏ @ �èQK @YË@ ω ð ø
 Q

K@X ú
«AK. P ABCD −1

PAÖÏ @ð BC úÎ« ø
 XñÒªË@ Õæ

�®�J�ÖÏ @ ` 	áºJ
Ë . F Y	J« ω ©¢�®K
ð E Y	J« AC ©¢�®K
 D K. PAÖÏ @ð

GE Õæ

�®�J�ÖÏ @ . H Y	J« ω ©¢�®K
ð G Y	J« ` ©¢�®K
 A K. PAÖÏ @ð ` úÎ« ø
 XñÒªË@ Õæ


�®�J�ÖÏ @ . F K.
�èQK @X úÎ« J ð , I ð , F ð , C ¡�®�	JË @ �	à


@ �I�. �K


@ . J Y	J« CD ©¢�®K
ð I Y	J« FH ©¢�®K


. �èYg@ð

Fn+1 = Fn + Fn−1 ð , F1 = 1 ð , F0 = 0 K. {F}∞n=0 ú
æ
����A 	KñJ. J
 	̄ �éªK. A�J�JÓ

	¬�Qª	K −2

ú

�æ
�
Ë @ �éJ.k. ñÖÏ @ �éjJ
j ��Ë@ X@Y«


B@ (a, b, c, n) �HA�J
«AK. P

�
É¿ XYg . n > 1 iJ
m�� XY«

�
É¾Ë

	áÓ @Qå�	J« c+ 2n ð , b+ n , a+ n , c , b , a 	áÓ
�
É¿ AîD
	̄ 	àñºK
ð a < b < c

����®m��'
? ú
æ

����A 	KñJ. J
 	̄ �éªK. A�J�JÓ Qå�A 	J«
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c , b , a �éJ. Ë A� Q�
 	« �é�J
�®J
�®k X@Y«

@

�
É¾Ë : �éJ
ËA

��JË @ �é�J
�A	mÌ'@ ����®m�'
 A�J
 �®J
�®k @XY« T 	áºJ
Ë −3

	áK
XY«
�
É¿ H. Qå 	� É�Ag Q�.ºK
 B �IJ
m�'.

�èQK @X úÎ« AîD.J
�KQ�K 	áºÖß
 , 1 AêªÔg. É�Ag e , d ,
. T Ë �é 	JºÜØ �éÒJ
�̄ Q 	ª�


@ X �Yg . T XYªË@ 	á�
J
ËA�J�JÓ

: n ≥ 0 iJ
m�� XY«
�
É¾Ë ����®m��' �éË @X f : Z≥0 → Z≥0

	áº�JË −4

(a) f(2n+ 1)2 − f(2n)2 = 6f(n) + 1, (b) f(2n) ≥ f(n);

. f(n) = 1000
�éËXAªÖÏ @

�
Ég . �éJ. Ë A ��Ë@ Q�
 	« �éjJ
j�Ë@ X@Y«


B@ �é«ñÒj. ÖÏ Z≥0

	QÓQK
 �IJ
k

ë 1434
�èQ 	k

�
B@ øXAÔg. 6 - ©K. @�QË @ ÐñJ
Ë @ ÉKA�Ó

Y	J« 	àAJ
�®�JÊK
 BD ð AC 	à@Q¢�®Ë@ . AB = BC = CA
����®m�'
 ø
 Q

K@X ú
«AK. P ABCD −1

. AD Ë �é 	JºÒÖÏ @ Õæ

�®Ë @

�
É¿ Ym.

	̄ , ED = 6 ð BE = 19
�	à

@ �IÒÊ« @ 	X @ . E

É¾ �� úÎ« 9
�èY«A�®Ë @ ú


	̄ I. �JºK
ð , abc(7) É¾ �� úÎ« 7
�èY«A�®Ë @ ú


	̄
n XYªË@ I. �JºK
 −2

? 10
�èY«A�®Ë@ ú


	̄
n XYªË@ �éK. A�J» ù
 ë AÓ . cba(9)

�é 	JK
AJ. �JÖÏ @ (x, y) Aî�EA�J
�K @Yg@
����®m��' ú


�æ
�
Ë @ ø
 ñ

�J�ÖÏ @ ¡�® 	K �é«ñÒm.× �ékA�Ó Yg. −3

x2 + y2 ≤ 4|x|+ 4|y|.

P@Y�®ÖÏ @ Õæ��®K
 589 Éªm.�
�' ú


�æ
�
Ë @ n < 589

�éJ.k. ñÖÏ @ �éjJ
j�Ë@ X@Y«

B@

�
É¿ Yg. −4

. n2 + n+ 1
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ø
 Xñª
��Ë@ ��K
Q 	®Ë @ iJ
 ��Q�K �H@PAJ. �J 	k@

2013 ú
Íð
�YË@ �HAJ
 	�AK
QË @ XAJ
J. ÖÏð


B

ë 1434 I. k. P 18 - È �ð

B@ ÐñJ
Ë @ ÉKA�Ó

. ABC �I
�
Ê�JÖÏ @ É 	g@X ©�®�K P

�é¢�® 	JË @ . ω
�èQK @ �YËAK. A£Am× A�J

�
Ê�JÓ ABC 	áºJ
Ë −1

úÎ« , C1 ð B1 ð A1 ¡�®	JË @ Y 	J« �éJ
 	KA�K �è�QÓ ω
�èQK @ �YË@ ©¢�®�K CP ð BP ð AP �HAÒJ
�®�J�ÖÏ @

B1 ð A1
	á�
�J¢�® 	JË @ Y 	J« ω

�èQK @ �YÊË 	àA ��AÒÖÏ @ 	àAÒJ
�®�J�ÖÏ @ . C ð B ð A 	á« �é 	®Ê�J	m× ,I. �
�KQ
���Ë @

	àAª£A�®.�JK
 C1 ð B1
	á�
�J¢�® 	JË @ Y 	J« ω

�èQK @ �YÊË 	àA ��AÒÖÏ @ 	àAÒJ
�®�J�ÖÏ @ . C2
�é¢�® 	JË @ Y 	J« 	àAª£A�®.�JK


Y 	J« 	àAª£A�®.�JK
 A1 ð C1
	á�
�J¢�® 	JË @ Y 	J« ω

�èQK @ �YÊË 	àA ��AÒÖÏ @ 	àAÒJ
�®�J�ÖÏ @ . A2
�é¢�® 	JË @ Y 	J«

. �èYg@ð �é¢�® 	K Y 	J« ù

�®�JÊ�K CC2 ð BB2 ð AA2

�HAÒJ
�®�J�ÖÏ @ �	à

@ �I�. �K


@ . B2

�é¢�® 	JË @

È@ð �YË@
�
É¿ Yg. . �éJ. Ë A ��Ë@ Q�
 	« �éjJ
j ��Ë@ X@Y«


B@ �é«ñÒm.× S = {0, 1, 2, 3, . . .} 	áº�JË −2

. S ú

	̄
n XY«

�
É¾Ë n+ f(f(n)) ≤ 2f(n)

����®m��' ú

�æ
�
Ë @ð Aª¢�̄ �èYK
@ 	Q��ÖÏ @ f : S → S

��J
� 	���JË @ �Õ �æK
 ú ��æk . è �Yg. ú

	̄ Q 	k

�
B@ð 	�AK
 �QË@ ú


	̄ AÒëYg

@ , 	àAJ. �JºÓ �é�K
Xñª� �é»Qå�� øYË −3

ú
ÎK
 AÓ ����®j�JK
 �IJ
m�'. 	á�
Ê�@QÖÏ @ 	áÓ @XY« I. �JºÓ
�
É¿ ú


	̄ 	á�
J
ª�JK. �é»Qå���Ë @ �IÓA�̄ , 	á�
J. �JºÖÏ @ 	á�
K.
. ú

	GA
��JË @ I. �JºÖÏ @ 	áÓ ¡�® 	̄ Yg@ð É�@QÓ ú


	̄ 	àA¿Q�� ���
 I. �JºÖÏ @ �
	® 	K 	áÓ 	á�
 	J�K @ 	á�
Ê�@QÓ

�
É¿ - @

. 	�AK
 �QË @ ú

	̄ 	àñÊ�@QÓ 10 É�̄


B@ úÎ« ¼A 	Jë - H.

. 	�AK
 �QË @ 	áÓ ¡�® 	̄ 	á�
Ê�@QÓ 8 ©Ó ÈA����@ úÎ« , YK
 	P éÖÞ� @ð , �è �Yg. ú

	̄ 	á�
Ê�@QÖÏ @ Yg


@ - h.

	áÓ ðQÔ« É�@QÖÏ @ ©Ó ÈA����@ úÎ« Ñë 	áK

	Y
�
Ë @ è �Yg. ú


	̄ 	á�
Ê�@QÖÏ @ 	áÓ 	áºÜØ XY« Q 	ª�

@ ñë AÓ
? 	�AK
 �QË@

�èQK @X úÎ« 1, 2, . . . , 2012
�éjJ
j ��Ë@ X@Y«


B@ I. �
�KQ�K

�èXA«@ A 	JºÜØ 	àA¿ @ 	X @ AÓ X �Yg −4

, 2012 ú

�̄ @ñJ. Ë @ è 	Yë XY«ð , 	áK
PðAj. �JÓ 	áK
XY«

�
É¾Ë 2013 úÎ« �éÒ��®Ë@ ú


�̄ @ñK. É
�
¾ ���� �IJ
m�'.

. Aî 	DJ
K. AÒJ
 	̄ �é 	®Ê�J	m× @X@Y«

@
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ë 1434 I. k. P 19 - ú

	GA
��JË @ ÐñJ
Ë @ ÉKA�Ó

P@Y�®ÒÊË �éÒJ
�̄ Q 	ª�

@ð Q�.»


@ Yg. −1

S = (1− x1)(1− y1) + (1− x2)(1− y2)

. x21 + x22 = y21 + y22 = 2013
�é�̄CªË@ y2 , y1 , x2 , x1 �é�J
�®J
�®mÌ'@ X@Y«


B@ ����®m��' A�ÜÏ

	àA�Jª¢�®Ë@ ù

�®�JÊ�K . é�KA«A 	®�KP@ CC1 ð BB1 ð AA1 ð @ �XAg A�J

�
Ê�JÓ ABC 	áºJ
Ë −2

�éÒJ
�®�J�ÖÏ @ �éª¢�®Ë@ úÎ« �ø
 XñÒªË@
	 ��	JÖÏ @ ©¢�®K
 . K �é¢�® 	JË @ Y 	J« B1C1 ð AA1

	àA�JÒJ
�®�J�ÖÏ @
A1 ð A ¡�®	JË @ �	à


@ �I�. �K


@ .I. �
�KQ

���Ë @ úÎ« , M ð L 	á�
�J¢�® 	JË @ Y 	J« AC ð AB 	á�
ªÊ 	�Ë@ A1K

. �èYg@ð �èQK @X úÎ« ©�®�K M ð L ð

�HA 	KA 	g �	à

@ 	�Q 	® 	JË .(XYªË@ �H@ 	Xð 1 ÑîD
	̄ AÖß.) éÖÞ� @ñ�̄ �éÖ ßA�̄ n iJ
m�� XY«

�
É¾Ë Q�. �Jª 	K −3

, Õæ� @ñ�̄ 6 éK
YË
�	àA
	̄ , n = 117 	àA¿ @ 	X @ , C�JÔ 	̄ . 3 ø
 ðA�

�� Õæ� @ñ�®Ë@ è 	Yë 	áÓ p% Ë XAg
�
B@

AîE
XAg
�
@ A�J 	K A 	g , 13 ð 3 ù
 ëð , Õæ� @ñ�®Ë@ è 	Yë 	áÓ 	àA 	J�K @ . 117 , 39 , 13 , 9 , 3 , 1 ù
 ëð

n 	àA¿ @ 	X @ p Ë �é 	JºÜØ �éÒJ
�̄ Q�.»

@ Yg. . n = 117 A�ÜÏ p = 33.33 · · · A 	JK
YË 	à 	X@ . 3 ø
 ðA�

��
.I. k. ñÓ iJ
m�� XY« ø



@

�éJ.k. ñÖÏ @ �éjJ
j ��Ë@ X@Y«

B@ 	áÓ �éJ
î �D 	JÓ Q�
 	« �éÊ�Ê���Ó Yg. ñ�K Éë X �Yg −4

a1, a2, a3, . . .

����®m��' ú

�æ
�
Ë @

, �éÊ�Ê���ÖÏ @ ú

	̄ ¡�® 	̄ �èYg@ð �è�QÓ Qê 	¢�
 I. k. ñÓ iJ
m�� XY«

�
É¿ - @

|a2 − a3| , |a1 − a2|
�éÊ�Ê���ÖÏ @ ú


	̄ ¡�® 	̄ �èYg@ð �è�QÓ Qê 	¢�
 I. k. ñÓ iJ
m�� XY«
�
É¿ - H.

