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1 Lebesgue Integral

1 Simple Functions

Definition 1.1
Let (X,A ) be a measurable space. A function f :X −→ R (or (R)) is called a simple
function if it is measurable and takes a finite number of values.

Let f :X −→ R̄ be a simple function. If {c1, . . . , cm} is the set of values of f ; cj 6= ck
for j 6= k, and Aj = {x ∈ X such that f(x) = cj}, then X =

⋃

j Aj, Aj ∩ Ak = ∅ if

j 6= k and f =
m
∑

j=1

cjχAj
.

We remark that f is measurable if and only if Aj is measurable for all j = 1, . . . ,m.

Theorem 1.2
Let (X,A ) be a measurable space and f :X −→ R :

1. If f is a measurable and bounded, there exists a sequence (fn)n∈N∗ of simple
functions which converges uniformly on X to f .

2. If f is a non-negative measurable function. Then there exists a sequence of
non-negative measurable simple functions which increases to f .

Proof .

1. Let M > 0 such that ∀x ∈ X, |f(x)| < M . We denote by N0 = N ∪ {0}. For
(n, k) ∈ N0 × Z and −2n ≤ k ≤ 2n − 1, we set

An,k = {x ∈ X;
kM

2n
≤ f(x) <

(k + 1)M

2n
}

and we define fn by:

fn =
2n−1
∑

k=−2n

kM

2n
χAn,k

.

The sets An,k are measurables and fn is measurable, for all n ∈ N.

3
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For x0 ∈ X, there exists k0 such that x0 ∈ Xn,k0
. Then fn(x0) =

Mk0

2n
and

|f(x0) − fn(x0)| <
M

2n
. Then the sequence (fn)n converges uniformly on X to

f .

2. For all n ∈ N, let gn = inf(f, n) − 1
n
. The function gn is bounded measurable,

then from the first case there exists a sequence of simple measurable functions

(fm)m such that ||fn − gn||∞ <
1

2n
. We conclude that :

lim
n−→+∞

fn = lim
n−→+∞

gn = lim
n−→+∞

inf(f, n) = f.

fn ≤ gn +
1

2n
= inf(f, n) −

1

n
+

1

2n
≤ inf(f, n + 1) −

1

n+ 1
+

1

2n+1
≤ fn+1. (It

suffices to prove that for n big enough that −
1

n
+

1

2n
< −

1

n+ 1
+

1

2n+1
.)

2 Integration

For constructing the integral of real measurable functions on a measure space (X,B, µ),
we proceed by steps. We begin by the case of the integral of simple functions, then
we define the integral of non-negative measurable functions by the increasing limit
and we show that the monotone limit allows to define the integral of the measurable
non-negative functions, and finally the decomposition of a measurable arbitrary func-
tions f = f+−f− as the difference of two measurable non-negative functions extends
the definition of the integral to the measurable functions.

Definition 2.1

If f =
N
∑

k=1

λkχ{f=λk} is a non-negative measurable simple function, we define the

integral of f by:

∫

X

f(x)d µ(x) =
N
∑

k=1

λkµ({f = λk})

In particular if f = χA, A is a measurable subset, then
∫

X
χA(x)d µ(x) = µ(A), with

the convention that 0 × (+∞) = 0.

Proposition 2.2
Let E + be the cone of non-negative simple functions on the measure space (X,B, µ).
The integral defined on E + have the following properties :

1. ∀ α ∈ R
+, ∀f ∈ E +;

∫

X

α f(x)d µ(x) = α

∫

X

f(x)d µ(x).
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2. ∀f, g ∈ E +;

∫

X

(f + g)(x)d µ(x) =

∫

X

f(x)d µ(x) +

∫

X

g(x)d µ(x).

3. ∀f, g ∈ E + such that f ≤ g;

∫

X

f(x)d µ(x) ≤

∫

X

g(x)d µ(x).

4. If (fn)n is an increasing sequence in E + and if f is the limit of the sequence

(fn)n belongs to E +, then

∫

X

f(x)d µ(x) = lim
n→+∞

∫

X

fn(x)d µ(x).

