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Abstract
An operator T on a Hilbert space is hyponormal if T*T-TT* is positive. In this work we con-
sider hyponormality of Toeplitz operators on the Bergman space with a logarithmic weight.
Under a smoothness assumption we give a necessary condition when the symbol is of the
form f + g with f , g analytic on the unit disk. We also find a sufficient condition when f
is a monomial and g a polynomial.

Keywords Toeplitz operator · Weighted Bergman spaces · Hyponormality · Positive
matrices
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1 Introduction

A bounded operator T , on a Hilbert space, is said to be hyponormal, if T ∗T − T T ∗ is
positive. Let U denote the unit disk in the complex plane. We consider the Hilbert space of
analytic functions on U such that

∫
U | f (z)|2dμ(z) < ∞, where dμ(z) = 2

π
| log |z||d A(z),

and d A(z) is the Lebesgue measure on the unit disk. When f is analytic on U , we have
f = ∑

anzn and
∫
U | f (z)|2dμ(z) = ∑ 1

(n+1)2
|an |2. Denote by L2

a,w such a Hilbert space.
Its orthonormal basis is given by {(n + 1)zn, n ≥ 0}. The Toeplitz operator is defined by
T f (k) = P( f k), where f , is a bounded and measurable function on the disk, k is in L2

a,w,
and P is the orthogonal projection of L2(U , dμ) on L2

a,w. Hankel operators are defined by
H f (k) = (I −P)( f k), for f , and k as before. Basic material on unweighted Bergman spaces
(dμ = d A) can be found in [2,3,10]. Hyponormality of Toeplitz operators on unweighted
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Bergman spaces was first considered in [1,9]. The Hardy space and hyponormality on the
Hardy space can be found respectively in [6] and [4,5]. Assuming that f ′ is in the Hardy
space H2, we give a necessary condition for the hyponormality of T f +g , where, f and g are
bounded analytic on U . We also give sufficient conditions, when f is a monomial, and g a
polynomial. We start by stating some basic properties of Toeplitz operators, the proofs of
which are straightforward.

2 General properties of Toeplitz operators

We assume f , g are in L∞(U , dμ). Then we have

1. T f +g = T f + Tg .
2. T ∗

f = T f .
3. T f Tg = T f g if f or g analytic on U .

The use of these properties leads to a description of hyponormality, in more than one form.
Douglas lemma is used to get one of these forms [7].

Proposition 1 Let f , g be bounded and analytic on U. The following are equivalent

(i) T f +g is hyponormal.
(ii) TgTg − TgTg ≤ T f T f − T f T f .
(iii) H∗

g Hg ≤ H∗
f
H f .

(iv) ||(I − P)(gk)|| ≤ ||(I − P)( f k)|| for any k in L2
α,w.

(v) ||gk||2 − ||P(gk)||2 ≤ || f k||2 − ||P( f k)||2 for any k in L2
α,w.

(vi) Hg = K H f where K is of norm less than or equal to one.

The following lemma will be needed in the sequel.

Lemma 1 For s and t integers we have:

P(zt zs) =
{
zs−t (s−t+1)2

(s+1)2
, i f s ≥ t

0, i f s < t
.

3 The necessary condition

We now prove a computational lemma.

Lemma 2 Let f = ∑
anzn be bounded and analytic on U. The matrix of H∗

f
H f in the

orthonormal basis {(n + 1)zn, n ≥ 0} is given by:

ζi, j =
∑

m≥ j−i, m≥0

am+i− j am
(i + 1)( j + 1)

(i + m + 1)2
−

∑

i− j≤m≤i, m≥0

amam+ j−i
(i − m + 1)2

(i + 1)( j + 1)
.

Proof Since f̄ f ( j + 1)z j = ∑∞
n,m=0( j + 1) anamzmzn+ j , we get

P( f̄ f ( j + 1)z j ) =
∞∑

m≥0, p≥m, p≥ j

( j + 1)am ap− j
(p − m + 1)2

(p + 1)2
z p−m

=
∑

m+n≥ j, m≥0, n≥0

am am+n− j
( j + 1)(n + 1)2

(m + n + 1)2
zn
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thus

< P( f̄ f ( j + 1)z j ), (i + 1) zi >=
∑

m+i≥ j, m≥0

am+i− j am
( j + 1)(i + 1)

(i + m + 1)2
.