. . . , |ak − ak+1| , . . . ,
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ë 1434 I. k. P 20 - �IËA
��JË @ ÐñJ
Ë @ ÉKA�Ó

X@Y«

@ �ð ðQË@ è 	Yë �HA�J
�K @Yg@ . ø
 ñ

�J�ÖÏ @ úÎ« �ð ðP m× n
�éºJ. �� ÈXA« Õæ�P −1

	áÓ k K. �QÖß
 ��Ê 	ªÓ PA�Ó Õæ�QK. ÈXA« ÐA�̄ . 1 ≤ b ≤ n ð 1 ≤ a ≤ m
����®m��' (a, b)

�éjJ
m��
	á�
K. �é 	̄ A�ÖÏ @ Èñ£ ø
 ðA��
 �IJ
m�'. , (ak, bk) , . . . , (a2, b2) , (a1, b1) ,�ð ðQË@ è 	Yë
Y
�
»

A�K .( (ak+1, bk+1) = (a1, b1)

�IJ
k) 1 ≤ i ≤ k
�
É¾Ë @Yg@ð (ai+1, bi+1) ð (ai, bi)

Q�.»

@ �HAJ. �KB AK. I. �k@ . Aî 	DJ
K. AÒJ
 	̄ �é 	®Ê�J	m× k Ë @ é�ð ðP

�
É¿ �	à


@ ø



@ , É 	g@Y�JÓ Q�
 	« èPA�Ó �	à


@ ÈXA«

. n ð m
�éËBYK. k Ë �é 	JºÜØ �éÒJ
�̄

(a1, a2, . . . , an)
�éJ.
��KQÖÏ @ �HA«ñÒj. ÖÏ @ XY« X �Yg . n ≥ 2

����®m�'
 AjJ
m�� @XY« n 	áºJ
Ë −2
����®m��' ú


�æ
�
Ë @ �éjJ
j�Ë@ X@Y«


B@ 	áÓ

; a1 + a2 + · · ·+ an ≥ n2 - @
. a21 + a22 + · · ·+ a2n ≤ n3 + 1 ð - H.

�éª¢�®Ë@ úÎ« �é¢�® 	K P ð , BC ©Ê 	�ÊË 	��J 	JÖÏ @ �é¢�® 	K M ð , @ �XAg A�J
�
Ê�JÓ ABC 	áºJ
Ë −3

�éJ
 	K A�K �è�QÓ ABC �I
�
Ê�JÖÏ AK. �é¢J
jÖÏ @ �èQK @YË@ 	àAª¢�®K
 CP ð BP 	àAÒJ
�®�J�ÖÏ @ . AM

�éÒJ
�®�J�ÖÏ @
AB ©Ê �	�Ë@ Q 	k

�
B@ð D Y	J« AC ©Ê 	�Ë@ AÒî 	DÓ È �ð


B@ , 	àAª¢�®K
ð ,I. �
�KQ

���Ë @ úÎ« , Y ð X Y	J«
Y	J« �éJ
 	KA�K �è�QÓ 	àAª£A�®�J�K AY E ð AXD 	á�
�J

�
Ê�JÖÏ AK. 	á�
�J¢J
jÖÏ @ 	á�
�KQK @

�YË@ �	à@ �I�. �K

@ .E Y	J«

. AM Õæ

�®�J�ÖÏ @ úÎ« T 6= A

�é¢�® 	K

XY«
�
É¾Ë Éªm.�

�' ú

�æ
�
Ë @ �éjJ
j�Ë@ �HCÓAªÖÏ @ �H@ð 	X p(x) XðYmÌ'@ �H@Q�
�J»

�
É¿ Yg. −4

. p(n) úÎ« �éÒ��®Ë@ ÉJ. �®K
 2n − 1 P@Y�®ÖÏ @ , n I. k. ñÓ iJ
m��
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Chapter 5

Solutions to the preselection
tests for the full-time training

5.1 Solutions to the selection test of day I

1. First solution. Because −1 ≤ x, y ≤ 1, we have (1 − x2), (1 − y2) ≥ 0.
Therefore, by applying AM-GM, we obtain

2
»
(1− x2)(1− y2) ≤ (1− x2) + (1− y2).

So, it remains to prove that

(1− x2) + (1− y2) ≤ 2(1− x)(1− y) + 1

which is equivalent to

x2 + y2 − 2x− 2y + 2xy + 1 ≥ 0.

But

x2 + y2 − 2x− 2y + 2xy + 1 = (x+ y − 1)2.

This ends the proof.
The equality holds when 1−x2 = 1−y2 and x+y−1 = 0. This is equivalent
to x = y = 1

2 .
Second solution. Because −1 ≤ x, y ≤ 1, there exist −π

2 ≤ θ, φ ≤ π
2 such that

x = sin θ and y = sinφ. The inequality to prove becomes

2 cos θ cosφ ≤ 2(1− sin θ)(1− sinφ) + 1,
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or, equivalently

2[cos(θ + φ) + sin θ + sinφ] ≤ 3.

Using the relations

cos(θ + φ) = 1− 2 sin2
θ + φ

2
and sin θ + sinφ = 2 sin

θ + φ

2
cos

θ − φ

2
,

the inequality simplifies to

cos2
θ − φ

2
≤ 1 +

Å
2 sin

θ + φ

2
− cos

θ − φ

2

ã2
,

which is satisfied.
The equality holds when θ = φ = π

6 , which means x = y = 1
2 .

2. Because 2 and 47 are relatively prime numbers, 47 divides 3x−2y if and only
if 47 divides 24x(3x − 2y). But

24x(3x − 2y) = 48x − 24x+y ≡ 1− 24x+y mod 47.

Therefore 47 divides 3x − 2y if and only if 24x+y ≡ 1 mod 47.
On the other hand, we have 223 ≡ 4923 ≡ 746 ≡ 1 mod 47. We deduce that
the prime number 23 is the order of 2 modulo 47. This implies that 24x+y ≡ 1
mod 47 if and only if 23 divides 4x+ y.

3. First, since the proctor distribute randomly the Algebra paper to each stu-
dent, he has 10! ways to do it depending on how he orders the students.
For the other three papers, we order the students from 1 to 30, each student
receiving three positions corresponding to the three papers. Since the first po-
sition a student receives corresponds to the Geometry paper, the second to the
Number Theory paper and the third to the Combinatorics paper, the prob-
lem is equivalent to count the number of partitions of the set {1, 2, . . . , 30}
into 10 subsets, each of 3 elements. This is equal toÇ

30
3, . . . , 3

å
=

30!

3!10
.

Therefore, the number of ways the proctor can distribute the test papers is

10!30!

3!10
.
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4. Remark. This problem has a converse:

If AB · CC ′ = AC ·BB′, then either AB = AC or AC ′GB′ is cyclic.

The third solution contains a proof for the coverse.
First solution. Because AC ′GB′ is cyclic, we have ]GAB′ = ]GC ′B′. Be-
cause B′C ′ is parallel to BC, we have ]CC ′B′ = ]C ′CB. We deduce that

sin]A′AC = sin]C ′CB.

B CA′

A

C′ B′

G

But triangles AA′C,BCC ′ have the same area which is half of the area of
triangle ABC. We deduce that

1

2
AA′ ·AC sin]A′AC =

1

2
CC ′ ·BC sin]C ′CB,

and therefore
AC

CC ′ =
BC

AA′ .

We proceed in a similar way, by considering triangles ABA′ and BCB′, ob-
taining

AB

BB′ =
BC

AA′ ,

and deduce the relation

AB · CC ′ = AC ·BB′.
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Second solution. Lets us consider the power of the point B with respect to
the circumcircle of the cyclic quadrilateral AC ′GB′. We have

P(B) = BC ′ ·BA = BG ·BB′.

But BC ′ = 1
2BA and BG = 2

3BB′. We deduce that

BB′ =

√
3

2
AB.

Similarly, by considering the power of the point C with respect to the cir-
cumcircle of the cyclic quadrilateral AC ′GB′ we obtain

CC ′ =

√
3

2
AC.

From these two relations we deduce easily that

AB · CC ′ = AC ·BB′.

Third solution (Contains also a proof for the converse). We can see from the
first solution that the quadrilateral AC ′GB′ is cyclic if and only

]GAC = ]GCB.

This is equivalent to saying that the line BC is tangent to the circumcircle
of triangle AGC.

B CA′

A

C′ B′

G
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This property is equivalent to saying that A′C2 = A′G · A′A by using the
power of the point A′ with respect to this circumcircle. But

A′C =
1

2
BC, A′G =

1

3
A′A and AA′ =

 
2AB2 + 2AC2 −BC2

4
.

We deduce that AC ′GB′ is cyclic if and only if

2BC2 = AB2 +AC2.

Now, using the formulas for the medians

BB′ =

 
2BC2 + 2AB2 − CA2

4
and CC ′ =

 
2CA2 + 2BC2 −AB2

4
,

we deduce that the relation

AB · CC ′ = AC ·BB′

is equivalent to

AB2 · (2CA2 + 2BC2 −AB2) = AC2 · (2BC2 + 2AB2 − CA2),

which is equivalent to

(AB2 −AC2) · (2BC2 −AB2 −AC2) = 0,

which is equivalent to either AB = AC or AC ′GB′ is cyclic.

5.2 Solutions to the selection test of day II

1. If a is relatively prime with 35 then it is relatively prime with both 5, 7.
Since a is relatively prime with 5 then, by Fermat, a4 ≡ 1 mod 5 which
implies

(a4 − 1)(a4 + 15a2 + 1) ≡ 0 mod 5.

Since a is relatively prime with 7 then a6 ≡ 1 mod 7. Hence

(a4 − 1)(a4 + 15a2 + 1) ≡ (a2 + 1)(a2 − 1)(a4 + a2 + 1)
≡ (a2 + 1)(a6 − 1) ≡ 0 mod 7.

But 5, 7 are relatively prime and therefore

(a4 − 1)(a4 + 15a2 + 1) ≡ 0 mod 35.
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2. Let u, v be the roots of the quadratic equation ax2 + bx + c = 0 such that
0 ≤ u ≤ v ≤ 1. We have the relations b = −a(u+ v) and c = uv. Therefore

(a− b)(2a− b)

a(a− b+ c)
=

(1 + u+ v)(2 + u+ v)

1 + u+ v + uv

= 2 +
u

1 + v
+

v

1 + u

≤ 2 +
u

1 + u
+

1

1 + u
= 3.

Clearly, when u = v = 1, the equality holds. Thus, 3 is the maximum.

3. This is equivalent to prove that there exists a positive integer k such that 10n

divides ak − 1.
First solution. Consider the remainders of the division of the 10n +1 powers
a1, a2, . . . , a10

n+1 of a by 10n. Since there are at most 10n possible reminders,
by the pigeonhole principle there exist at least two powers ai, aj , i < j, having
the same remainder. Therefore 10n divides aj − ai = ai(aj−i − 1). But 10n

is relatively prime with ai. This proves that 10n divides aj−i − 1.
Second solution. Since a and 10n are relatively prime, by Euler’s theorem

aφ(10
n) = a4·10

n−1 ≡ 1 mod 10n.

Therefore, 10n divides a4·10
n−1 − 1.

4. First solution. Let ∆ABC be any triangle. Considering triangle AIcC, we
have

]CIcA = 180◦ − (]ACIc + ]IcAC)
= 180◦ − (12]ACB + ]BAC + 1

2(180
◦ − ]BAC))

= 90◦ − 1
2(]ACB + ]BAC)

= ]IbBA.

A

B

C

Ib
Ic
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On the other hand, ]IcAC = ]BAIb. We deduce that triangles ABIb, AIcC
are similar and therefore

AIc
AB

=
AC

AIb
⇔ AIb ·AIc = AB ·AC.

Thus, the area of triangle ABC is equal to 1
2AIb · AIc sin]BAC. Hence,

triangle ∆ABC is right at A if and only if its area is equal to 1
2AIb ·AIc.

Second solution. Let ∆ABC be any triangle. Denote a, b, c the lengths of
the opposite sides to the vertices A,B,C respectively, s the semiperimeter,
r the inradius, rb, rc the exradius opposite to the vertices B,C respectively.
We have

AI2b = r2b + (s− c)2 and AI2c = r2c + (s− b)2.

A

B

s− b

C

s− c

Ic

Ib

rc

rb

But the area of the triangle ∆ABC is equal to

K = rs = rb(s− b) = rc(s− c) =
»
s(s− a)(s− b)(s− c),

and that rbrc = s(s−a) (which follows from the above formulas for the area).
Hence

AI2b ·AI2c = (r2b +(s− c)2)(r2c +(s− b)2) = s2(s−a)2+2K2+(s− b)2(s− c)2.

Therefore, K = 1
2AIb ·AIc is equivalent to

2K2 = s2(s− a)2 + (s− b)2(s− c)2.

But 2K2 = 2s(s− a)(s− b)(s− c). Hence, this is equivalent to

((s− b)(s− c)− s(s− a))2 = 0,

which simplifies to
a2 = b2 + c2.
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5.3 Solutions to the selection test of day III

1. Let x0 be a a solution of the equation f(x) = x. We have

x0 = f(x0) = f(f(x0)) = 4x0 + 1.

Therefore, x0 = −1
3 . This proves the uniqueness of the solution.