Proof .
It is evident that if α ≥ 0 and f and g of E + then αf and f + g ∈ E +. ( E + is a
convex cone).

1. The first property is evident.

2. Let f and g be two elements of E +. We denote by F (resp G) the set of values
of f (resp of g).

f =
∑

a∈F

aχ{f=a}, g =
∑

b∈G

bχ{g=b}.

We have

∀ a ∈ F ; {f = a} =
⋃

b∈G

{f = a, g = b}.

∀ b ∈ G; {g = b} =
⋃

a∈F

{f = a, g = b}.

∫

X

f(x)d µ(x) =
∑

a∈F

aµ{f = a} =
∑

(a,b)∈F×G

aµ{f = a, g = b}

∫

X

g(x)d µ(x) =
∑

b∈G

aµ{g = b} =
∑

(a,b)∈F×G

bµ{f = a, g = b}

∫

X

f(x)d µ(x) +

∫

X

g(x)d µ(x) =
∑

(a,b)∈F×G

(a+ b)µ{f = a, g = b}

{f + g = u} =
⋃

(a,b)∈F×G,a+b=u{f = a, g = b}. It results that

µ{f + g = u} =
∑

(a,b)∈F×G,a+b=u

µ{f = a, g = b}

Then

∫

X

f(x)d µ(x) +

∫

X

g(x)d µ(x) =
∑

u

uµ{f + g = u} =

∫

X

(f + g)(x)d µ(x).
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3. If

∫

X

f(x)d µ(x) = +∞, then

∫

X

g(x)d µ(x) = +∞. The result is evident if
∫

X

f(x)d µ(x) < +∞ and

∫

X

g(x)d µ(x) = +∞. Assume now that

∫

X

f(x)d µ(x) <

+∞ and

∫

X

g(x)d µ(x) < +∞, then the subsets {x ∈ X; f(x) = +∞} and

{x ∈ X; g(x) = +∞} are a null sets.

Let {a1, . . . , an} and {b1, . . . , bn} the sets of finite values of f respectively of g.

Set f̃ =
n
∑

j=1

ajχ{x∈X; f(x)=aj} and g̃ =
m
∑

j=1

bjχ{x∈X; g(x)=bj}, then

∫

X

f(x)d µ(x) =

∫

X

f̃(x)d µ(x) and

∫

X

g(x)d µ(x) =

∫

X

g̃(x)d µ(x) and h = g̃ − f̃ ∈ E+.

We deduce from 2) that

∫

X

g(x)d µ(x) =

∫

X

f(x)d µ(x) +

∫

X

h(x)d µ(x) ≥

∫

X

f(x)d µ(x).

Lemma 2.3
Let (fn)n be an increasing sequence in E +, and if g ∈ E + such that g ≤ limn−→+∞ fn,
then

∫

X

g(x)d µ(x) ≤ lim
n−→+∞

∫

X

fn(x)d µ(x).

Proof .
For y ∈ g(X), let Ey = {x ∈ X; g(x) = y}. To prove the lemma it suffices to prove
that for all y ∈ g(X)

∫

X

g(x)χEy
(x)d µ(x) = yµ(Ey) ≤ lim

n−→+∞

∫

X

fn(x)χEy
(x)d µ(x).

The result is trivial if y = 0. For 0 < t < y, we set An = Ey ∩ {x ∈ X; fn(x) ≥ t}.
(An)n is an increasing sequence of measurable sets and Ey = lim

n→+∞
An, because for

all x ∈ Ey, fn(x) > t for n large.

tµ{Ey∩{x ∈ X; fn(x) > t}} =

∫

X

tχEy∩{x∈X; fn(x)>t}(x)d µ(x) ≤

∫

X

fn(x)χEy
(x)d µ(x).

So tµ(Ey) ≤ lim
n→+∞

∫

X

fn(x)χEy
(x)d µ(x). This is for any 0 < t < y, then

yµ(Ey) ≤ lim
n→+∞

∫

X

fn(x)χEy
(x)d µ(x).
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To prove 4) of the proposition 2.2, we denote g = lim
n→+∞

fn. Then fn ≤ g, ∀n ∈ N

and the increasing sequence
(

∫

X

fn(x)d µ(x)
)

n
is bounded above by

∫

X

g(x) d µ(x).

