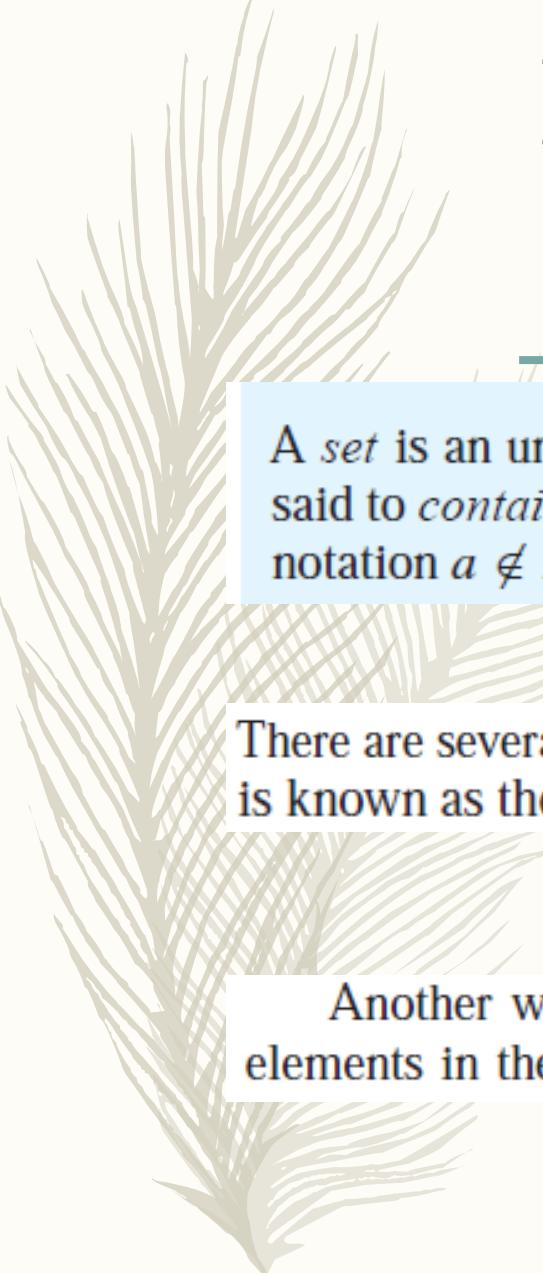


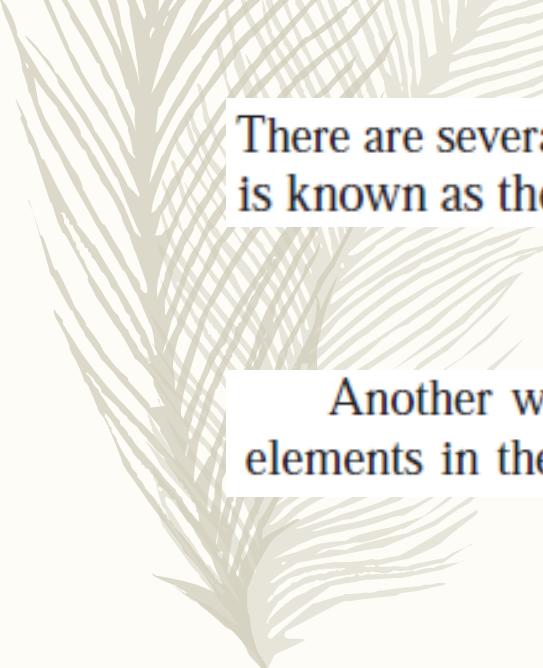
Review of CH(2) Sets

MAHA ALMOUSA

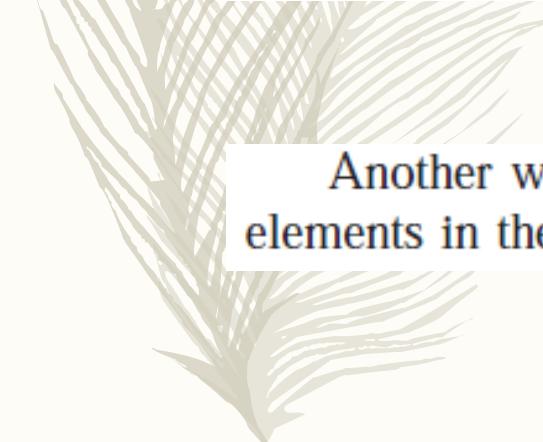


Definition of Set

A *set* is an unordered collection of objects, called *elements* or *members* of the set. A set is said to *contain* its elements. We write $a \in A$ to denote that a is an element of the set A . The notation $a \notin A$ denotes that a is not an element of the set A .



There are several ways to describe a set. One way is to list all the members of a set, is known as the **roster method**.



Another way to describe a set is to use **set builder** notation. We characterize all those elements in the set by stating the property or properties they must have to be members. For

The famous number sets

$\mathbf{N} = \{0, 1, 2, 3, \dots\}$, the set of **natural numbers**