On the other hand,

f

Å
f

Å
−1

3

ãã
= 4

Å
−1

3

ã
+ 1 = −1

3
.

We deduce that

f

Å
−1

3

ã
= f

Å
f

Å
f

Å
−1

3

ããã
= 4f

Å
−1

3

ã
+ 1,

and therefore,

f

Å
−1

3

ã
= −1

3
.

This prove the existence of the solution.

Remark. There are infinitely many functions f satisfying the relation f(f(x)) =
4x+ 1, for all x ∈ R. For example, the function given by

f(x) = 2

Å
x+

1

3

ã
− 1

3
, for all x ∈ R,

or the function given by

f(x) = −2

Å
x+

1

3

ã
− 1

3
, for all x ∈ R,

or the function given by

f(x) =


2
Ä
x+ 1

3

ä
− 1

3 if x ∈ Q

−2
Ä
x+ 1

3

ä
− 1

3 if x /∈ Q
,

all satisfy the relation. More generaly, if A ⊆ R has the property: ra ∈ A
whenever r ∈ Q, a ∈ A, the function given by

f(x) =


2
Ä
x+ 1

3

ä
− 1

3 if x ∈ A

−2
Ä
x+ 1

3

ä
− 1

3 if x /∈ A

,

satisfies the relation.
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2. Assume that 19 does not divide the product a1a2 · · · a9. This means that
a1, a2, . . . , a9 are relatively prime with 19. Using Fermat,

a181 ≡ a182 ≡ · · · a189 ≡ 1 mod 19.

But a18i ≡ 1 mod 19, is equivalent to (a9i − 1)(a9i +1) ≡ 0 mod 19. Since 19
is a prime number, this implies that a9i ≡ ±1 mod 19, for i = 1, . . . , 9, and
therefore a91 + a92 + · · ·+ a99 ≡ ±k mod 19 for some odd number k between 1
and 9. This is a contradiction. Thus 19 divides the product a1a2 · · · a9.

3. Consider 2014 parallel lines. Each line contains infinitely many points. Since
the number of the colors is finite, by the pigeonhole principle, there exist on
each line infinitely many points of the same color. Choose for each line one
color for which there exist infinitely many points. Since there are 2013 colors
and 2014 lines, by the pigeonhole principle there exist at least two lines `1, `2
for which the same color C have been choosen. Choose two points B,C from
the first line `1 of this color C. Choose infinitely many points A1, A2, . . . from
the second line `2 of this color C. Triangles A1BC,A2BC, . . . are all of the
same color C and have the same area since `1, `2 are parallel.

B Cℓ1

A2ℓ2 A3 A4 A5 · · ·A1

4. Let E be the intersection point of BK with AT . The problem is equivalent
to prove that points A′, E,B′ are collinear.

First solution. Let F be the intersection point of BC with KT . Since K
is the midpoint of C̄A, by expressing the angles in terms of arc lengths we
obtain

]KEA =
1

2

Ä
K̄A+ B̄T

ä
=

1

2

Ä
C̄K + B̄T

ä
= ]CFK = 90◦.

But B′ is an intouch point. This implies that

]AB′I = 90◦ = ]AEI,

and the points A, I,E,B′ are concyclic.

Saudi Arabia Mathematical Competitions



58 SAMC 2013

A

B C

C K

T

E
I

A
′

B′

FD

We deduce from this that

]IB′E = ]IAE = 90◦ − ]EIA = 90◦ − 1

2
]BAC − 1

2
]CBA =

1

2
]ACB.

On the other hand, triangle IA′B′ is isosceles (IA′ = IB′). Therefore,

]IB′A′ =
1

2
(180◦ − ]A′IB′) =

1

2
]ACB = ]IB′E,

since ]CA′I = 90◦. This proves that the points A′, E,B′ are collinear.

Second solution. We prove as in the first solution that ]KEA = 90◦. Let
D be the intersection point of AT with BC. The pedal triangle of I with
respect to triangle ADC is A′B′E. Proving that points A′, B′, E are collinear
is equivalent to proving that I is on the circumcircle of triangle ADC and
therefore, the line A′B′E will be the Simson line of point I with respect to
triangle ADC.
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A

B C

C

K

T

E

I

A′

B′

D

We have

]CDA = ]DBA+ ]BAD = ]CBA+ 90◦ − 1

2
]CBA = 90◦ +

1

2
]CBA.

On the other hand

]CIA = 180◦ − 1

2
]BAC − 1

2
]ACB = 90◦ +

1

2
]CBA = ]CDA.

This proves that I is on the circumcircle of triangle ADC and thus A′, E,B′

are collinear.

5.4 Solutions to the selection test of day IV

1. We have a2n+1 − a2n = 1 for all natural number n. Using a telescopic sum we
obtain

n0 =
2n0−1∑
k=n0

(a2k+1 − a2k) = a22n0
− a2n0

= 9a2n0
− a2n0

= 8a2n0
.

Hence
a2n0

=
n0

8
.
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On the other hand,

n0 − 1 =
n0−1∑
k=1

(a2k+1 − a2k) = a2n0
− a21 =

n0

8
− a21,

or equivalently

a21 =
8− 7n0

8
.

Since a21 ≥ 0, we deduce that n0 = 1 and a21 =
1
8 .

Therefore

45 =
45∑
k=1

(a2k+1 − a2k) = a246 − a21 = a246 −
1

8
,

which leads to

a46 =
19

√
2

4
.

2. Since 2013 = 3 × 11 × 61, we will prove that for p = 3, 11, 61, if p divides
x1433 + y1433 then p divides x7 + y7.
Let p = 3, 11, 61, and assume that p divides x1433 + y1433.
If p divides x, then it divides x7 and x1433. But p divides x1433+ y1433. Then
it divides y1433. Since p is a prime number, we deduce that it divides y and
y7. Therefore, it divides x7 + y7. In a similar way we prove that if p divides
y, then it divides x7 + y7.
Assume now that p is relatively prime with x, y. Then, using Fermat,

xp−1 ≡ yp−1 ≡ 1 mod p.

But p− 1 divides 1440 for p = 3, 11, 61. We deduce that

x1440 ≡ y1440 ≡ 1 mod p.

Hence

x7 + y7 ≡ x7y1440 + y7x1440 ≡ x7y7(y1433 + x1433) ≡ 0 mod p.

This proves that p divides x7 + y7.

3. Let Nn be the number of permutations satisfying these conditions.
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For n = 5, the conditions are s4 > s1 and s5 > s2, s1. Among the 5!
permutations of (1, · · · , 5), half of them satisfy the condition s4 > s1. Among
these permutations, half of them satisfy also the condition s5 > s2. Therefore,
there are 30 permutations satisfying both conditions s4 > s1 and s5 > s2.
To compute N5, it is easier to substract from 30 the number of permutations
which do not satisfy the condition s5 > s1. These permutations satisfy the
condition s4 > s1 > s5 > s2 with no condition on s3. Since there are 5
possibilities for s3, there are 5 such permutations and

N5 = 30− 5 = 25.

For n = 7. There are more conditions and the method used for n = 5
becomes complicated. That is why, we will use a different method based on
an inductive relation for Nn.
For n = 1, 2, 3 there are no conditions on the permutations. So

N1 = 1! = 1, N2 = 2! = 2, N3 = 3! = 6.

For n = 4, there is only one condition: s4 > s1. This gives,

N4 =
1

2
4! = 12.

For n ≥ 5, we have the conditions sn ≥ s1, s2, . . . , sn−3. This means that
at most there are only sn−1, sn−2 at most which can be greater than sn.
Therefore sn ∈ {n, n− 1, n− 2}.

(a) When sn = n, there are as many permutations as for n−1, that is Nn−1.

(b) When sn = n − 1, because of the conditions sn ≥ s1, s2, . . . , sn−3, we
have n ∈ {sn−1, sn−2}.
• If sn−1 = n, there are as many permutations as for n − 2, that is

Nn−2.

• If sn−2 = n, because of the conditions sn−1 ≥ s1, s2, . . . , sn−4 we
have sn−1 ∈ {n− 2, n− 3}.
i. If sn−1 = n − 2, there are as many permutations as for n − 3,

that is Nn−3.

ii. If sn−1 = n − 3 then sn−3 = n − 2 and there are as many
permutations as for n− 4, that is Nn−4.

(c) When sn = n − 2, because of the conditions sn ≥ s1, s2, . . . , sn−3, we
have either sn−1 = n, sn−2 = n− 1 or sn−1 = n− 1, sn−2 = n. In each
case there are as many permutations as for n− 3, that is Nn−3.
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Hence, we obtain the inductive relation

Nn = Nn−1 +Nn−2 + 3Nn−3 +Nn−4.

Therefore
N5 = 12 + 6 + 3× 2 + 1 = 25,

N6 = 25 + 12 + 3× 6 + 2 = 57,

N7 = 57 + 25 + 3× 12 + 6 = 124.

Remark. If the condition in this problem is replaced by si > sj for all i ≥ j+2,
Nn will be given by the Fibonacci sequence.

4. First solution. Let N be the midpoint of CD and F the intersection point
of lines AE and MN . Since M is the midpoint of BC, the segment MN is
parallel to BD.

B C

A

M

D

E

N

F

Therefore, AE,BD are perpendicular if and only if AF,MN are perpendic-
ular.
Equivalently, triangles AFN and MDN are similar since they already share
the same angle at N .
Since AFN and ADE are similar, then triangles ADE and MDN are simi-
lar, which is equivalent to the fact that triangles ADM and MDC are similar

Saudi Arabia Mathematical Competitions



IMO Selection Tests 63

since E is the midpoint of DM and N is the midpoint of DC.
In conclusion, AE and BD are perpendicular if and only if the median AM
of triangle ABC is also an altitude. That is AB = AC.

Second solution. By coordinates or equivalently by complex numbers. Fix
the origin at C, and the x− axis to be CA. The affixes of the points are

C(0), A(a) and B(b+ ic),

where a, b, c are positive real numbers. Hence, the affixes of the other points
are

M

Å
b

2
+ i

c

2

ã
, D

Å
b

2

ã
and E

Å
b

2
+ i

c

4

ã
.

x

y

C A

B

M

D

E

Therefore, the affixes of the vectors are

−−→
DB

Å
b

2
+ ic

ã
and

−→
EA

Å
a− b

2
− i

c

4

ã
.

On the other hand, the lengths of the sides are equal to

AB =
»
(a− b)2 + c2 and AC = a.

The segments AE,BD are perpendicular if and only if

Re

ÅÅ
b

2
+ ic

ãÅ
a− b

2
+ i

c

4

ãã
= 0,
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which is equivalent to 2ab− b2 − c2 = 0, or, after a straight computation, to
AB = AC.

Third solution. By using scalar products of vectors. Because M is the mid-
point of BC and E the midpoint of MD, we have

−−→
DM =

1

2
(
−−→
DB +

−−→
DC), or, equivalently

−−→
BD = 2

−−→
MD +

−−→
DC,

and
−→
AE =

−−→
AM +

−−→
ME =

1

2
(
−−→
AM +

−−→
AD).

Because MD and AC are perpendicular, we have

−−→
AD ·

−−→
MD =

−−→
ME ·

−−→
DC = 0.

Therefore

−→
AE ·

−−→
BD = 2

−→
AE ·

−−→
MD +

−→
AE ·

−−→
DC

= (
−−→
AM +

−−→
AD) ·

−−→
MD + (

−−→
AM +

−−→
ME) ·

−−→
DC

=
−−→
AM ·

−−→
MD +

−−→
AM ·

−−→
DC =

−−→
AM ·

−−→
MC

= 1
2

−−→
AM · −−→BC.

Hence, AE and BD are perpendicular if and only if the median AM of the
triangle ABC is an altitude. This is equivalent to AB = AC.
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Chapter 6

Solutions to the selection tests
for the Gulf Mathematical
Olympiad 2013

6.1 Solutions to the selection test of day I

• Problem 1. First, we see that it is possible for Tarik to choose the 101
numbers 11,12,. . . ,111, since the product 11× 12 > 111.

Assume that Tarik has choosen k numbers and let d be the smallest among
these numbers. If d ≥ 11, then clearly, k ≤ 101.

If 2 ≤ d ≤ 6, from each of the 9 sets {9, 9d}; {10, 10d}; . . . ; {17, 17d}, Tarik
can choose at most one number. Because 9d > 17, these sets are pairwise
disjoint. Because 17d ≤ 102, there are at least 9 numbers between 9 and 102
that Tarik could not choose. Therefore k ≤ 101.

If 3 ≤ d ≤ 10, from each of the sets {d + 1, d(d+ 1)}; {d+ 2, d(d+ 2)}; . . . ;
{11, 11d}, Tarik can choose at most one element. Because d(d+1) ≥ 12, these
sets are pairwise disjoint. Because 11d < 111, There are at least 11− d num-
bers from these sets that Tarik could not choose. But Tarik didn’t choose the
numbers 2, . . . , d−1. Therefore, Tarik didn’t choose at least 11−d+d−2 = 9
numbers. Hence k ≤ 101.
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Therefore, the maximum number of numbers Tarik can choose is 101.