For the other sense we applied the lemma 2.3.

Definition 2.4
Let f be a non-negative measurable function on a measure space (X,B, µ), we define

∫

X

f(x)d µ(x) = Sup{

∫

X

g(x)d µ(x); g ≤ f and g ∈ E
+}

this is a non-negative number finite or infinite.

Remark .
If f is a non-negative measurable function on a measure space (X,B, µ), the theorem
1.2 yields the existence of an increasing sequence (fn)n of E + which converges to f .

Then we have lim
n→+∞

∫

X

fn(x)d µ(x) ≤

∫

X

f(x)d µ(x). In the other hand for every

function g ∈ E + such that g ≤ f = limn→+∞ fn, we have from lemma 2.3 that
∫

X

g(x)d µ(x) ≤ lim
n→+∞

∫

X

fn(x)d µ(x). So from the definition 2.4;

∫

X

f(x)d µ(x) ≤

lim
n→+∞

∫

X

fn(x)dµ(x) and then

∫

X

f(x)d µ(x) = lim
n→+∞

∫

X

fn(x)d µ(x). This result is

independent of the increasing sequence (fn)n which converges to f . Then we have
now the following theorem:

Theorem 2.5
Let f and g be two non-negative measurable functions on a measure space (X,B, µ),
and let λ be a non-negative real number, then we have:

1.

∫

X

λf(x)d µ(x) = λ

∫

X

f(x)d µ(x)

2.

∫

X

(f + g)(x)d µ(x) =

∫

X

f(x)d µ(x) +

∫

X

g(x)d µ(x)

3. If f ≤ g then

∫

X

f(x)d µ(x) ≤

∫

X

g(x)d µ(x).

Proof .
For the proof it is enough to consider two increasing sequences (ϕn)n and (ψn)n of
E + which converge respectively to f and g, and then we apply the proposition 2.2.
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3 Convergence Theorems

3.1 Monotone Convergence Theorem

Theorem 3.1 (Monotone Convergence Theorem or Beppo-Levi’s Theorem)
Let (fn)n be an increasing sequence of measurable non-negative functions on a measure
space (X,B, µ), then

∫

X

lim
n→+∞

fn(x)d µ(x) = lim
n→+∞

∫

X

fn(x)d µ(x).

Proof .
For all integer n, there exists an increasing non-negative sequence (ϕn,j)j of E + which
converges to fn. For any j, set ψj = Sup

1≤n≤j
ϕn,j. Then the sequence (ψj)j ∈ E

+ is

increasing because ψj = Sup
1≤n≤j

ϕn,j ≤ Sup
1≤n≤j

ϕn,j+1 ≤ Sup
1≤n≤j+1

ϕn,j+1 = ψj+1.

We want to prove now that the sequence (ψj)j converges to f . We have for all
j ≥ n, ϕn,j ≤ ψj, then fn = lim

j−→+∞
ϕn,j ≤ lim

j−→+∞
ψj, and then f = lim

n−→+∞
fn ≤

lim
j−→+∞

ψj. In the other hand, the inequalities ϕn,j ≤ fn ≤ f shows that ψj ≤ f and

lim
j−→+∞

ψj ≤ f . The sequence (ψj)j is an increasing sequence of E + and converges to

f . Then

∫

X

f(x)d µ(x) = lim
j−→+∞

∫

X

ψj(x)d µ(x). Moreover we have

ψj ≤ fj ⇒ lim
j−→+∞

∫

X

ψj(x)d µ(x) ≤ lim
j−→+∞

∫

X

fj(x) d µ(x) ≤

∫

X

f(x)d µ(x),

which ends the proof of the theorem.

3.2 Fatou’s Lemma

Lemma 3.2 (Fatou’s Lemma)
Let (fn)n be a sequence of non-negative measurable functions on a measure space
(X,B, µ), then:

∫

X

limn−→+∞fn(x)d µ(x) ≤ limn−→+∞

∫

X

fn(x)d µ(x).