$\mathbf{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$, the set of **integers**

$\mathbf{Z}^+ = \{1, 2, 3, \dots\}$, the set of **positive integers**

$\mathbf{Q} = \{p/q \mid p \in \mathbf{Z}, q \in \mathbf{Z}, \text{ and } q \neq 0\}$, the set of **rational numbers**

\mathbf{R} , the set of **real numbers**

\mathbf{R}^+ , the set of **positive real numbers**

\mathbf{C} , the set of **complex numbers**.

Intervals

Recall the notation for **intervals** of real numbers. When a and b are real numbers with $a < b$, we write

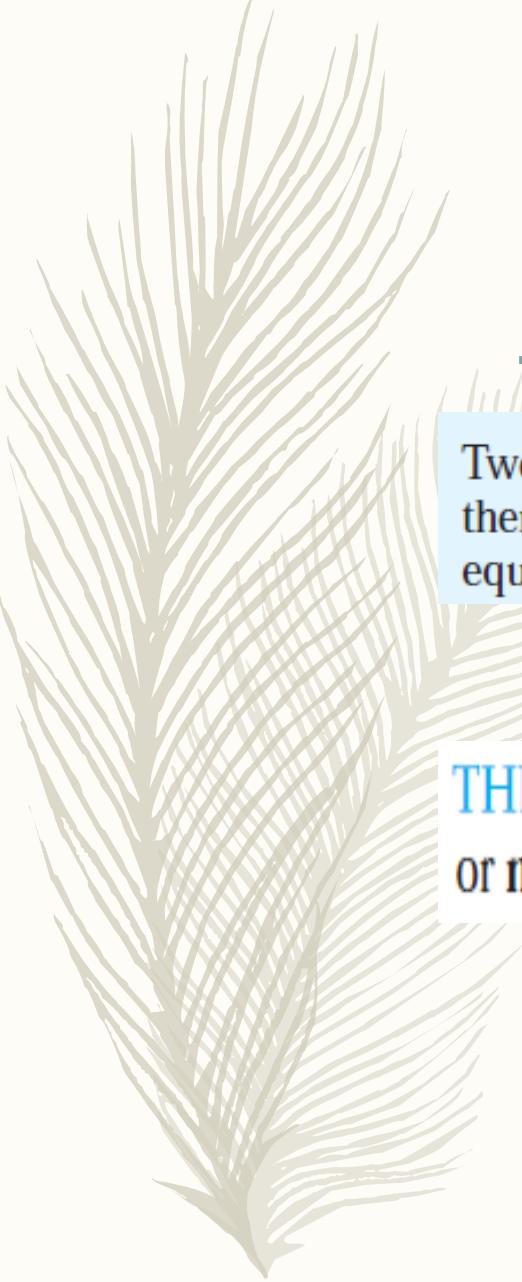
$$[a, b] = \{x \mid a \leq x \leq b\}$$

$$[a, b) = \{x \mid a \leq x < b\}$$

$$(a, b] = \{x \mid a < x \leq b\}$$

$$(a, b) = \{x \mid a < x < b\}$$

Note that $[a, b]$ is called the **closed interval** from a to b and (a, b) is called the **open interval** from a to b .