• Problem 2. We have

a3

a2 + ab+ b2
+

b3

b2 + bc+ c2
+

c3

c2 + ca+ a2

=
a4

a3 + a2b+ ab2
+

b4

b3 + b2c+ bc2
+

c4

c3 + c2a+ ca2

≥ (a2 + b2 + c2)2

a3 + ab2 + ac2 + ba2 + b3 + bc2 + ca2 + cb2 + c3
,

by applying Cauchy-Schwarz inequality.

On the other hand

(a2 + b2 + c2)2

a3 + ab2 + ac2 + ba2 + b3 + bc2 + ca2 + cb2 + c3
=

a2 + b2 + c2

a+ b+ c

≥ a+ b+ c

3
,

by applying again Cauchy-Schwarz inequality.

The equality holds when a = b = c.

• Problem 3. Because all angles are congruent and all line segments are
congruent, the regular n-pointed star is cyclic. Indeed, consider any four
consecutive vertices Pi, Pi+1, Pi+2, Pi+3, for some i ∈ {1, 2, . . . , n}. They
form an isosceles trapezoid. So they are cocyclic. By induction, all vertices
P1, P2, . . . , Pn are on the same circle. Let O be the center of this circle.

Because all the line segments are congruent and the path turns counter-
clockwise, there exists a positive real number 0◦ < θ < 180◦ such that
∠PiOPi+1 = θ for all i = 1, 2, . . . , n. Because Pn+1 = P1, there exists a
positive integer k such that nθ = 360k◦. But θ < 180◦. Therefore k < n

2 .
Because each of the n line segments intersects at least one of the other line
segments at a point other than an endpoint, k > 1. Because all the vertices
P1, P2, . . . , Pn, are different, the integers k and n have no common divisors.
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Conversely, for a given circumradius, if 1 < k < n
2 is an integer relatively

prime to n, there exists a unique regular n-pointed star of angle θ = 360k
n

◦
.

Hence, the number of non-similar regular n-pointed stars is the number of
such integers k, that is φ(n)

2 −1, where φ is the Euler totient function. There-
fore, it remains to solve the equation φ(n) = 60.

There are three cases. The first case is when there exists a prime p divisor
of n such that 3×5 divides p−1. Here, the only possibilities are p = 61 or 31.

If p = 61, there are 2 solutions for n. Either n = 61 or n = 2× 61 = 122.

If p = 31, there are 3 solutions for n. Either n = 3 × 31 = 93, or n =
2× 3× 31 = 186, or n = 22 × 31 = 124.

The second case is when there exist two prime numbers p and q such that 3
divides p − 1 and 5 divides q − 1. In this case, the only possibility is p = 7
and q = 11. This gives only two solutions for n. Either n = 7 × 11 = 77 or
n = 2× 7× 11 = 154.

The third case is when there exists an odd prime number p such that p2

divides n. Then p = 3 or 5. If n = 52m and m is relatively prime to 5, we
obtain φ(m) = 3 which is impossible since 3 is an odd number. If n = 32m
and m is relatively prime to 3, we obtain φ(m) = 10. Therefore, m = 11 or
22. Hence n = 99 or 198.

In conclusion, all possible values for n are 61,77,93,99,122,124,154,186 and
198.

• Problem 4. We present for this problem two solutions.

First solution. We have ∠AFG = ∠ADG since AGDF is cyclic. On the
other hand ∠DGA = ∠AFD = 90◦, since AD is a diameter. We deduce that
triangles AGD and ADB are similar, and therefore ∠AFG = ∠CBA.

Because ∠AEB = ∠ADB = 90◦, quadrilateral ABDE is cyclic. Therefore
∠DEB = ∠CBA = ∠EFY . But ∠EFD = ∠Y EF = 90◦. We deduce that
DFEY is a rectangle and therefore BY is an altitude in triangle BDZ. Line
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segment DG is also an altitude in triangle BDZ which intersects BY at X.
We deduce that ZX and BC are perpendicular.

A

B C

D

E

F

G

X

Y

Z

Second solution. Because ∠ADB = ∠AEB = 90◦, the quadrilateral
ABDE is cyclic. Therefore, the projections of the point D on the lines
AB,BE, and EA are collinear (Simson line). But G and F are the projec-
tions of D on lines AB and EA, respectively, since AD is a diameter of the
circle ω. Then the projection of D on BE is Y , the intersection point of BE
with GF . Therefore, BY is perpendicular to DZ. Hence, in triangle BDZ,
line segments BY and DG are altitudes and intersect at X. Thus ZX is also
an altitude and therefore ZX and BC are perpendicular.

6.2 Solutions to the selection test of day II

• Problem 1. Assume AP = AQ. Because OP = OQ, the line AO is perpen-
dicular to PQ. But since ∠C1AO = 90◦ − ∠ACB then ∠B1C1A = ∠ACB,
and therefore, quadrilateral BCB1C1 is cyclic.

Using the power of the point O with respect to the circumcircle of BCB1C1

we get

OB1 =
OB1 ·OB

R
=

OC1 ·OC

R
= OC1,

where R is the circumradius of triangle ABC. Therefore, BB1 = CC1, that
is the minors B̆B1 and C̆C1 of the circumcircle of BCB1C1 have the same
length. This is equivalent to saying that ∠CBC1 = ∠B1CB, and therefore
AB = AC.
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O

B

A

C

B1

C1P

Q

• Problem 2. Assume that there exist two non constant polynomials g(X)
and h(X) with integer coefficients such that f(X) = g(X)h(X). Because,
p = g(0)h(0) is prime, we can assume that |g(0)| = 1. Because the modulus
of the product of the complex roots of g(X) is equal to 1, at least one of
these roots, say ω0, has modulus less than or equal to 1. But f(ω0) = 0. We
deduce that

p = |anωn
0 + an−1ω

n−1
0 + · · ·+ a1ω0|

≤ |an| · |ω0|n + |an−1| · |ω0|n−1 + · · ·+ |a1| · |ω0|
≤ |an|+ |an−1|+ · · ·+ |a1|,

which is a contradiction. Therefore, f(X) is irreducible.

• Problem 3. Let p be a prime divisor of n55 − n for all integer n. Whenever
n is not divisible with p, we have

n54 ≡ 1 mod p.

In this case, the order of n modulo p divides 54. But there exists an integer n
of order p−1 modulo p. We deduce that p−1 divides 54. But the only primes
p such that p− 1 divides 54 are p = 2, 3, 7 and 19. Conversely, all these four
primes 2, 3, 7 and 19 divide n55−n for all integer n by Fermat’s little theorem.

Notice that for p(p55 − 1) is not divisible by p2 for all prime numbers p since
p54 − 1 is relatively prime with p. Therefore, the greatest integer k which
divides n55 − n for all integer n is 2× 3× 7× 19 = 798.

• Problem 4. Let m be a positive integer and consider the infinite set of pairs
(Fk, Fk+1), for k ∈ N. By the pigeonhole principle, there exists a pair (a, b) of
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integers 0 ≤ a, b ≤ m−1 and an infinite sequence of integers 0 < k1 < k2 < · · ·
such that

(Fki , Fki+1) ≡ (a, b) mod m, for all i ≥ 1.

Therefore

(Fki−1, Fki) = (Fki+1 − Fki , Fki) ≡ (b− a, a) mod m, for all i ≥ 1.

We keep descending in this way until we get

(Fki−k1+2, Fki−k1+3) ≡ (F2, F3) ≡ (1, 2) mod m, for all i ≥ 1.

Let ni = ki − k1 + 2, for all i ≥ 1. Clearly, the infinite sequence 2 = n1 <
n2 < · · · is increasing and we have

Fni + 2 ≡ F2 + 2 ≡ 3 mod m, Fni+1 + 1 ≡ F3 + 1 ≡ 3 mod m,

and Fni+2 ≡ Fni+1 + Fni ≡ F3 + F2 ≡ 3 mod m.

6.3 Solutions to the selection test of day III

• Problem 1. Let f : R → R be a function which satisfies the two functional
equations.

Because f
(√

3
3 x

)
−

√
3f(1) = −2

√
3

3 6= 0 , either f(1) 6= 0 or f
(√

3
3 x

)
6= 0.

Fix x0 ∈ R with f(x0) 6= 0 and let y ∈ R with y 6= 0. We have

f(x0)f

Å
1

y

ã
= f

Å
x0
y

ã
+ f(x0y) = f(x0)f(y).

Therefore, f
Ä
1
y

ä
= f(y) for all y 6= 0.
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Let x 6= 0. We have

f

Ç√
3

3
x

å
=

√
3f(x)− 2

√
3

3
x

=
√
3f

Ñ √
3
3√
3
3 x

é
− 2

√
3

3
x

=
√
3

Ñ
√
3f

Ñ
1

√
3
3 x

é
− 2

x

é
− 2

√
3

3
x

= 3f

Ç√
3

3
x

å
− 2

√
3

x
− 2

√
3

3
x.

We deduce that

f

Ç√
3

3
x

å
=

√
3

x
+

√
3

3
x,

and therefore

f(x) = x+
1

x
,

for all x 6= 0.

For x = 0 and y = 2, we have from the second functional equation

5

2
f(0) = f(0) + f(0),

which implies that f(0) = 0. Hence

f(x) =

®
x+ 1

x if x 6= 0,
0 otherwise.

Conversely, it is easy to check that this function satisfies the two functional
equations.

• Problem 2. Let P1P2 · · ·Pn be a convex cyclic non-regular polygon with the
measures of all its internal angles are equal and let O be its circumcenter.

Because, all the angles are equal, all the arcs ˚�PiPi+2, for i = 1, . . . , n, have the
same length. Hence, ∠PiOPi+2 = 4π

n , for all i = 1, . . . , n, since the polygon
is convex.
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P1
P3

P5

P7P9

P11

O

P2

P4

P6

P8

P10

P12

Let θ = ∠P1OP2. We have

∠P2i−1OP2i = ∠P1OP2 + ∠P2OP2i − ∠P1OP2i−1 = ∠P1OP2 = θ.

If n is an odd integer,

θ = ∠PnOP1 =
n+ 1

2
∠PnOP2 =

n+ 1

2
· 4π
n

=
2π

n
= ∠P1OP2 mod 2π.

This means that the polygon is regular, which contradicts the hypothesis.

If n is even, any value of θ with 0 < θ < 4π
n and θ 6= 2π

n defines a unique
non-regular such a polygon.

Therefore, the possible values of n are all even positive integer n ≥ 4.

• Problem 3. We already know that DA = DB = DI. Because DI = AB,
triangle ADB is equilateral. But ∠ACB + ∠BDA = 180◦, we deduce that
∠ACB = 120◦.

Because ∠BOA = 2∠BDA = 120◦, we deduce that ∠OAB = 30◦. On the
other hand, we have ∠CAH = 90◦ − ∠CBA − ∠BAC = 30◦. By applying
cosine law in the triangle AOH we obtain

OH2 = AH2 +R2 − 2R ·AH cos(∠BAC + 60◦),
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where R is the circumradius of triangle ABC. This is equivalent to

2AH cos(∠BAC + 60◦) = R.

B A

D

O

C

H

I

BecauseHC is perpendicular to AB and BC is perpendicular to AH, we have
∠AHC = ∠CBA. On the other hand, we have ∠HCA = 180◦ − ∠AHC −
30◦ = 90◦ + ∠BAC. We deduce, by applying sine law to the triangle ACH
that

AH

sin(90◦ + ∠BAC)
=

AC

sin∠CBA
= 2R.

Therefore, AH = 2R cos∠BAC. By plugging this into our previous relation
we obtain

2 cos∠BAC · cos(∠BAC + 60◦) =
1

2
.

This is equivalent to

cos(2∠BAC + 60◦) + cos 60◦ =
1

2
,
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and therefore, ∠BAC = 15◦. Thus

∠BAC = 15◦, ∠CBA = 45◦, and ∠ACB = 120◦.

• Problem 4. We have

0 ≡ (a3 + 1)− (b3 + 1) ≡ (a− b)(a2 + ab+ b2) ≡ (a− b)ab mod (a2 + b2).

Let d be a common divisor of a and a2+ b2. Then d divides a3+1 and a3, so
it divides 1. Hence a and a2 + b2 are coprime. In a similar way b and a2 + b2

are coprime. Thus a− b ≡ 0 mod (a2 + b2).

If a 6= b then a2 + b2 ≤ |a− b| ≤ (a− b)2 < a2 + b2, since ab ≥ 1, which is a
contradiction. Hence a = b = 1, since a and a2 + b2 are coprime.
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Solutions to the selection tests
for the Balkan Mathematical
Olympiad 2013

7.1 Solutions to the selection test of day I

• Problem 1. Let us count the number of five-point sequences according to
the position of point P3.

x3 = 5

x3 = 1

y = 3

Because the horizontal line of equation y = 3 is a symmetry axis for this fig-
ure, the number of sequences with x3 = i is equal to the number of sequences
with x3 = 6− i, for i = 1, 2.
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x3 = 2

x = 3

Similarly, the vertical line of equation x = 3 is a symmetry axis for this figure,
so that the number Ni of three-point sequences (P1, P2, P3) ending at P3 with
x3 = i is equal to the number of three-point sequences (P3, P4, P5) starting at
P3, with x3 = i, for i = 1, 2, 3. Therefore, the number of five-point sequences
(P1, P2, P3, P4, P5) with x3 = i is N2

i . Hence, the total number of five-point
sequences (P1, P2, P3, P4, P5) is

2(N2
1 +N2

2 ) +N2
3 .