Proof .

limn−→+∞fn = limn−→+∞(infj≥n fj). We have

∫

X

inf
j≥n

fj(x) d µ(x) ≤ inf
j≥n

∫

X

fj(x)d µ(x).

The result follows from the Monotone Convergence Theorem.

Corollary 3.3
Let (fn)n be a sequence of measurable non-negative functions on a measure space
(X,B, µ), then:

∫

X

+∞
∑

n=1

fn(x)d µ(x) =
+∞
∑

n=1

∫

X

fn(x)d µ(x)
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Example .

Let fn = n2χ[0, 1

n
],

∫

R

limn−→+∞fn(x)dλ(x) = 0 and limn−→+∞

∫

R

fn(x)dλ(x) = +∞.

Corollary 3.4
Let (X,B, µ) be a measure space and let f be a measurable non-negative function.
For all A ∈ B, let τ(A) =

∫

X
f(x)χA(x)d µ(x). Then τ is a non-negative measure

on (X,B) called measure of density f by respect to the measure µ. The integral of a
measurable non-negative function g by this measure is given by:

∫

X

g(x) d τ(x) =

∫

X

f(x)g(x)d µ(x).

Proof .
Let (An)n be a finite or infinite sequence of measurable pairwise disjoints sets. We

have: fχ∪nAn
=

+∞
∑

n=1

fχAn
. This which yields that

τ (
⋃

n

An) =

∫

X

f(x)χ∪nAn
(x)d µ(x) =

∫

X

+∞
∑

n=1

f(x)χAn
(x)d µ(x) =

+∞
∑

n=1

∫

X

f(x)χAn
(x)d µ(x).

The second part of the corollary is verified by any characteristic function χA of
a measurable set A. Then it is valid for any simple non-negative function. By using
the increasing continuity of the integrals, the result will be valid for non-negative
measurable functions.

Definition 3.5
Let f, g be two functions defined on (X,B, µ). We say that f = g almost everywhere,
written f = g a.e., if {x ∈ X; f(x) 6= g(x)} is of measure zero. In particular if A is
a measurable subset, then χA = 0 a.e. if and only if µ(A) = 0.

Definition 3.6
Let f be a function defined on (X,B, µ). We say that f is defined almost everywhere
on X if there exist a null subset N such that f is defined on the complementary of
N .

Definition 3.7
A sequence (fn)n of functions defined on (X,B, µ) is said that converges almost ev-
erywhere to a function f if the set of x where this fails has measure zero.

Proposition 3.8
Let f and g be two non-negative measurable functions defined on a measure space
(X,B, µ).

1.

∫

X

f(x)d µ(x) = 0 if and only if f = 0 almost everywhere.
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2. If f = g almost everywhere then

∫

X

f(x)d µ(x) =

∫

X

g(x) d µ(x).

Proof .

1. We suppose that

∫

X

f(x)d µ(x) = 0. If An = {x ∈ X/f(x) ≥ 1/n}, then

χAn
≤ nf and

∫

X

χAn
(x)d µ(x) = µ(An) ≤ n

∫

X

f(x)d µ(x) = 0. Then for all

n ∈ N; µ(An) = 0. It results that {x/f(x) 6= 0} =
⋃

nAn is a null set.

If f = 0 almost everywhere then for all n ∈ N, we define fn = inf(f, n). The

sequence (fn)n is increasing and

∫

X

fn(x)d µ(x) = 0, then it follows from the

monotone convergence theorem

∫

X

f(x)d µ(x) = 0.

2. We suppose that f ≤ g. Then the function h = g − f is defined almost
everywhere and equal to 0 almost everywhere.

If

∫

X

f(x)d µ(x) =

∫

X

g(x)d µ(x) = +∞, then we have the desired result.

If

∫

X

f(x)d µ(x) =

∫

X

g(x)d µ(x) < +∞, we have

0 =

∫

X

h(x)d µ(x) =

∫

X

g(x)d µ(x) −

∫

X

f(x)d µ(x).