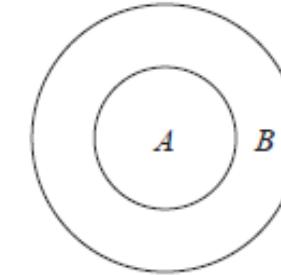


Special sets

Two sets are *equal* if and only if they have the same elements. Therefore, if A and B are sets, then A and B are equal if and only if $\forall x(x \in A \leftrightarrow x \in B)$. We write $A = B$ if A and B are equal sets.

THE EMPTY SET There is a special set that has no elements. This set is called the **empty set**, or **null set**, and is denoted by \emptyset . The empty set can also be denoted by $\{ \}$

Venn Diagrams



In Venn diagrams the **universal set U** , which contains all the **objects** under consideration, is represented by a **rectangle**.

The set A is a *subset* of B if and only if every element of A is also an element of B . We use the notation $A \subseteq B$ to indicate that A is a subset of the set B .

We see that $A \subseteq B$ if and only if the quantification

$$\forall x(x \in A \rightarrow x \in B)$$

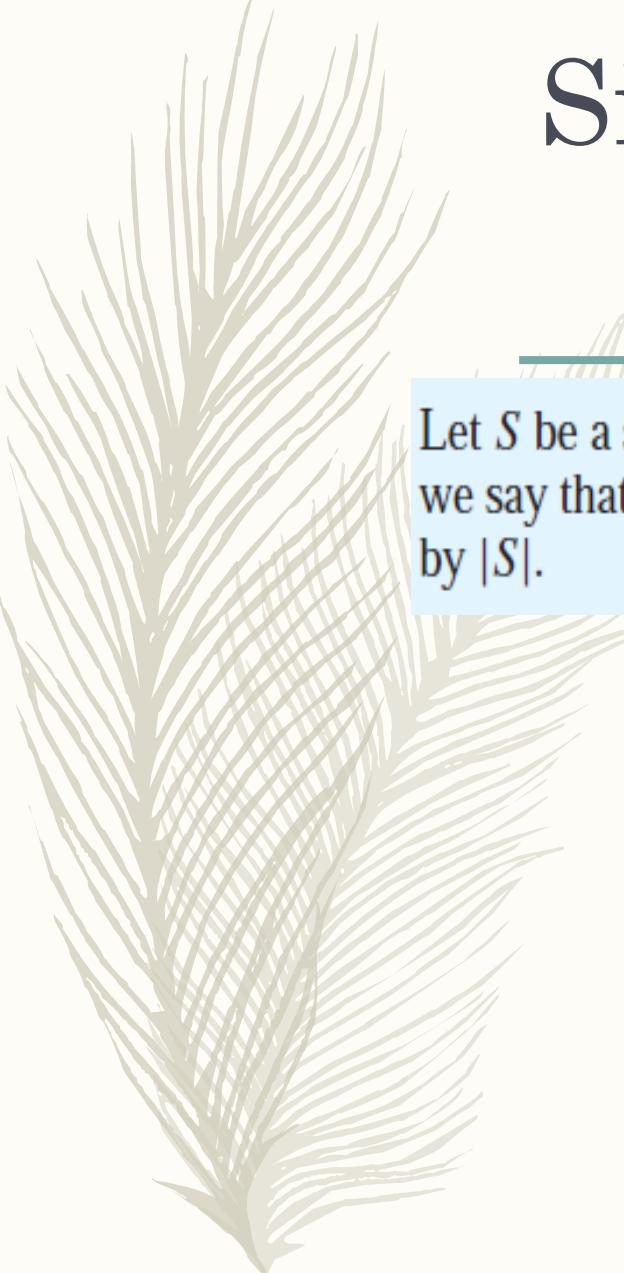
Showing that A is a Subset of B To show that $A \subseteq B$, show that if x belongs to A then x also belongs to B .

Operations between sets

For every set S , (i) $\emptyset \subseteq S$ and (ii) $S \subseteq S$.