It is easy to see that N1 = 2, since the only possibilites for x4, x5 are x4 = 2
and x5 = 1 or 3.

x3 = 1

It is also easy to see that N2 = 3, since x4 = 1 or 3 and x5 = 2 in the first
case and 2 or 4 in the second case.

x3 = 2
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Finaly, N3 = 4, since x4 = 2 or 4, and x5 = 1 or 3 in the first case, and 3 or
5 in the second case.

x3 = 3

Hence, the number of sequences is 2
(
22 + 32

)
+ 42 = 42.

• Problem 2. Let d = gcd(a, b) and a = da′ and b = db′ with a′, b′ two
relatively prime positive integers. The equation becomes

a′b′d2 + 63 = 20a′b′d+ 12d.

Therefore, d divides 63 and we have

a′b′d+
63

d
= 20a′b′ + 12.

If 5 < d < 20, then a′b′d + 63
d < 20a′b′ + 12, and this is impossible. Hence,

d = 1, 3, 21, or 63.

1. If d = 1, the equation is equivalent to 51 = 19a′b′, which is impossible
since 19 does not divide 51.

2. If d = 3, the equation is equivalent to 9 = 17a′b′, which is impossible
since 17 does not divide 9.

3. If d = 21, the equation is equivalent to a′b′ = 9. Because a′, b′ are
relatively prime positive integers, either a′ = 1, b′ = 9 or a′ = 9, b′ = 1.
This leads to two solutions (a, b) = (21, 189) and (a, b) = (189, 21).

4. If d = 63, the equation is equivalent to 43a′b′ = 11, which is impossible
since 43 does not divide 11.

Therefore, the equation has two solutions (a, b) = (21, 189) and (a, b) =
(189, 21).
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• Problem 3. Notice first that if bxc ≤ 0 then

bx2c − 10bxc+ 24 ≥ 24 > 0.

This means that if x is a solution to the equation then bxc ≥ 1.

Let x be a solution to the equation, m = bxc ≥ 1, and r = x− bxc ≥ 0. We
have

0 = bx2c − 10bxc+ 24 = br(r + 2m)c+ (m− 4)(m− 6).

Because r(r+2m) ≥ 0, we deduce that (m−4)(m−6) ≤ 0, which is equivalent
to m = 4, 5, or 6.

1. If m = 4, the equation becomes br(r + 8)c = 0. This is equivalent to
(r + 4)2 − 17 < 0 and (r + 4)2 − 16 ≥ 0, and its solutions are 0 ≤ r <√
17− 4. This means that the solutions to the equation in this case are

4 ≤ x <
√
17.

2. If m = 5, the equation becomes br(r + 10)c = 1. This is equivalent to
(r+5)2 − 27 < 0 and (r+5)2 − 26 ≥ 0, and its solutions are

√
26− 5 ≤

r <
√
27− 5. This means that the solutions to the equation in this case

are
√
26 ≤ x <

√
27.

3. If m = 6, the equation becomes br(r + 12)c = 0. This is equivalent to
(r + 6)2 − 37 < 0 and (r + 6)2 − 36 ≥ 0, and its solutions are 0 ≤ r <√
37− 6. This means that the solutions to the equation in this case are

6 ≤ x <
√
37.

Thus, the set of solutions to this equation isî
4,
√
17
ä
∪
î√

26,
√
27
ä
∪
î
6,
√
37
ä
.

• Problem 4. We extend sides FA and BC to intersect at A′, and sides BC
and DE to intersect at B′, and sides DE and FA to intersect at C ′.
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A′ B′

C′

B C

A

D

EF

Triangles A′B′C ′, A′BA, B′DC, and C ′FE are equilateral with side lengths
11,3,4, and 5 respectively. Therefore, the area of hexagon ABCDEF is

√
3

4
· 112 −

√
3

4
· 32 −

√
3

4
· 42 −

√
3

4
· 52 = 71

√
3

4
.

• Problem 5. Notice first that

X4 + 2X3 + (2 + 2k)X2 + (1 + 2k)X + 2k = (X2 +X + 1)(X2 +X + 2k).

Because the factor X2 + X + 1 has no real roots, we deduce from Vieta
relations that r1 + r2 = −1 and r1r2 = 2k = −2013, where r1, r2 are the real
roots of the equation X4+2X3+(2+2k)X2+(1+2k)X+2k = 0. Therefore,

r21 + r22 = (r1 + r2)
2 − 2r1r2 = 1 + 2× 2013 = 4027.

• Problem 6. Because sides of triangles ABC and DEF are parallel (homo-
thetic triangles), we have

∠BPD = 180◦ − ∠EDF − ∠FDB − 1
2∠CBA

= 180◦ − ∠BAC − ∠ACB − 1
2∠CBA

= 1
2∠CBA = ∠DBP.

We deduce that triangle DPB is isosceles and therefore DP = DB.
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A

B

C

D

E

F

P

Q

I

S

T

Similarly, we prove that DQ = DC. But DB = DC. We conclude that
triangle DPQ is isosceles, and therefore, its bisector at D is perpendicular to
PQ.

But the bisector of triangle ABC at A is parallel to the bisector of triangle
DEF at E since the two triangles are homothetic. We deduce that the
bisector of triangle ATS at A is perpendicular to ST and therefore AS = AT .

• Problem 7. Let us associate a 1 to each cell with a black color and a
0 to each cell with a white color. The condition is equivalent to the sum
of numbers in each 2 × 3 rectangle and in each 3 × 2 rectangle is even. Let
ai,j be this number at the cell in the ith row and jth column, for 1 ≤ i, j ≤ 50.

Consider, for a fixed pair i, j, with 1 ≤ i ≤ 48 and 1 ≤ j ≤ 47, the 3 × 4
rectangle:

ai,j ai,j+1 ai,j+2 ai,j+3

ai+1,j ai+1,j+1 ai+1,j+2 ai+1,j+3

ai+2,j ai+2,j+1 ai+2,j+2 ai+2,j+3

By applying the condition to the two 2×3 rectangles which contain cells from
the second and the third rows, we get

ai+1,j + ai+1,j+1 + ai+1,j+2 + ai+2,j + ai+2,j+1 + ai+2,j+2 ≡ 0 mod 2,
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and

ai+1,j+1 + ai+1,j+2 + ai+1,j+3 + ai+2,j+1 + ai+2,j+2 + ai+2,j+3 ≡ 0 mod 2.

By applying the condition to all the 3× 2 rectangles, we get

ai,j + ai,j+1 + ai+1,j + ai+1,j+1 + ai+2,j + ai+2,j+1 ≡ 0 mod 2,

ai,j+1 + ai,j+2 + ai+1,j+1 + ai+1,j+2 + ai+2,j+1 + ai+2,j+2 ≡ 0 mod 2,

and

ai,j+2 + ai,j+3 + ai+1,j+2 + ai+1,j+3 + ai+2,j+2 + ai+2,j+3 ≡ 0 mod 2.

By adding these 5 relations and cancelling all even numbers we get

ai,j + ai,j+3 ≡ 0 mod 2.

This proves that
ai,j+3 = ai,j .

We prove in a similar way that

ai+3,j = ai,j .

Therefore, it is enough to know the numbers in the 3× 3 rectangle

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

to deduce, by periodicity, the numbers in all the other cells.

Applying the condition to the first 2× 3 rectangle, we will get

a2,3 ≡ a1,1 + a1,2 + a1,3 + a2,1 + a2,2 mod 2

Applying the condition to the second 2× 3 rectangle and to the second 3× 2
rectangle and adding the two relations, we will get

a3,1 ≡ a2,1 + a1,2 + a1,3 mod 2

We obtain in a similar way

a3,2 ≡ a2,2 + a1,3 + a1,1 mod 2

Saudi Arabia Mathematical Competitions



82 SAMC 2013

a3,3 ≡ a2,3 + a1,1 + a1,2 mod 2

Therefore, it is enough to know the 5 numbers

a1,1, a1,2, a1,3, a2,1, a2,2,

to deduce all the numbers in the cells of the 50× 50 chessborad.

Conversely, choose a value in {0, 1} for each number a1,1, a1,2, a1,3, a2,1, a2,2,
and deduce the values in all the other cells of the chessboard. It is easy
to check that the condition on the two 2 × 3 rectangles and the two 3 × 2
rectangles in the 3×3 rectangle above is satisfied. We deduce, by periodicity,
that it is satisfied in all the chessboard. Hence there are 25 ways to color the
chessboard.

• Problem 8. We prove by induction on n ≥ 2 that

Tn =
11 + 33 + 55 + · · ·+ (2n − 1)(2

n−1)

2n

is an odd integer.

For n = 2, T2 =
11+33

22
= 7 is an odd integer.

Assume that Tn is an odd integer. We have

Tn+1 =
11 + 33 + 55 + · · ·+

(
2n+1 − 1

)(2n+1−1)

2n+1

= Tn +

2n−1∑
k=1

Ä
(2n + 2k − 1)2

n+2k−1 − (2k − 1)2k−1
ä

2n+1
.

Therefore, it remains to prove that

2n−1∑
k=1

Ä
(2n + 2k − 1)2

n+2k−1 − (2k − 1)2k−1
ä

2n+1

is an even integer, that is

2n−1∑
k=1

Ä
(2n + 2k − 1)2

n+2k−1 − (2k − 1)2k−1
ä
≡ 0 mod 2n+2.
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To prove this, we will use the fact that if l is an odd integer, then l2
n ≡ 1

mod 2n+2. This is because each factor in

l2
n − 1 =

Ä
l2

n−1
+ 1
ä Ä

l2
n−2

+ 1
ä
· · ·
Ä
l2 + 1

ä
(l + 1)(l − 1)

is even and (l + 1)(l − 1) is divisible by 8.

Because n ≥ 2, we have for 1 ≤ k ≤ 2n−1

(2n + 2k − 1)2
n+2k−1 − (2k − 1)2k−1

≡ (2n + 2k − 1)2k−1 − (2k − 1)2k−1

≡
2k−1∑
i=0

Ç
2k − 1

i

å
2in(2k − 1)2k−1−i − (2k − 1)2k−1

≡ (2k − 1) · 2n · (2k − 1)2k−2

≡ 2n(2k − 1)2k−1 mod 2n+2.

Therefore,

2n−1∑
k=1

Ä
(2n + 2k − 1)2

n+2k−1 − (2k − 1)2k−1
ä

≡ 2n
2n−1∑
k=1

(2k − 1)2k−1 ≡ 22nTn ≡ 0 mod 2n+2.

7.2 Solutions to the selection test of day II

• Problem 1. Because AEMD is cyclic, we have ∠BEM = ∠ADM . But
∠MBE = ∠MAD = 45◦ and BM = AM . We deduce that triangles BME
and AMD are congruent and therefore ME = MD.

Because AEMD is cyclic, ∠DME = 90◦. Therefore, the area of triangle
EMD is

2 =
1

2
ME ·MD =

1

2
MD2,
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and hence, MD = ME = 2.

A B

C

M

D

E

We have from the cosine law in triangle AMD

4 = MD2 = AD2 +AM2 − 2AD ·AM cos 45◦ = AD2 +
9

2
− 3AD.

Because AE satisfies the same equation as AD above, and AE < AD, we

deduce that AD = 3+
√
7

2 and therefore

CD =
3−

√
7

2
.

• Problem 2. Plug in y = 0. The functionnal equation becomes

f(f(f(x))) = x+ f(0),

for all x ∈ R. Since the map x 7→ x+ f(0) is bijective, then so is f .

Plug in y = −x. The functionnal equation becomes

f(f(f(x)− x)− x) = f(−x),

for all x ∈ R. By injectivity of f , we can cancel f in both sides and obtain

f(f(x)− x) = 0,
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for all x ∈ R. By surjectivity of f there exists a real number a such that
f(a) = 0. Again by cancelling f from both sides we obtain

f(x) = x+ a,

for all x ∈ R. But 0 = f(a) = 2a. We deduce that

f(x) = x,

for all x ∈ R.

Conversely, we check easily that this function is a solution to the problem.

• Problem 3. Let us consider the two possible cases for the integer x.

If x is an odd positive integer, we have

z2 ≡ 2x + 21y ≡ 2 + 0 ≡ 2 mod 3.

This is impossible since a perfect square is congruent to either 0 or 1 modulo 3.

If x is an even positive integer, write x = 2x0 for a positive integer x0. We
have

21y = z2 − 2x = (z − 2x0)(z + 2x0).

Assume that one of the two primes 3 or 7 divides both factors z − 2x0 and
z + 2x0 . This implies that this prime divides their sum 2z and therefore z.
But 2x = 21y − z2 is neither divisible by 3 nor by 7. This proves that the
factors z − 2x0 and z + 2x0 are relatively prime. Because z − 2x0 < z + 2x0 ,
we have two possibilities

a. First possibility is when z − 2x0 = 1 and z + 2x0 = 21y. In this case
2x0+1 + 1 = 21y. Because y is positive, we have

2x0+1 ≡ 6 mod 7.