Let new define the function h = inf(f, g). h is a non-negative measurable
function and we have: h = f = g almost everywhere. Since h ≤ f then
∫

X

h(x)d µ(x) =

∫

X

f(x)d µ(x), and since h ≤ g then

∫

X

h(x)d µ(x) =

∫

X

g(x)d µ(x).

It results that

∫

X

f(x)d µ(x) =

∫

X

g(x)d µ(x).

Definition 3.9
Let f :X −→ R̄ be a measurable function. If f+ = Sup(f, 0) and f− = Sup(−f, 0),
then f = f+ − f−. The function f is called integrable by respect to the measure µ if

and only if

∫

X

f+(x)d µ(x) and

∫

X

f−(x)d µ(x) are finite.

The integral of f will be denoted

∫

X

f(x) d µ(x) =

∫

X

f+(x)d µ(x)−

∫

X

f−(x)d µ(x),

and if f is measurable and

∫

X

f+(x)d µ(x) < +∞ or

∫

X

f−(x)d µ(x) < +∞ we will

denote of the same way

∫

X

f(x)d µ(x) =

∫

X

f+(x)d µ(x) −

∫

X

f−(x)d µ(x).

We define L1(X) the space of integrable functions on X.
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Proposition 3.10

The set L1(X) is a vector space on R and the map f 7−→

∫

X

f(x)d µ(x) is a linear

form on L1(X) and we have
∣

∣

∣

∫

X

f(x)d µ(x)
∣

∣

∣
≤

∫

X

|f(x)|d µ(x).

Proof .
Let f and g be two integrable functions.

Since |f+g| ≤ |f |+|g|, then

∫

X

|f(x)+g(x)|d µ(x)| ≤

∫

X

|f(x)|d µ(x)+

∫

X

|g(x)| d µ(x),

and then f + g ∈ L1(X).
We have f + g = (f + g)+ − (f + g)− = f+ −f− + g+ − g−, then (f + g)+ +f− + g− =
(f + g)− + f+ + g+. It follows that

∫

X

(f + g)+(x)d µ(x) +

∫

X

f−(x)d µ(x) +

∫

X

g−(x) d µ(x)

=

∫

X

(f + g)−(x)d µ(x) +

∫

X

f+(x) d µ(x) +

∫

X

g+(x)d µ(x)

and

∫

X

(f + g)(x)d µ(x) =

∫

X

(f + g)+(x)d µ(x) −

∫

X

(f + g)−(x) d µ(x)

=

∫

X

f+(x)d µ(x) −

∫

X

f−(x) d µ(x) +

∫

X

g+(x)d µ(x) −

∫

X

g−(x)d µ(x)

=

∫

X

f(x)d µ(x) +

∫

X

g(x)d µ(x).

The other properties are evidents.

Corollary 3.11

1. If f is measurable and a ≤ f ≤ b and µ(X) < +∞, then f ∈ L1(X) and we

have: aµ(X) ≤

∫

X

f(x) d µ(x) ≤ bµ(X).

2. If f is measurable and g ∈ L1(X) and f ≤ g, then

∫

X

f(x)d µ(x) ≤

∫

X

g(x)d µ(x).

3. If E is a measurable null set, then

∫

E

f(x)d µ(x) = 0 for any measurable function

f .

4. Any bounded measurable function and equal to zero in the complementary of a
subset of finite measure is integrable.

Remarks .
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1. Let f be an integrable function with respect to a measure µ. Then {x ∈
X/f(x) = ±∞} is a null set.

2. On a measure space (X,B, µ), the set of functions that are f = 0 a.e. is a vector
space of L1(X,B) closed under countable (Sup, inf). We denote L1(X,B) or
L1(µ) the quotient space L1(X,B) by the space of null a.e functions. We call
that f = g in L1(X) if f = g µ-almost everywhere.

Definition 3.12
A sequence (fn)n of measurable functions on a measure space (X,B, µ) converges
almost everywhere if the set of divergence of the sequence is a null set. We will
denote by lim fn any arbitrary measurable function f such that (fn)n −→ f almost
everywhere on X.