Similarly we show

< T f T f̄ ( j + 1)z j , (i + 1)zi >=
∑

i− j≤m≤i, m≥0

amam+ j−i
(i − m + 1)2

(i + 1)( j + 1)
.

The result follows. ��
Lemma 3 Let f be a bounded and analytic function in U, such that f ′ ∈ H2. Let (σi, j ) be
the matrix of the Hardy space Toeplitz operator T| f ′|2 . Then n2ζi+n, j+n → 2σi, j as n → ∞.

Proof From the previous lemma we get

ζi+n,i+n+p =
∑

m≥p

am−pam
(i + n + 1)(i + n + p + 1)

(i + n + m + 1)2

−
∑

0≤m≤i+n

amam+p
(i + n − m + 1)2

(i + n + 1)(i + n + p + 1)
.

Set m = p + l in the first sum, and m = l in the second. Also put An,i,p = (i + n + 1)(i
+ n + p + 1)

ζi+n,i+n+p =
∑

l≤i+n

alal+p
A2
n,i,p − (i + n + p + l + 1)2(i + n − l + 1)2

(i + n + p + l + 1)2An,i,p

+
∑

l>i+n

al al+p
(i + n + 1)(i + n + p + 1)

(i + n + p + l + 1)2

=
∑

l≤i+n

l(l + p) alal+p
An,i,p + (i + n + p + l + 1)(i + n − l + 1)

(i + n + p + l + 1)2An,i,p

+
∑

l>i+n

al al+p
An,i,p

(i + n + p + l + 1)2

thus we can write with obvious notations

n2ζi+n,i+n+p =
∑

l≤i+n

l(l + p) alal+pn
2Cl,i,n,p +

∑

l>i+n

al al+pn
2Dl,i,n,p.

It is easy to see that
∑

0≤m≤i+n l(l + p)alal+pn2Cl,i,n,p = ∫ ∞
0 hn(l)dυ(l) where υ is the

counting measure, with

hn(l) = χ{0,...,i+n}(l)l(l + p) alal+p
n2[An,i,p + (i + n + p + l + 1)(i + n − l + 1)]

(i + n + p + l + 1)2An,i,p

−→ 2l(l + p) alal+p as n → ∞.

We also have

|hn(l)| ≤ l2|al |2 + (p + l)2|ap+l |2 = M(l)
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Since f ′ ∈ H2, we have
∫ ∞
0 M(l)dυ(l) < ∞. So by the dominated convergence theorem

we have

lim
n→∞

∫ ∞

0
hn(l)dυ(l) = 2

∞∑

0

l(l + p) alal+p.

For l > i + n we have

|al al+p
n2An,i,p

(i + n + p + l + 1)2
| ≤ 1

2
(l2|al |2 + (l + p)2|al+p|2).

Applying the dominated convergence theorem we deduce that

∑

l>i+n

al al+pn
2Dl,i,n,p =

∑

l>i+n

al al+p
n2An,i,p

(i + n + p + l + 1)2
→ 0

as n → ∞. This leads us to

lim
n→∞ n2ζi+n,i+n+p = 2

∞∑

l=0

l(l + p) alal+p = 2σi,i+p. (1)

��
We obtain the following theorem

Theorem 1 Let f and g be bounded analytic functions on U, such that f ′ ∈ H2. If T f +g is
hyponormal on L2

a,w, then g′ ∈ H2 and |g′| ≤ | f ′| a.e on ∂U.

Proof Let (ηi, j ) denote the matrix of H∗
g Hg in the orthonormal basis {(n + 1)zn, n ≥ 0}.

Using the notation of the previous lemma and setting g = ∑
bnzn we have

n2ζi+n,i+n =
∑

l≤i+n

l2 |al |2n2Cl,i,n,0 +
∑

l>i+n

|al |2n2Dl,i,n,0,

n2ηi+n,i+n =
∑

l≤i+n

l2 blbln
2Cl,i,n,0 +

∑

l>i+n

|bl |2 n2Dl,i,n,0.