But this is impossible since 2x0+1 is congruent to either 1, 2 or 4 modulo
7.

b. Second possibility is when z − 2x0 = 3y and z + 2x0 = 7y. This is
equivalent to z = 2x0 +3y and 2x0+1 = 7y−3y. If y = 1, then x = 2 and
z = 5 gives a solution for the problem. If y ≥ 2, because 7y − 3y ≡ 0
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mod 8 only for even number, y must be even. Write y = 2y0 for a
positive integer y0. We have 2x0+1 = (7y0 −3y0)(7y0 +3y0). But 7y0 +3y0

is greater than 4 and is congruent to 2 modulo 4. This means that it is
not a power of 2, which is a contradiction.

Hence, the only solution is (x, y, z) = (2, 1, 5).

• Problem 4. Notice first that there are no 3 consecutive students with hats
of the same color.

If there are two consecutive students with hats of the same color, the next
two consecutive students with hats of the same color must be different from
the first color. Moreover, the number of students standing between this two
pairs of consecutive students with hats of the same colors, must be even since
they alternate between the colors of their hats.

We conclude from this that there are three possible cases:

1. First case, when there are no consecutive students with hats of the same
color. In this case, the students must alternate the color of their hats
and there are precisely 2 possible ways depending on the color of the
hat of the first student.

2. Second case, when the position of the first student followed by another
student with hat of the same color is odd. In this case, each nonempty
subset of the set of pairs {(1, 2); (3, 4); (5, 6); (7, 8); (9, 10)} determine the
positions of pairs of students with hat of the same color. Because the
color of hats of the first pair in this subset determines the color of hats
of all the other students, there are 2 · (25− 1) ways in which the teacher
can place the hats.

3. Third case, when the position of the first student followed by another
student with hat of the same color is even. In this case, each nonempty
subset of the set of pairs {(2, 3); (4, 5); (6, 7); (8, 9)} determine the posi-
tions of pairs of students with hat of the same color. Because the color
of hats of the first pair in this subset determines the color of hats of all
the other students, there are 2 · (24 − 1) ways in which the teacher can
place the hats.

Therefore, the number of ways in which the teacher can place hats is

2 + 2 · (25 − 1) + 2 · (24 − 1) = 94.
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• Problem 5. We prove this by induction on n.

For n = 1, 2, 3, the numbers 1,34, and 122 are good numbers and all their
odd digits are less than 5.

Assume that an is an n-digit good number and all its odd digits are less than 5.

If an has an even digit 2m, remove this digit and replace it by 4 digitsmmmm
to obtain an n+3-digit number. The sum of squares of the digits of this new
number is equal to the sum of squares of the digits of an and is therefore a
perfect square. Notice that all the odd digits of this new n + 3-digit good
number are less than 5. For example, replace the 4 in the 2-digit good num-
ber 34 by 2222 to obtain the 5-digit good number 32222.

If an has no even digit, all its digits are less than 5. We can multiply all its
digits by 2 to obtain a new n-digit good number. Choose one of the new even
digits 2m remove it and replace it by four digits mmmm to obtain a new
n + 3-digit good number and its odd digits m are less than 5. For example,
for the 4-digit good number 3333 multiply all its digit by 2 to obtain the
4-digit good number 6666 and then replace one of the 6 by 3333 to obtain
the 7-digit good number 3333666.

This proves by induction that for any positive integer n, there exists an n-
digit good number.

• Problem 6. We present for this problem two solutions, one using classical
inequalities and the second using geometry.

First solution. Notice that, by using AM-GM inequality, we have

a
√
b2 + c2 + bc = a

»
(b+ c)2 − bc ≥ a

√
(b+ c)2 −

Å
b+ c

2

ã2
=

√
3

2
a(b+ c).

Applying the same inequality for the two other terms, we deduce that
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a
√
b2 + c2 + bc + b

√
c2 + a2 + ca + c

√
a2 + b2 + ab

≥
√
3

2
a(b+ c) +

√
3

2
b(c+ a) +

√
3

2
c(a+ b)

≥
√
3(ab+ bc+ ca)

≥
√
3.

The equality holds when a = b = c =
√
3
3 .

Second solution. Consider four points, O,A,B, and C, in the plane such that
OA = a,OB = b, and OC = c, and ∠AOB = ∠BOC = ∠COA = 120◦.

OB

C

A

The area of triangle ABC is

[ABC] =
1

2
(OA·OB+OB ·OC+OC ·OA) sin 120◦ =

√
3

4
(ab+bc+ca) =

√
3

4
.

On the other hand, we have

a
√
b2 + c2 + bc = OA ·BC ≥ 2([AOB] + [COA]).
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Applying the same inequality for the two other terms, we obtain

a
√
b2 + c2 + bc+ b

√
c2 + a2 + ca + c

√
a2 + b2 + ab

≥ 2([AOB] + [COA]) + 2([BOC] + [AOB]) + 2([COA] + [BOC])

≥ 4[ABC]

≥
√
3.

• Problem 7. Let F ′ be the intersection point of the tangents to circle ωB at
B1 and D.

B1

ωB

B

A

C A1

C1

D

E
F G

Let G be the intersection point of lines B1A1 and DC1.

Consider the six cyclic points C1, C1, B1, A1, A1, D. Because the tangent lines
to ωB at C1 and A1 intersect at B, lines C1B1 and A1D intersect at E, and
lines B1A1 and DC1 intersect at G, from Pascal theorem, the three points
B,E, and G are collinear.

Consider the six cyclic points C1, B1, B1, A1, D,D. Because lines C1B1 and
A1D intersect at E, the tangent lines to ωB at B1 and D intersect at F ′, and
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lines B1A1 and DC1 intersect at G, from Pascal theorem, the three points
E,F ′, and G are collinear.

We deduce that B,E, and F ′ are collinear and therefore F ′ = F . This proves
that FD is tangent to ωB at D.

• Problem 8. Let B be the number of three-member subsets such that one of
the members uses the same language to talk to the two other members and
the two other members talk to each other using a different language. Because
there are no three-members who use the same language to talk to each other,
A+B is the number of all three-member subsets, that is

(101
3

)
. To maximize

A, is equivalent to minimize B.

Let X be a member, and x1, x2, . . . , x50 the number of members with whom
X talks in the 50 different languages l1, l2, . . . , l50, respectively. We have

x1 + x2 + · · ·+ x50 = 100.

There are

BX =

Ç
x1
2

å
+

Ç
x2
2

å
+ · · ·+

Ç
x50
2

å
three-member subsets each containing X with two other members to whom
X talks using the same language. We have, from Cauchy-Schwarz inequality,

BX =
50∑
i=1

xi(xi − 1)

2
=

1

2

50∑
i=1

x2i − 50 ≥
(∑50

i=1 xi
)2

2× 50
− 50 = 50.

Therefore,
B ≥ 101× 50,

and hence,

A ≤
Ç
101

3

å
− 101× 50 = 161600.

The equality is satisfied when each member X uses each language to talk
exactly with two other members, that is

x1 = x2 = · · · = x50 = 2.

Assume that X1, X2, . . . , X101 are the 101 members, and each member Xi,
for i = 1, . . . , 101, talks with the members Xi+j and Xi−j using the language

Saudi Arabia Mathematical Competitions



IMO Selection Tests 91

lj , for j = 1, . . . , 50 (here, the indices are modulo 101). Because 50 = 101−1
2 ,

each member will use each language to talk exactly with two other members
and he will not use two different languages to talk to same members. This
proves that the maximum possible value of A is 161600.

7.3 Solutions to the selection test of day III

• Problem 1. To prove that C,F, I, and J are concyclic, it is equivalent to
prove that ∠CFI = ∠CJI or ∠CFI + ∠CJI = 180◦, depending on the
configuration. We will present here the proof for one configuration. The
proof for the other configuration is similar.

A

B

C

ω

D

E

F

G

H

I

J

Because AFCH is cyclic, we have ∠CFI = ∠CAH.

Because ∠FEA = ∠FGA = 90◦, the quadrilateral AFEG is cyclic, and
therefore ∠CAH = ∠EFG.

It remains to prove that ∠EFG = ∠DJG, which is equivalent to proving
that quadrilateral DGFJ is cyclic.
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But ∠EGF = ∠EAF since AFEG is cyclic. On the other hand, because
AFCD is cyclic, we deduce that ∠EAF = ∠CDF . Therefore, ∠EGF =
∠CDF , which proves that DGFJ is cyclic.

• Problem 2. Let (a, b, c, n) be a quadruplet of positive integers with a < b < c
such that each of a, b, c, a+n, b+n, c+2n is a term of the Fibonacci sequence,
and let

b+ n = Fk,

for some positive integer k. Because b < b + n and a + n < b + n, we have
max{b, a+ n} ≤ Fk−1.

Assume min{b, a+n} ≤ Fk−2. We have a+n+b ≤ Fk−1+Fk−2 = Fk = b+n,
which is impossible since a > 0. Therefore,

a+ n = b = Fk−1,

n = (b+ n)− b = Fk − Fk−1 = Fk−2,

and

a = (a+ n)− n = Fk−1 − Fk−2 = Fk−3.

Let c + 2n = Fm. We have Fk ≤ c ≤ Fm−1 and therefore Fm−2 ≤ 2n =
2Fk−2 ≤ Fk.

If Fm−2 = Fk then Fk−2 = Fk−1 = 1 and a = Fk−3 = 0 which is impossible.
Therefore

c = b+ n = Fm−1 = Fk,

and

c+ 2n = Fm = Fk+1.

But

2n = (c+ 2n)− c = Fk+1 − Fk = Fk−1 = a+ n.

We deduce that

Fk−3 = a = n = Fk−2 = 1.

Hence, k = 4, (a, b, c, n) = (1, 2, 3, 1) and we check easily that

a = F1, b = a+ n = F3, c = b+ n = F4 and c+ 2n = F5.
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• Problem 3. Assume, without loss of generality, that

0 ≤ a ≤ b ≤ c ≤ d ≤ e.

Because
ea ≤ max{eb, cd} ≤ ec ≤ ed,

to get the smallest possible maximum, the best arrangment arround the circle
is

d c

b

e

a

In this case, the maximum is given by

max{eb, cd}.

We have

eb ≤ e
b+ c+ d

3
≤ e(1− e)

3
≤ 1

12
,

and the equality holds when a = 0, b = c = d = 1
6 , and e = 1

2 .

We have, on the other hand,

cd = 3
»
c2d2(cd) ≤

Ä
3
√
cde
ä2

≤
Å
c+ d+ e

3

ã2
≤ 1

9
,

and the equality holds when a = b = 0, and c = d = e = 1
3 .

Therefore, the minimum possible value of T is 1
9 .

• Problem 4. Let n be a nonnegative integer. We have

f(2n)2 < f(2n)2+6f(n)+1 = f(2n+1)2 < f(2n)2+6f(2n)+9 = (f(2n)+3)2.
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Therefore,
f(2n) < f(2n+ 1) < f(2n) + 3.

Assume that f(2n+ 1) = f(2n) + 2. In this case

6f(n) + 1 = f(2n+ 1)2 − f(2n)2 = 4f(2n) + 4.

This is impossible since the left hand side is odd while the right hand side is
even. Therefore f(2n+ 1) = f(2n) + 1.

On the other hand,

6f(n) + 1 = f(2n+ 1)2 − f(2n)2 = 2f(2n) + 1.

We deduce that f(2n) = 3f(n), and f(0) = 0.

Now, let n ≥ 0 and write n = a1a2 · · · ak(2) in basis 2. We prove by induction
on k that f(n) = a1a2 · · · ak(3) in basis 3.

For k = 1, we have

f(0(2)) = f(0) = 0 = 0(3) and f(1(2)) = f(1) = f(0) + 1 = 1 = 1(3).

Assume this true for k. We have

f(a1a2 · · · akak+1(2)) = f(2a1a2 · · · ak(2) + ak+1)

= f(2a1a2 · · · ak(2)) + ak+1

= 3f(a1a2 · · · ak(2)) + ak+1

= 3a1a2 · · · ak(3) + ak+1

= a1a2 · · · akak+1(3).

This completes the induction.

Applying this to 1000, we have

1000 = 1101001(3) = f
Ä
1101001(2)

ä
= f(105).
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7.4 Solutions to the selection test of day IV

• Problem 1. Applying Ptolemy relation to the cyclic quadrilateral ABCD,
we get

AB · CD +BC ·DA = AC ·BD,

which simplifies to

CD +DA = 25.

A B

C

D

E

Let a = AB = BC = CA and x = AE.

We have, from similarity of triangles AED and BEC, that

DA

a
=

x

19
.

We have, from similarity of triangles CED and BEA, that

CD

a
=

a− x

19
.