3.3 Dominate Convergence Theorem

Theorem 3.13 (Dominate Convergence Theorem (or Lebesgue theorem)
Let (fn)n be a sequence of measurable functions on a measure space (X,B, µ). We
assume that :

i) the sequence (fn)n converges almost everywhere on X to a measurable func-
tion f definite almost everywhere.

ii) There exist a non-negative integrable function g such that : |fn| ≤ g almost
everywhere for all n. Then the sequence (fn)n and the function f are integrable and
we have:

∫

X

f(x) d µ(x) = lim
n−→+∞

∫

X

fn(x)d µ(x).

The interest of the Dominated Convergence Theorem is that it does not require
uniform convergence to permute the limit and the integral.

Theorem 3.14
Let (fn)n be a sequence of measurable functions on a measure space (X,B, µ). We
assume that there exist a non-negative integrable function g such that for all n, |fn| ≤
g almost everywhere. Then:

∫

X

limfn(x)d µ(x) ≤ lim

∫

X

fn(x)d µ(x) (3.1)

∫

X

limfnd µ(x) ≥ lim

∫

X

fn(x)d µ(x) (3.2)

and if the sequence (fn)n converges almost everywhere on X to a measurable function
f defined almost everywhere, then f ∈ L1(X) and we have:

∫

X

f(x)d µ(x) = lim
n→+∞

∫

X

fn(x)d µ(x) (3.3)
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Proof .
The function g is finite almost everywhere on X because it is integrable. If we replace
g by the function gχ{x/g(x)<+∞} this which not change the inequalities |fn| ≤ g almost
everywhere. Thus we can suppose that g is finite on X. We replace the sequence

(fn)n by the functions fnχ{|fn|≤g}, this which not modified the integrals

∫

X

fn(x)d µ(x)

neither the equivalence classes limn−→+∞ fn almost everywhere. Then we can suppose
that |fn| ≤ g on X. From these modifications, the functions (fn)n, limfn and limfn

are finite and integrable on X. We apply the Fatou’s lemma to the sequence fn + g
we shall have

∫

X

lim(fn + g)(x)d µ(x) ≤ lim

∫

X

(fn + g)(x)d µ(x)

Since limn−→+∞(fn + g) = (limn−→+∞fn ) + g on X, we shall have

∫

X

limn−→+∞fn(x)d µ(x) ≤ limn−→+∞

∫

X

fn(x)d µ(x)

And from Fatou’s lemma applied to the sequence (−fn + g)n we shall have

∫

X

limn−→+∞(−fn)(x)d µ(x) ≤ limn−→+∞

∫

X

−fn(x)d µ(x)

Then

∫

X

limn−→+∞fn(x)d µ(x) ≥ limn−→+∞

∫

X

fn(x)d µ(x)

The result follows easily.

3.4 Applications

3.4.1 Double Series

If we apply the Dominate Convergence Theorem on the measure space (N,P(N), µ)
with the measure µ defined by: µ(n) = 1 for all n of N, we have the following result :

Theorem 3.15
Let (am,n)m,n be a double sequence of complex numbers such that :

i) lim
n−→+∞

am,n = am for all m ∈ N.

ii) There exist a sequence (bm)n of non-negative real numbers such that
+∞
∑

m=1

bm <

+∞ and |am,n| ≤ bm for all n ∈ N.

Then we have: lim
n−→+∞

+∞
∑

m=1

am,n =
+∞
∑

m=1

am.
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3.4.2 Integral Depending on Parameter

Let (X,B, µ) be a measure space, and let E be a metric space.

Proposition 3.16
Let f : E ×X −→ C such that for all t ∈ E; the mapping x −→ f(t, x) is integrable.
We define

F (t) =

∫

X

f(t, x)d µ(x)

Let a ∈ E, we assume that :
For almost any x ∈ X; the mapping t 7−→ f(t, x) is continuous in a.
There exist a neighborhood V (a) of a and an integrable function g such that ∀ t ∈
V (a), |f(t, .)| ≤ g(.). Then F is continuous in a.