Hyponormality of T f +g leads to the inequality
∑

l≤i+n

l2 |bl |2n2Cl,i,n,0 ≤ n2ζi+n,i+n .

Set sn(l) = χ{0,...i+n}(l)l2 |bl |2n2Cl,i,n,0. We have:

sn(l) −→ 2l2 |bl |2 as n → ∞.

Using Fatou’s lemma and (1) we get

2
∑

l≥0

l2 |bl |2 ≤
∑

l≥0

2l2|al |2.

Since f ′ ∈ H2, the right hand side of the above inequality is finite. Thus the left hand
side is finite and g′ ∈ H2. If (
i, j ) denotes the matrix of H∗

f
H f − H∗

g Hg , and (�i, j )

denotes the matrix of the Hardy space operator T| f ′|2−|g′|2 , from the previous lemma we have
n2
i+n. j+n −→ 2�i, j . From the assumption of hyponormality and a property of Toeplitz
forms [8], we obtain |g′| ≤ | f ′| a.e on ∂U . ��
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4 The sufficient condition

In what follows we take f = zq , q a positive integer, and we give sufficient conditions for
the hyponormality of Tzq+g , where g is a polynomial. We will need the following lemma:

Lemma 4 The matrix of H∗
zq
Hzq in the orthonormal basis {(n + 1)zn, n ≥ 0} is diagonal

and is given by: di =
⎧
⎨

⎩

(i+1)2

(i+q+1)2
, if i < q

(i+1)2

(i+q+1)2
− (i−q+1)2

(i+1)2
, if i ≥ q

.

Proposition 2 Let p > q then Tzq+αz p is hyponormal if and only if |α| ≤ q
p .

Proof Hyponormality of Tzq+αz p is equivalent to the inequality

|α2|H∗
z p
Hz p ≤ H∗

zq
Hzq ,

which is equivalent to the following inequalities:

|α|2 (i + 1)2

(i + p + 1)2
≤ (i + 1)2

(i + q + 1)2
i < q (2)

|α|2 (i + 1)2

(i + p + 1)2
≤ (i + 1)2

(i + q + 1)2
− (i − q + 1)2

(i + 1)2
q ≤ i < p (3)

|α|2
(

(i + 1)2

(i + p + 1)2
− (i − p + 1)2

(i + 1)2

)

≤
(

(i + 1)2

(i + q + 1)2
− (i − q + 1)2

(i + 1)2

)

p ≤ i (4)

It is clear that (2) is equivalent to |α| ≤ min
{
i+p+1
i+q+1 , i < q

}
. Since i+p+1

i+q+1 decreases with

i , the minimum is assumed at i = q − 1. Thus (2) is equivalent to |α| ≤ p+q
2q .

Similarly, (3) is equivalent to

|α|2 ≤ min

{
(i + p + 1)2

(i + q + 1)2
− (i + p + 1)2(i − q + 1)2

(i + 1)4
, q ≤ i < p

}

.

Set ω1(i) = (i+p+1)2

(i+q+1)2
− (i+p+1)2(i−q+1)2

(i+1)4
, then

ω1(i) = (i + p + 1)2(2q2((i + 1)2 − q4)

(i + q + 1)2(i + 1)4
.

Using logarithmic differentiation, we can easily verify that, ω is decreasing if q <

p. Thus min {ω(i), q ≤ i < p} = ω1(p − 1) = 4q2(2p2−q2)
p2(p+q)2

and (3) is equivalent

to |α| ≤ 2q
√

2p2−q2

p(p+q)
. A computation shows that inequality (4) is equivalent to |α|2

≤ min{ q2
p2

(i+p+1)2(2(i+1)2−q2)
(i+q+1)2(2(i+1)2−p2)

, p ≤ i . Using logarithmic differentiation, we can verify that

ω2(i) = (i+p+1)2(2(i+1)2−q2)
(i+q+1)2(2(i+1)2−p2)

decreases with i . We deduce that inequality (4) is equivalent

to |α| ≤ q
p . It is easy to see that, q

p ≤ 2q
√

2p2−q2

p(p+q)
, and q

p ≤ p+q
2q for q < p. This completes

the proof. ��
Remark 1 The previous result obviously holds also, when p = q .