We deduce that

a

19
=

x

19
+

a− x

19
=

DA

a
+

CD

a
=

25

a
,

and therefore a = 5
√
19.
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Applying sine law on the circumcircle of ABCD, we obtain

sin∠BAD

25
=

sin∠BAC

5
√
19

=

√
57

190
.

Hence sin∠BAD = 5
√
57

38 , that is

cos∠BAD = ±
√
382 − 25× 57

38
= ±

√
19

38
.

Applying cosine law to triangle ABD, we obtain

252 = 25× 19 +AD2 ± 2× 5
√
19×AD ×

√
19

38
,

and therefore, AD = 10 or 15.

• Problem 2. We have n = c + 7b + 49a = a + 9b + 81c. This implies that
20(2c− a) = (4a− b). Because 0 ≤ a, b, c ≤ 6, either 4a− b = 2c− a = 0 or
4a− b = 20 and 2c− a = 1.

1. If 4a − b = 2c − a = 0, then b = 8c ≤ 6 and therefore a = b = c = 0 ,
that is n = 0.

2. If 4a− b = 20 and 2c− a = 1, then a = 5, or 6. If a = 5 then b = 0 and
c = 3 and n = 248. If a = 6, then 2c = 7, which is impossible.

Therefore, n = 0 or 248.

• Problem 3. Notice that, if (x, y) is a solution of the inequality, then
(−x, y), (x,−y), and (−x,−y) are all solutions of the inequality. Therfore,
we can assume x, y ≥ 0 and deduce the other solutions by symmetries with
respect to x−axis and y−axis.

Assume x, y ≥ 0. The inequality is equivalent to

(x− 2)2 + (y − 2)2 ≤ 8.

The points whose coordinates satisfy this inequality are precisely the points in
the intersection of the first quadrant with the disk of center (2, 2) and radius√
8. By applying the above symmetries we obtain the following surface of

points whose coordinates satisfy the inequality.
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−6−5−4−3−2−1 1 2 3 4 5 6

5

4

3

2

1

1

2

3

4

5

Its area, is the area of a square of side length 4
√
2 and four half disks of

radius 2
√
2, that is 32 + 16π.

• Problem 4. Because 589 = 19×31, we will find all positive integers n < 589
such that both 19 and 31 divide n2 + n+ 1.

Let n be such an integer. We have

0 ≡ n2 + n+ 1 ≡ n2 + 20n+ 1 ≡ (n+ 10)2 − 22 ≡ (n+ 8)(n+ 12) mod 19.

Hence, 19 divides n2 + n+ 1 if and only if n ≡ 7 or 11 mod 19.

On the other hand, we have

0 ≡ n2 + n+1 ≡ n2 +32n+1 ≡ (n+16)2 − 102 ≡ (n+26)(n+6) mod 31.

Hence, 31 divides n2 + n+ 1 if and only if n ≡ 5 or 25 mod 31.

Using the fact that 8×31 ≡ 1 mod 19 and 18×19 ≡ 1 mod 31, we consider
the following four cases:

1. If n ≡ 7 mod 19 and n ≡ 5 mod 31. There exists an integer k such
that

n = 7× 8× 31 + 5× 18× 19 + k × 19× 31 = 501 + 589(k + 5).

But 0 < n < 589. We deduce that n = 501.
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2. If n ≡ 7 mod 19 and n ≡ 25 mod 31. There exists an integer k such
that

n = 7× 8× 31 + 25× 18× 19 + k × 19× 31 = 273 + 589(k + 17).

But 0 < n < 589. We deduce that n = 273.

3. If n ≡ 11 mod 19 and n ≡ 5 mod 31. There exists an integer k such
that

n = 11× 8× 31 + 5× 18× 19 + k × 19× 31 = 315 + 589(k + 7).

But 0 < n < 589. We deduce that n = 315.

4. If n ≡ 11 mod 19 and n ≡ 25 mod 31. There exists an integer k such
that

n = 11× 8× 31 + 25× 18× 19 + k × 19× 31 = 87 + 589(k + 19).

But 0 < n < 589. We deduce that n = 87.

Therefore, the possible values for n are 87,273,315, and 501.
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Chapter 8

Solutions to the selection tests
for the International
Mathematical Olympiad 2013

8.1 Solutions to the selection test of day I

• Problem 1. Let R be the circumradius of triangle ABC. We have, using
sine law,

C1A = 2R sin∠ACP and AB1 = 2R sin∠PBA.

C

A

B

P

B1

C1

A1

C2

B2

A2

On the other hand, because lines A2C1 and A2B1 are tangent to ω, we have
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∠AC1A2 = ∠ACP and ∠A2B1A = ∠PBA.

Applying sine law to triangles AA2C1 and AB1A2, we obtain

sin∠AA2C1

AC1
=

sin∠AC1A2

AA2
and

sin∠AA2B1

AB1
=

sin∠A2B1A

AA2
.

Therefore, we have

sin∠C1A2A

sin∠AA2B1
=

AC1 · sin∠AC1A2

AB1 · sin∠A2B1A
=

sin2∠ACP

sin2∠PBA
.

We have, in a similar way

sin∠A1B2B

sin∠BB2C1
=

sin2∠BAP

sin2∠PCB
and

sin∠B1C2C

sin∠CC2A1
=

sin2∠CBP

sin2∠PAC
.

But, because AP , BP and CP are concurrent, we have by trigonometric
Ceva

sin∠BAP

sin∠PAC
· sin∠CBP

sin∠PBA
· sin∠ACP

sin∠PCB
= 1.

We deduce that

sin∠C1A2A

sin∠AA2B1
· sin∠A1B2B

sin∠BB2C1
· sin∠B1C2C

sin∠CC2A1
= 1.

This proves, by using the reciprocal of trigonometric Ceva, that linesAA2, BB2

and CC2 are concurrent.

• Problem 2. Since f is strictly increasing, we have f(n) ≥ n for all n in S.

Assume that there exists an integer n in S such that f(n) > n. Let n0 be the
smallest such n and write f(n0) = n0 + k0, for some positive integer k0 ≥ 1.
Again, since f is strictly increasing, we have f(n) ≥ n + k0, for all integers
n ≥ n0.
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Because k0 ≥ 1, we have

f(n0 + k0) ≥ n0 + 2k0.

On the other hand, we have

f(n0 + k0) = f(f(n0)) ≤ 2f(n0)− n0 = n0 + 2k0.

We deduce that
f(n0 + k0) = n0 + 2k0.

Because f(n0) = n0 + k0, f(n0 + k0) = (n0 + k0) + k0 and f is strictly in-
creasing, we deduce that f(n) = n+ k0, for all n0 ≤ n ≤ n0 + k0.

We prove by induction on m that for all integer n such that

n0 +mk0 ≤ n ≤ n0 + (m+ 1)k0,

we have f(n) = n+ k0. Hence

f(n) =

®
n+ k0 if n ≥ n0,
n otherwise.

Conversely, if f is such a function and n ≥ n0 then

n+ f(f(n)) = n+ f(n+ k0) = 2n+ 2k0 = 2f(n).

And if f(n) = n, the inequality is clearly satisfied.

Therefore, the solutions to this functional inequality are the functions that
can be written as

f(n) =

®
n+ k0 if n ≥ n0,
n otherwise,

for some n0 ∈ S and some nonnegative integer k0 ≥ 0.

• Problem 3. Assume that we have two correspondents, R from Riyadh and
J from Jeddah, who are not connected to each other. Let JR be the set of
correspondents from Jeddah connected to R andRJ the set of correspondents
from Riyadh connected to J . Define the function

f : JR −→ RJ
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in the following way:

For each correspondent J ′ ∈ JR, since the correspondents J and J ′ are dif-
ferent, they share a unique correspondent in RJ . Let f(J ′) be this unique
correspondent. So f is well-defined.

Assume that there exist two correspondents J1, J2 ∈ JR such that f(J1) =
f(J2) = R′ ∈ RJ . This means that the correspondent R′ from Riyadh shares
with the correspondent R two correspondents J1, J2 from Jeddah. Hence
J1 = J2 and the map f is injective.

Consider a correspondent R′ ∈ RJ and let J ′ be the unique correspondent in
JR that R′ shares with R. Then R′ is the unique correspondent in RJ that
J ′ shares with J . Thus R′ = f(J ′) and f is surjective. This proves that R
and J have the same number of correspondents from the other city.

We deduce from this that if the correspondent Amr from Riyadh is not con-
nected to the correspondent Zayd from Jeddah, the correspondent Amr has
exactly eight correspondents from Jeddah.

Assume now that the correspondent Amr is connected to the correspondent
Zayd from Jeddah. Since there are at least ten correspondents in Riyadh and
Zayd is connected only with eight, let R1, R2 be two correspondents from
Riyadh who are not connected to Zayd. Let J1 be the unique correspondent
that Amr and R1 share. Let J2 be the unique correspondent that R1 shares
with R2. Since R1 is not in contact with Zayd, he has eight correspondents
from Jeddah. So there exists at least six correspondents in contact with R1

who are not in contact neither with Amr nor with R2. Let J be one of these
correspondents.

The correspondent R2 from Riyadh has exactly eight correspondents from
Jeddah since he is not connected to the correspondent Zayd. The correspon-
dent J from Jeddah has exactly eight correspondents from Riyadh since he
is not connected to the correspondent R2 from Riyadh. The correspondent
Amr from Riyadh has exactly eight correspondents from Jeddah since he is
not connected to the correspondent J from Jeddah.
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This proves that in all cases the correspondent Amr from Riyadh has exactly
eight correspondents from Jeddah.

• Problem 4. Assume that it is possible to place the integers 1, 2, . . . , 2012 in
a circle in such a way that the 2012 products of adjacent pairs of numbers
leave pairwise distinct remainders when divided by 2013. Let a1, a2, . . . , a2012
be such a reordering of the integers 1, 2, . . . , 2012 on the circle.

Because 2013 = 3 × 11 × 61, a number is a multiple of 3 or 11 or 61 if and
only if its remainder when divided by 2013 is a multiple of 3 or 11 or 61.

By the pigeonhole principle, there are at least two adjacent numbers in the
list a1, a2, . . . , a2012 which are not multiple of 3. Make this list starting
from these two adjacent numbers and consider the list b1, b2, . . . , b2012 of their
products, where bi = ai · ai+1, for i = 1, . . . , 2012 with a2013 = a1. Consider
ai1 , ai2 , . . . , ai670 , all the multiples of 3 with 2 < i1 < i2 < · · · < i670. It is clear
that bi1 , bi2 , . . . , bi670 are all multiples of 3 and that bi1−1, bi2−1, . . . , bi670−1 are
also all multiples of 3. So their reminders when divided by 2013 are all multi-
ples of 3. But there are only 671 different multiples of 3 between 0 and 2012
included. Therefore ij+1 = ij + 1 for all j = 1, . . . , 669. This means that the
multiples of 3 in the list a1, a2, . . . , a2012 form a block and are not separated
by any non multiple of 3.

In a similar way we prove that multiples of 11 form a block in this list and
that multiples of 61 form also a block in this list. But since there are common
multiples of 3 and 11, their blocks must be connected to each other. For the
same reason the 3 blocks must be connected by pairs to each others.

But, in each block, there are numbers which are in none of the two other
blocks, for example there are multiples of 3 which are neither multiples of
11 nor multiples of 61 like 3, 6, 9, and the same thing happens for 11 and
61. So, these numbers are in the middle of each of the blocks and make
the blocks intersecting only in their sides. There are also numbers which
are not multiples of none of these 3 numbers, like 1, 2, 4. So, these numbers
will prevent two of the three blocks to intersect, and here is the contradiction.

Hence, it is not possible to place the integers 1, 2, . . . , 2012 in a circle under
the given condition.
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8.2 Solutions to the selection test of day II

• Problem 1. We present for this problem two solutions, one using trigono-
metric functions and the other using classical inequalities.

First solution. The condition x21 + x22 = y21 + y22 = c2, here c2 = 2013, is
equivalent to saying that there exist α, β ∈ R such that

x1 = c cosα, x2 = c sinα, y1 = c cosβ, and y2 = c sinβ.

Therefore

S = (1− x1)(1− y1) + (1− x2)(1− y2) = 2− (x1 + x2 + y1 + y2) + x1y1 + x2y2

= 2− c(cosα+ sinα+ cosβ + sinβ) + c2(cosα cosβ + sinα sinβ)

= 2−
√
2c

Å
sin

Å
α+

π

4

ã
+ sin

Å
β +

π

4

ãã
+ c2 cos (α− β)

=
Ä
2− c2

ä
− 2

√
2c sin

Å
α+ β

2
+

π

4

ã
cos

Å
α− β

2

ã
+ 2c2 cos2

Å
α− β

2

ã
=
Ä
2− c2

ä
− 2

√
2cst+ 2c2t2,

where

s = sin

Å
α+ β

2
+

π

4

ã
and t = cos

Å
α− β

2

ã
,

are two independent variables, since α+β and α−β are independent, taking
all the real values between −1 and 1 included.

Hence, the maximum of S is equal to 2 + c2 + 2
√
2c = 2015 + 2

√
4026, and

is reached when s = −t = ±1. That is precisely when x1 = x2 = y1 = y2 =

−
√
4026
2 .