Proof .
It suffices to apply the Dominate Convergence Theorem to the sequence (f(an, .))n

for n ∈ N; where (an)n is a sequence in V (a) which converges to a.

Proposition 3.17
Let Ω be an open set of R (resp C). Let f : Ω × X −→ C; such that for all t ∈ Ω;
the mapping x 7−→ f(t, x) is integrable. We define

F (t) =

∫

X

f(t, x)d µ(x)

We assume that :
For almost all x ∈ X; the mapping t 7−→ f(t, x) is derivable on Ω (resp holomorphic

on Ω). We denote |
∂

∂t
f(t, x)| its derivative.

The function f(t, .) is integrable on X and there exist a non-negative integrable func-

tion g such that for almost all x ∈ X, |
∂

∂t
f(t, x)| ≤ g(x) for any t ∈ Ω. Then F is

derivable on Ω (resp holomorphic) and for any t in Ω :

d

dt

∫

X

f(t, x)d µ(x) =

∫

X

∂

∂t
f(t, x)d µ(x).

Proof .
Let a ∈ Ω and (hn)n be a sequence of real numbers converging to 0 and such that
a+ hn ∈ Ω. (hn 6= 0, for all n). We define the sequence (ϕn)n by:

ϕn(x) =
f(a+ hn, x) − f(a, x)

hn

For almost all x ∈ X, limn−→∞ ϕn(x) = ∂
∂t
f(a, x) and for such x we have |ϕn(x)| ≤

g(x). Then according to the mean value theorem. The Dominate Convergence The-
orem shows that the function d

dt
f(t, x) is integrable and:



4. RIEMANN AND LEBESGUE INTEGRALS 15

∫

X

∂

∂t
f(a, x) d µ(x) = lim

n−→+∞

∫

X

ϕn(x)d µ(x) = lim
n−→+∞

F (a+ hn) − F (a)

hn

Remarks .

1. If for each a ∈ Ω there exists a neighborhood V (a) and an integrable function

g such that for almost all x ∈ X, |
∂

∂t
f(t, x)| ≤ g(x) for all t ∈ V (a). Then F is

derivable on Ω and for all t ∈ Ω:

d

dt

∫

X

f(t, x)d µ(x) =

∫

X

∂

∂t
f(t, x)d µ(x).

2. If in addition
∂

∂t
f(t, x) is continuous, then F is C1.

Exercises .

1. Let f be an integrable function on [0, 1], then lim
n−→+∞

∫ 1

0

xnf(x)dx = 0, in fact

|xn f(x)| ≤ |f(x)| which is integrable, and lim
n→+∞

xn f(x) = 0 a.e. Then the

result follows from the Dominate Convergence Theorem.

2. Let (fn)n be the sequence defined in [0, 1] by: fn(x) =
nx

1 + n4x4
.

It is easy to prove that the sequence (fn)n is uniformly bounded on [0, 1] and

lim
n→+∞

fn(x) = 0. Then from the Dominate Convergence Theorem lim
n−→+∞

∫ 1

0

nx

1 + n4x4
dx =

0.

3. Let (fn)n the sequence defined in [0, 1] by: fn(x) =
nx

1 + n2x4
. lim

n→+∞
fn(x) = 0

but

∫ 1

0

nx

1 + n2x4
dx =

1

2

∫ n

0

dt

1 + t2
, then lim

n−→+∞

∫ 1

0

nx

1 + n2x4
dx =

π

4
.

4 Comparison of Riemann and Lebesgue integrals

4.1 Riemann and Lebesgue Integrals

Let a and b two reals numbers, a < b. We consider the measure space ([a, b],B∗, λ),
where λ is the Lebesgue measure on R and B∗ is the Lebesgue σ-algebra of [a, b]. For

a bounded function f on [a, b], we denote

∫ b

a

f(x)dx the Riemann integral for f on

[a, b] and

∫ b

a

f(x)d λ(x) the Lebesgue integral, if they exist.