When we wish to emphasize that a set A is a subset of a set B but that $A \neq B$, we write $A \subset B$ and say that A is a **proper subset** of B .

Showing Two Sets are Equal To show that two sets A and B are equal, show that $A \subseteq B$ and $B \subseteq A$.



Size of sets

Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a *finite set* and that n is the *cardinality* of S . The cardinality of S is denoted by $|S|$.

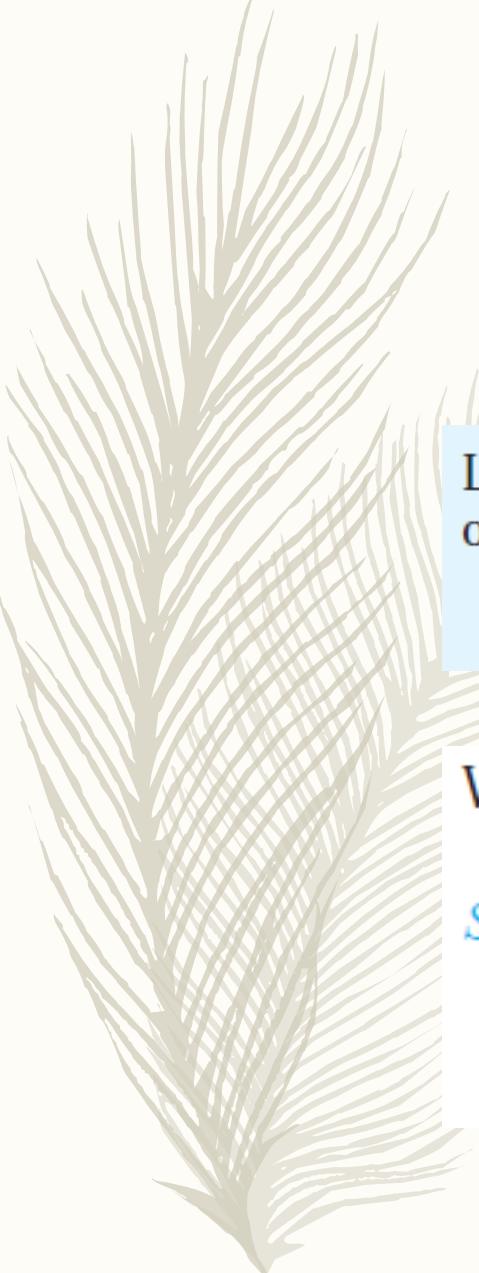
Power Sets

Given a set S , the *power set* of S is the set of all subsets of the set S . The power set of S is denoted by $\mathcal{P}(S)$.

What is the power set of the set $\{0, 1, 2\}$?

Solution: The power set $\mathcal{P}(\{0, 1, 2\})$ is the set of all subsets of $\{0, 1, 2\}$. Hence,

$$\mathcal{P}(\{0, 1, 2\}) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}.$$



Cartesian Product

Let A and B be sets. The *Cartesian product* of A and B , denoted by $A \times B$, is the set of all ordered pairs (a, b) , where $a \in A$ and $b \in B$. Hence,

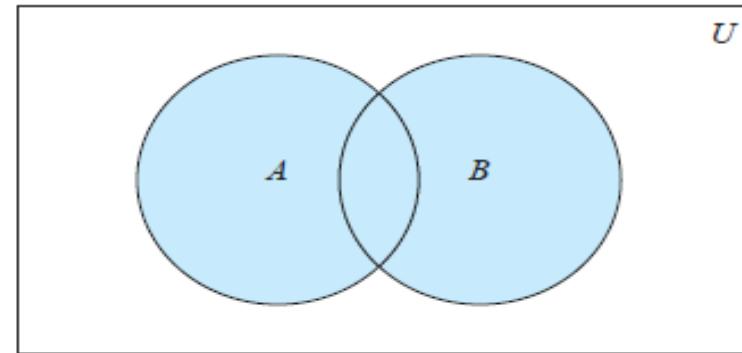
$$A \times B = \{(a, b) \mid a \in A \wedge b \in B\}.$$

What is the Cartesian product of $A = \{1, 2\}$ and $B = \{a, b, c\}$?