For the minimum, notice that

S =
Ä
2− c2

ä
− s2 + (

√
2ct− s)2

Therefore, the minimum of S is equal to 1−c2 = −2012, and is reached when

s = ±1 and t =
√
2s
2c = ±

√
4026

4026 . That is precisely when

x1 = y2 =
1 +

√
4025

2
and x2 = y1 =

1−
√
4025

2
,
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or vice-versa.

Second solution. For the maximum, we have by Cauchy-Schwartz inequal-
ity

S = 2− (x1 + x2 + y1 + y2) + x1y1 + x2y2

≤ 2 +
»
4 · (x21 + x22 + y21 + y22) +

»
(x21 + x22)(y

2
1 + y22)

≤ 2015 + 2
√
4026,

and the equality holds when x1 = x2 = y1 = y2 = −
√
4026
2 .

For the minimum, we have

S = 2− (x1 + y1)− (x2 + y2) +
(x1 + y1)

2

2
+

(x2 + y2)
2

2
− c2

= (1− c2) +
(x1 + y1 − 1)2

2
+

(x2 + y2 − 1)2

2

≥ 1− c2 = −2012,

where c2 = 2013.

Thus the minimum of S is −2012 and is reached when y1 = 1−x1, y2 = 1−x2
and x21 + x22 = y21 + y22 = 2013. This is equivalent to

x1 = y2 =
1 +

√
4025

2
and x2 = y1 =

1−
√
4025

2
,

or vice-versa.

• Problem 2. Because LM is parallel to BC, the problem is equivalent to
proving that ∠AA1L = ∠AML = ∠ACB. We present two solutions:
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A

B

C

A1

B1

C1

K

L

M

First solution. Let L1 be the point on AB such that ∠AA1L1 = ∠ACB
and let us prove that L1 = L.

Quadrilateral BCB1C1 is cyclic since ∠BC1C = ∠BB1C = 90◦. Therefore,
∠B1C1A = ∠ACB = ∠AA1L1. We deduce that the quadrilateral A1KC1L1

is cyclic. Hence, ∠L1KA1 = ∠L1C1A1.

Quadrilateral AC1A1C is cyclic since ∠CA1A = ∠CC1A = 90◦. We deduce
that ∠L1C1A1 = ∠ACB. Thus, ∠L1KA1 = ∠AA1L1. This proves that
L1A1 = L1K, that is L1 = L, the intersection point of the perpendicular
bisector of KA1 with AB.

Second solution. Since LK = LA1, the problem is equivalent to proving
that ∠LKA1 = ∠ACB. But ∠BHA1 = 90◦ − ∠A1BH = ∠ACB, where H
is the orthocenter of triangle ABC. Therefore, the problem is equivalent to
proving that LK and BH are parallel.

We know that AL
LB = AN

NA1
, where N is the midpoint of KA1, since LM and

BC are parallel. It remains to prove that AK
KH = AN

NA1
.

To simplify the notations let us write α = ∠BAC, β = ∠CBA and γ =
∠ACB.
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We know that ∠KC1A = γ, ∠HC1K = 90◦ − γ, ∠C1AK = 90◦ − β and
∠KHC1 = β. We deduce by applying sine laws on triangles AC1K and
C1HK that

AK

KH
=

sin∠KC1A · sin∠KHC1

sin∠HC1K · sin∠C1AK
= tanβ · tan γ.

On the other hand, we have AN
NA1

= AK
NA1

+1 = 2 AK
KA1

+1. We also know that
∠A1C1K = 180◦ − 2γ and ∠KA1C1 = 90◦ − α. We deduce by applying sine
laws on triangles AC1K and C1A1K that

AK

KA1
=

sin∠KC1A · sin∠KA1C1

sin∠A1C1K · sin∠C1AK
=

sin γ · cosα
sin 2γ · cosβ

=
cosα

2 cosβ · cos γ
.

We deduce that

AN

NA1
=

cosα

cosβ · cos γ
+ 1 =

cosβ · cos γ − cos(β + γ)

cosβ · cos γ
= tanβ · tan γ =

AK

KH
.

• Problem 3. Let n be a positive integer. Consider D1, the set of all divisors
of n with unit digit 3, and D2 the set of all the other divisors of n.

If the unit digit of n is different from 9, consider the map δ : D1 −→ D2 de-
fined by δ(d) = n

d for all d ∈ D1. If d ≡ 3 mod 10 and δ(d) ≡ 3 mod 10 for
some d ∈ D1, then n = d · δ(d) ≡ 9 mod 10 which is a contradiction. Then
the map δ is well defined. Clearly, the map δ is an injective map. Therefore
the cardinality of D1 is less than or equal to the cardinality of D2. Hence
p ≤ 50.

If the unit digit of n is equal to 9, the integer n is neither divisible by 2 nor by
5. This means that all prime divisors of n have unit digit equal to 1, 3, 5, or 9.

If all prime divisors of n have unit digits equal to 1 or 9, all divisors of n have
unit digits equal to 1 or 9. Therefore p = 0.

If the integer n has a prime divisor p with unit digit 3 or 7, consider the map
δ : D1 −→ D2 defined for d ∈ D1 by δ(d) = d

p if p divides d and by δ(d) = pd
otherwise. We can see easily in both cases, that the unit digit of δ(d) is equal
to 1 or 9. Hence δ is well defined.
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Assume that there exist d1, d2 ∈ D1 such that δ(d1) = δ(d2). It is clear that
if both d1, d2 are divisible by p or both d1, d2 are not divisible by p, we have
d1 = d2. Assume that d1 is divisble by p and d2 is not divisible by p. We have
d1
p = d2p, which is equivalent to d1 = p2d2. Because d1 ≡ d2 ≡ 3 mod 10,

we deduce that p2 ≡ 1 mod 10, which contradicts the fact that p2 ≡ −1
mod 10 since p ≡ 3, 7 mod 10. Hence δ is injective and therefore the cardi-
nality of D1 is less than or equal to the cardinality of D2. Thus p ≤ 50.

Notice that for n = 3, its divisors are 1, 3 and p = 50. This proves that the
maximum possible value of p is 50.

• Problem 4. We will construct such a sequence by induction:

Define a1 = 1 and a2 = 2. In this case we have b1 = |a1 − a2| = 1.

Assume that a1, a2, . . . , a2n are defined such that there is no positive integer
which occurs at least twice neither in the finite sequence a1, a2, . . . , a2n nor
in the finite sequence b1 = |a1 − a2|, b2 = |a2 − a3|, . . . , b2n−1 = |a2n−1 − a2n|.

Let Mn be the maximum element of the set of integers {a1, a2, . . . , a2n}, cn
the maximum of the integers k such that {1, 2, . . . , k} ⊆ {a1, a2, . . . , a2n}, and
dn the maximum of the integers k such that {1, 2, . . . , k} ⊆ {b1, b2, . . . , b2n−1}.
Notice that for all 1 ≤ i ≤ 2n− 1, we have

bi = |ai − ai+1| ≤ max
1≤j≤2n

aj − min
1≤j≤2n

aj = Mn − 1.

If cn < dn define a2n+1 = 2Mn + cn +1 and a2n+2 = cn +1. If cn ≥ dn define
a2n+1 = 2Mn + 1 and a2n+2 = 2Mn + dn + 2.

It is clear that none of the two possible values for a2n+1 and for a2n+2 occur
in the finite sequence a1, a2, . . . , a2n.

In the first case, we have

b2n = 2Mn + cn + 1− a2n ≥ Mn + cn + 1 > Mn − 1 ≥ bi,

and
b2n+1 = 2Mn > Mn − 1 ≥ bi,
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for all 1 ≤ i ≤ 2n− 1, and b2n+1 6= b2n since a2n 6= cn + 1.

In the second case, we have

b2n = 2Mn + 1− a2n ≥ Mn + 1 > Mn − 1 ≥ bi,

and

b2n+1 = dn + 1 6= bi,

for all 1 ≤ i ≤ 2n− 1, and b2n+1 = dn + 1 ≤ Mn < Mn + 1 ≤ b2n.

Therefore, there is no positive integer which occurs at least twice in the finite
sequence a1, a2, . . . , a2n+2 or in the finite sequence b1, b2, . . . , b2n+1.

This proves that there is no positive integer which occurs at least twice in the
infinite sequence a1, a2, . . . , an, . . . or in the infinite sequence b1, b2, . . . , bn, . . ..

Notice moreover, that in the first case cn+1 ≥ cn + 1 and in the second case
dn+1 ≥ dn+1. Therefore, if en = min{cn, dn} then en+2 ≥ en+1. But c1 = 2
and d1 = 1. We deduce that e2n ≥ n for all integer n. Therefore, any positive
integer n occurs in both finite sequences a1, a2, . . . , a4n and b1, b2, . . . , b4n−1.

This proves that any positive integer n occurs exactly once in each infinite
sequence a1, a2, . . . and b1, b2, . . ..

8.3 Solutions to the selection test of day III

• Problem 1. If m is even, Adel can draw the following closed path which
passes through all the dots of his grid. Therefore, the maximum possible
value of k is mn.
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If n is even, Adel can draw a similar closed path obtained by symmetry with
respect to the first diagonal. Therefore, the maximum possible value of k is
mn.

If mn is odd, Adel can draw the following closed path which passes through
mn− 1 dots of his grid:

It remains to prove that this is the maximal possible value of k. For this,
assign black color to all dots of the grid of coordinates (a, b) with a + b
odd and white color to all dots with a + b even. Any consecutive dots in
a path (a1, b1), (a2, b2), . . . , (ak, bk) that Adel can draw have different colors.
Therefore, the colors of the first and last dots in Adel’s path describe the
parity of the length of the path. Since the path of Adel is closed, it will start
and end with the same color and therefore, its length is even. Therefore k is
even. This proves that the maximum possible value of k is mn− 1.

• Problem 2. We present for this problem two solutions.

First solution. Notice that we have
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(a1 − n)2 + · · ·+ (an − n)2 = (a21 + · · ·+ a2n)− 2n(a1 + · · ·+ an) + n3

≤ n3 + 1− 2n3 + n3 = 1.

Therefore, there are two cases:

The first case is when a1 = a2 = · · · = an = n. This is a solution since it
satisfies both inequalities.

The second case is when there exists 1 ≤ i0 ≤ n such that |ai0 − n| = 1 and
ai = n for all 1 ≤ i ≤ n with i 6= i0.

If ai0 = n− 1, the first inequality becomes n2 − 1 = a1 + · · ·+ an ≥ n2 which
is impossible.

If ai0 = n+1, the second inequality becomes n3+2n+1 = a21+· · ·+a2n ≤ n3+1
which is also impossible.

Hence, the only solution to both inequalities is given by a1 = a2 = · · · =
an = n.

Second solution. We have by Cauchy-Schwartz inequality

(n2 + 1)2 > n4 + n ≥ n(a21 + · · ·+ a2n) ≥ (a1 + · · ·+ an)
2 ≥ n4.

We deduce that
a1 + · · ·+ an = n2,

and
n3 + 1 ≥ a21 + · · ·+ a2n ≥ n3,

and the right hand side equality occurs if and only if a1 = · · · = an = n.

Now, assume, looking for a contradiction, that a21 + · · ·+ a2n = n3 + 1. Since
a number and all his powers have the same parity, we deduce that

n ≡ n2 ≡ a1 + · · ·+ an ≡ a21 + · · ·+ a2n ≡ n3 + 1 ≡ n+ 1 mod 2,

which is impossible.

Hence, the only solution to both inequalities is given by a1 = a2 = · · · =
an = n.
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• Problem 3. By Applying Ceva to the concurrent cevians AM , BD and CE,
we obtain

AE

EB
=

AD

DC
· CM

MB
=

AD

DC
.

We deduce from Thales theorem that segments ED and BC are parallel.

A

B

C

M

P

X

Y
D

E

T

Since quadrilateral BCXY is cyclic, we have ∠BXY = ∠BCY = ∠CED.
We deduce that quadrilateral EDXY is cyclic and therefore

PD · PX = PE · PY.

Hence, point P lies on the radical axis of circumcircles of triangles AXD and
AY E which passes trough A.

If these two circles are tangent to AP at A then

∠MAC = ∠AXB = ∠ACB, and ∠BAM = ∠CY A = ∠CBA,
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which implies that triangle ABC is a right triangle at A and this is a contra-
diction.

We conclude that the two circles intersect in a second point T 6= A on line
AM .

• Problem 4. Suppose there is some value of n such that p(n) 6= ±1. Let q be
a prime divisor of p(n). Because q = (n+ q)− q divides p(n+ q)− p(n), we
deduce that q divides p(n+q). Therefore, q divides both 2n−1 and 2n+q−1,
which implies in particular that q is an odd prime. We have

1 ≡ 2n+q ≡ 2n · 2q ≡ 2q ≡ 2 mod q,

by Fermat’s little theorem. This is a contradiction.
Hence, for all values of n, p(n) = ±1. Since p is a polynomial and takes
infinitely many times the same value, either 1 or −1, it is constant. This
proves that the only polynomials with integer coefficients which have the
required property are p(X) = 1 and p(X) = −1.
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