Proposition 3 Let p and q be positive integers, such that p < q. Then Tzq+αz p is hyponormal

if and only if |α| ≤ p+1
q+1 .
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Proof As in the proof of the previous of proposition, hyponormality of Tzq+αz p is equivalent
to the following three inequalities

|α|2 (i + 1)2

(i + p + 1)2
≤ (i + 1)2

(i + q + 1)2
i < p (5)

|α|2
(

(i + 1)2

(i + p + 1)2
− (i − p + 1)2

(i + 1)2

)

≤ (i + 1)2

(i + q + 1)2
p ≤ i < q (6)

|α|2
(

(i + 1)2

(i + p + 1)2
− (i − p + 1)2

(i + 1)2

)

≤
(

(i + 1)2

(i + q + 1)2
− (i − q + 1)2

(i + 1)2

)

q ≤ i (7)

The same method, as the one used in the proof of the previous proposition, leads to the
following: (5) is equivalent to |α| ≤ p+1

q+1 , inequality (6) is equivalent to the inequal-

ity |α| ≤ min

{
(i+1)2(i+p+1)

(i+q+1)
√

2p2(i+1)2−p4
, p ≤ i < q

}

= Ap,q = (p+1)2(2p+1)

p(p+q+1)
√

p2+4p+2
,

while inequality (7) is equivalent to |α| ≤ min

{
q
p
i+p+1
i+q+1

√
2(i+1)2−q2√
2(i+1)2−p2

, q ≤ i

}

= Bp,q

= q(q+p+1)
√

q2+4q+2

p(2q+1)
√

2q2+4q+2−p2
.

It is easy to see that 2p+1
p+q+1 ≥ p+1

q+1 , and that (p+1)2

p
√

p2+4p+2
≥ 1. Thus Ap,q ≥ p+1

q+1 .

We also have q
√
q2 + 4q + 2 ≥ p

√
2q2 + 4q + 2 − p2, and p+q+1

2q+1 ≥ p+1
q+1 , which leads to

Bp,q ≥ p+1
q+1 . This completes the proof. ��

In what follows, we give a sufficient condition for the hyponormality of Tzq+g , where g is a
polynomial. Denote by B1 the unit ball of (L2

a,w)⊥. We need to introduce the following set

Definition 1 For f ∈ L2
a,w, set  f = {g ∈ L2

a,w, sup{| < ḡk, u > |, u ∈ B1} ≤ sup{|
< f̄ k, u > |, u ∈ B1} for any k ∈ H∞}.
By the density of H∞ in L2

a,w, we see that, g ∈  f is equivalent to T f +g is hyponormal.
Some of the properties of  f are listed in the following proposition:

Proposition 4 Let f ∈ L2
a,w, the following holds:

(i)  f is convex and balanced.
(ii) If g ∈  f and c is a constant then g + c ∈  f .
(iii) f ∈  f .
(iv)  f is weakly closed.

Proof We show only (iv), the other properties being easy to verify. Assume (gα) is a net in
 f , such that gα → g, and u0 ∈ B1. Then lim | < gαk, u0 > | = | < gk, u0 > | and
| < gαk, u0 > | ≤ sup{| < f̄ k, u > |, u ∈ B1} and thus | < ḡk, u0 > | ≤ sup{| < f̄
k, u > |, u ∈ B1}. We get sup{| < ḡ k, u > |, u ∈ B1} ≤ sup{| < f̄ k, u > |, u ∈ B1} for
any k in H∞. ��

Using this proposition we obtain the following result

Theorem 2 Let (λn) be a sequence of complex numbers such that
∑ |λn | ≤ 1, then the

operator Tzq+∑q
0λn

n+1
q+1 z

n+∑∞
q+1

q
n λn zn

is hyponormal.
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