151 Math Exercise Sheet
Discrete Mathematics and its Applications
K. Rosen, $7^{\text {th }}$ Edition, E-Book version

Chapter 1: The Foundations: Logic and Proofs

Section	Required Exercises
1.1 Propositional Logic	$2,3,8(\mathrm{a}, \mathrm{d}, \mathrm{g}), 11(\mathrm{a}, \mathrm{c}, \mathrm{e}), 17,28,29(\mathrm{a}, \mathrm{c}), \mathbf{3 1}(\mathrm{c}, \mathrm{e}), 35(\mathrm{e}), 40$.
1.3 Propositional Equivalences	$1(\mathrm{a}), 3(\mathrm{a}), 7,9(\mathrm{c}), 10(\mathrm{c}), 11,12,14,16,19$.
1.4 Predicates and Quantifiers	$1,5,7,11,14,15,19$.
1.6 Rules of Inference	1,2, and The sheet below
1.7 Introduction to Proofs	$1,3,6,9,11,15,16,17,26,31$.
1.8 Proof Methods and Strategy	$1,3,6,9,14,19,29,34$.

Section 1.6
Are the following arguments valid or invalid?

151 Math Exercise Sheet
Discrete Mathematics and its Applications
K. Rosen, $7^{\text {th }}$ Edition, E-Book version

Chapter2:Basic Structures: Sets, Functions, Sequences, Sums and Matrices

$\begin{array}{\|l} \hline 2.1 \\ \text { Sets } \\ \hline \end{array}$	1,2,3,5,7,8,10,19,27(a)
2.2 Set Operations	4,14,25,28

Chapter 5:Induction and Recursion

$5-1$ Mathematical Induction	4-5-6-8-9-12-18-20-28-31-32-38-39-43
5-2 Strong Induction and WellOrdering	Q1: Let $\left\{a_{n}\right\}$ be a sequence of integers defined inductively as: $a_{1}=1, a_{2}=5, a_{n+1}=2 a_{n}+3 a_{n-1}$ for all $n \geq 2$. Prove that $3^{n} \leq a_{n+1} \leq 2\left(3^{n}\right)$ for all $n \geq 1$. Q2: Let $\left\{a_{n}\right\}$ be a sequence of integers defined inductively as: $a_{1}=a_{2}=a_{3}=1, a_{n+2}=a_{n+1}+a_{n}+a_{n-1}$ for all $n \geq 2$. Prove that a_{n} is an odd number for all $n \geq 1$. Q3: Let $\left\{a_{n}\right\}$ be a sequence of integers defined inductively as: $a_{0}=1, a_{n+1}=a_{n}+3^{n}$ for all $n \geq 0$. Prove that $a_{n}=\frac{1}{2}\left(3^{n}+1\right)$ for all $n \geq 0$.

Chapter 9:Relations

9.1 Relations and their Properties	$\mathbf{1 , 3 , 6 , 1 0 , 1 1 , 1 8 , 2 6 , 3 0 , 3 2 , 3 4 (\mathrm { a } , \mathrm { d } , \mathrm { e }) - 3 6 (\mathrm { d } , \mathrm { e } , \mathrm { h }) , 4 1 , 5 0}$
9.3 Representing Relations	$18,22,53,56$.
9.4 Closures and Relations	$1,2,4,5,6,8,9,19,22,24,29$.
9.5	$1,3,9,16,21,22,23,26,28,36,40(\mathrm{a}), 42,46,48(\mathrm{a}), 55$,
Equivalence Relations	$56(\mathrm{a}, \mathrm{b})$.
$\mathbf{9 . 6}$ Partial Ordering	$\mathbf{1 , 6 , 9 , 1 0 , 1 1 , 1 4 , 2 0 , 2 2 .}$

151 Math Exercise Sheet
Discrete Mathematics and its Applications
K. Rosen, $7^{\text {th }}$ Edition, E-Book version

Chapter10: Graphs

$10-1$ Graphs and Graph Models	$3,4,5,6,7,8,9,10$
$\mathbf{1 0 - 2}$ Graph Terminology and Special Types of Graphs	$\mathbf{1 , 2 , 3 , 4 , 5 , 6 , 2 0 (a , b , c , d) , 2 1 , 2 2 , 2 3 , 2 4 , 2 5 , 2 6 (a , b) , 3 5 ,}$
$10-3$ Representing Graphs and Graph Isomorphism	$34,35,36,37,38,39,50,51,53,54,55$.
$10-4$ Connectivity	$1,2,3,4,5,6$.
$10-7$ Planar Graphs	$1,2,3,4,5,6,7,8,9,12,13,14$.

Chapter11Trees

11.1 Introduction to Trees	$2,4,6,8,10,16,17$.
11.2 Application of Trees	1,2
11.4 Spanning Trees	$2,3,4,5,6,7,8$

Chapter12Boolean Algebra

$12-1$ Boolean Functions	$1,2,3,4,5(b, d), 6(c, d), 11,28$
$12-2$ Representing Boolean Functions	$1(b, c, d), 2(a, d), 3(a, d), 7(c)$
$12-3$ Logic Gates	$1,2,3,4,5,6$
$12-4$ Minimization of Circuits	$1,2,3,4(c), 6(a, b), 12,13,14$.