Solution: The Cartesian product $A \times B$ is

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}.$$

Union



Let A and B be sets. The *union* of the sets A and B , denoted by $A \cup B$, is the set that contains those elements that are either in A or in B , or in both.

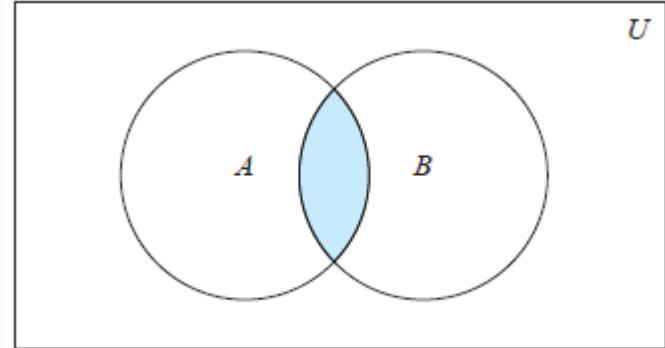
An element x belongs to the union of the sets A and B if and only if x belongs to A or x belongs to B . This tells us that

$$A \cup B = \{x \mid x \in A \vee x \in B\}.$$

The union of the sets $\{1, 3, 5\}$ and $\{1, 2, 3\}$ is the set $\{1, 2, 3, 5\}$; that is,
 $\{1, 3, 5\} \cup \{1, 2, 3\} = \{1, 2, 3, 5\}$. ◀

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Intersection



$A \cap B$ is shaded.

Let A and B be sets. The *intersection* of the sets A and B , denoted by $A \cap B$, is the set containing those elements in both A and B .

An element x belongs to the intersection of the sets A and B if and only if x belongs to A and x belongs to B . This tells us that

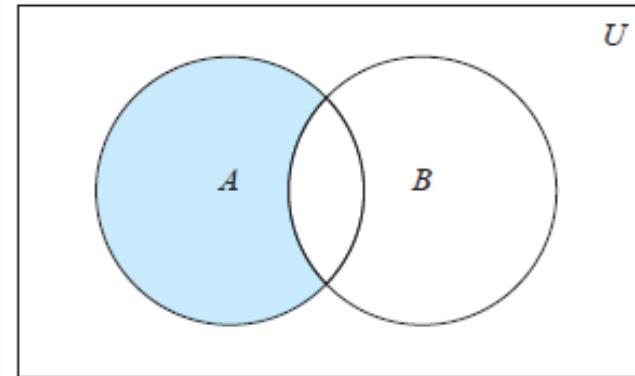
$$A \cap B = \{x \mid x \in A \wedge x \in B\}.$$

The intersection of the sets $\{1, 3, 5\}$ and $\{1, 2, 3\}$ is the set $\{1, 3\}$; that is, $\{1, 3, 5\} \cap \{1, 2, 3\} = \{1, 3\}$. ◀

Two sets are called *disjoint* if their intersection is the empty set.

Let $A = \{1, 3, 5, 7, 9\}$ and $B = \{2, 4, 6, 8, 10\}$. Because $A \cap B = \emptyset$, A and B are disjoint.

Difference



Let A and B be sets. The *difference* of A and B , denoted by $A - B$, is the set containing those elements that are in A but not in B . The difference of A and B is also called the *complement of B with respect to A* .

Remark: The difference of sets A and B is sometimes denoted by $A \setminus B$.

An element x belongs to the difference of A and B if and only if $x \in A$ and $x \notin B$. This tells us that

$$A - B = \{x \mid x \in A \wedge x \notin B\}.$$

The difference of $\{1, 3, 5\}$ and $\{1, 2, 3\}$ is the set $\{5\}$; that is, $\{1, 3, 5\} - \{1, 2, 3\} = \{5\}$. This is different from the difference of $\{1, 2, 3\}$ and $\{1, 3, 5\}$, which is the set $\{2\}$.

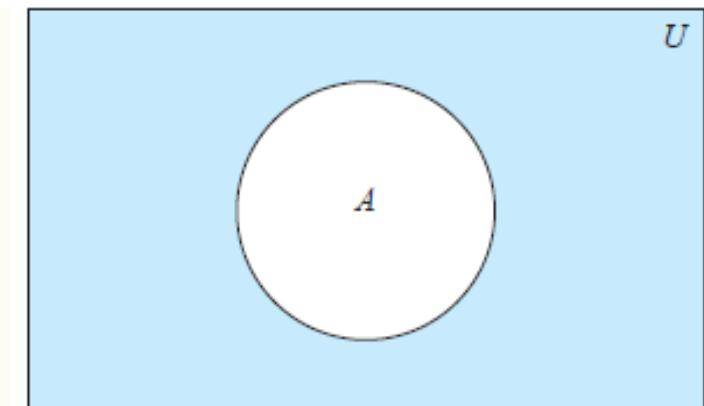
complement

Let U be the universal set. The *complement* of the set A , denoted by \overline{A} , is the complement of A with respect to U . Therefore, the complement of the set A is $U - A$.

An element belongs to \overline{A} if and only if $x \notin A$. This tells us that

$$\overline{A} = \{x \in U \mid x \notin A\}.$$

$$A - B = A \cap \overline{B}.$$

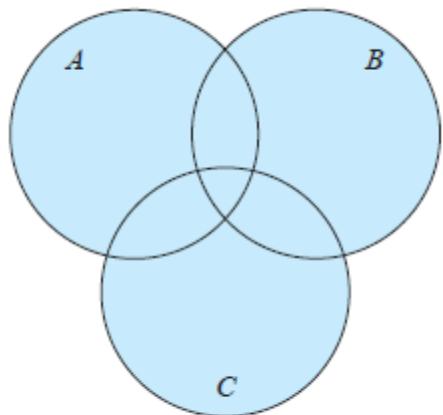


Set Identities

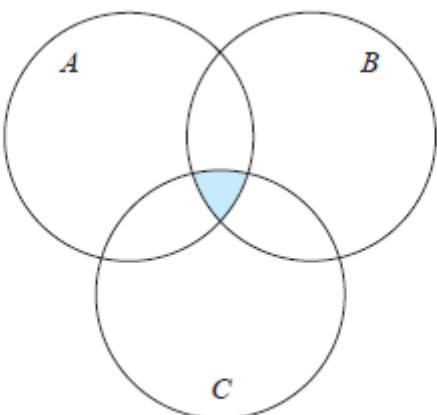
Identity	Name
$A \cap U = A$	Identity laws
$A \cup \emptyset = A$	
$A \cup U = U$	Domination laws
$A \cap \emptyset = \emptyset$	
$A \cup A = A$	Idempotent laws
$A \cap A = A$	
$(\overline{A}) = A$	Complementation law
$A \cup B = B \cup A$	Commutative laws
$A \cap B = B \cap A$	

$A \cup (B \cup C) = (A \cup B) \cup C$	Associative laws
$A \cap (B \cap C) = (A \cap B) \cap C$	
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive laws
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
$\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgan's laws
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	
$A \cup (A \cap B) = A$	Absorption laws
$A \cap (A \cup B) = A$	
$A \cup \overline{A} = U$	Complement laws
$A \cap \overline{A} = \emptyset$	

Generalized Unions and Intersections



(a) $A \cup B \cup C$ is shaded.



(b) $A \cap B \cap C$ is shaded.

The *union* of a collection of sets is the set that contains those elements that are members of at least one set in the collection.

We use the notation

$$A_1 \cup A_2 \cup \dots \cup A_n = \bigcup_{i=1}^n A_i$$

to denote the union of the sets A_1, A_2, \dots, A_n .

The *intersection* of a collection of sets is the set that contains those elements that are members of all the sets in the collection.

We use the notation

$$A_1 \cap A_2 \cap \dots \cap A_n = \bigcap_{i=1}^n A_i$$