Let f be a bounded function on [a, b]. Then from the definition of the Riemann
integral and the proprieties of the lower and upper Darboux sum of f , there exists an
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increasing sequence of partitions (σn)n of [a, b] such that if σn = {x0 = a, . . . xpn
= b}

the sequence (δn)n defined by: δn = Sup0≤k≤pn−1 |xk+1 − xk| converges to 0. (δn is
called the norm of the partition). We denote

(U)

∫ b

a

f(x)dx = lim
n−→+∞

S(σn, f)

(L)

∫ b

a

f(x)dx = lim
n−→+∞

s(σn, f)

Let (gn)n and (hn)n the sequences of simple functions defined by:

gn(x) =

{

mk = inft∈[xk,xk+1[ f(t) if xk ≤ x < xk+1

gn(b) = f(b)

hn(x) =

{

Mk = Supt∈[xk,xk+1[ f(t) if xk ≤ x < xk+1

hn(b) = f(b)

The sequence (gn)n is increasing and the sequence (hn)n is decreasing. For x ∈ [a, b],
the sequence (gn)n converges to a function g and the sequence (hn)n converges to a
function h. We remark that

S(σn, f) =

∫ b

a

hn(x)dx =

∫ b

a

hn(x)d λ(x)

s(σn, f) =

∫ b

a

gn(x)dx =

∫ b

a

gn(x)d λ(x)

Since g and h are measurables, it follows from the monotone convergence theorem,

lim
n→+∞

∫ b

a

gn(x)dx = (L)

∫ b

a

f(x)dx =

∫ b

a

g(x)d λ(x) (4.4)

lim
n→+∞

∫ b

a

hn(x)dx = (U)

∫ b

a

h(x)dx =

∫ b

a

f(x)d λ(x) (4.5)

In the other hand g(x) ≤ f(x) ≤ h(x) ∀x ∈ [a, b].

Theorem 4.1
Let f be a bounded function on [a, b].

a) If f is Riemann-integrable on [a, b], then f is Lebesgue integrable on [a, b]
and:

∫ b

a

f(x)d λ(x) =

∫ b

a

f(x)dx

b) f is Riemann-integral on [a, b] if and only if, the set of discontinuity of f
is a null set.

c) If the set of discontinuity of f is a null set, then f is Lebesgue integrable
and
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∫ b

a

f(x)d λ(x) =

∫ b

a

f(x)dx

For the proof we need the following lemma:

Lemma 4.2

Let f, g and h as above. For x ∈ [a, b] \

(

+∞
⋃

n=1

σn

)

, g(x) = h(x) if and only if f is

continuous in the point x.

Proof of the lemma .

Let x ∈ [a, b] \

(

+∞
⋃

n=1

σn

)

and δn = ||σn||. The sequence (δn)n converges to 0.

If f is continuous in x, then for ε > 0,∃η > 0 such that ∀t ∈ [a, b] and |t − x| < η,
then |f(x) − f(t)| < ε.
Let n0 such that ∀n ≥ n0, δn0

< η.
For n > n0, σn is a partition of [a, b], then there exist k ∈ {0, . . . , pn − 1} such that
xk < x < xk+1. It results that ∀t ∈]xk, xk+1[, |f(x) − f(t)| < ε, then hn(x) = Mk ≤
f(x) + ε and gn(x) = mk ≥ f(x) − ε and hn(x) − gn(x) ≤ ε. This is for all n ≥ n0.
Then h(x) − g(x) ≤ ε and this for all ε > 0 and then g(x) = h(x).
Conversely if g(x) = h(x) and x /∈ (

⋃

n σn). Since g(x) ≤ f(x) ≤ h(x), then
f(x) = g(x) = h(x), (gn(x))n and (hn(x))n converges to f(x).
Let ε > 0, it follows from the above result that there exists n0 ∈ N such that ∀n ≥ n0 :
0 ≤ f(x) − gn(x) < ε and 0 ≤ hn(x) − f(x) < ε.
σn0

is a partition of [a, b], then there exist k ∈ {0, . . . , pn0
−1} such that x ∈ [xk, xk+1[=

I. We have:

hn0
(x) − ε < f(x) < gn0

(x) + ε

Moreover hn0
(x) = Sup

t∈]xk,xk+1[

f(t) and gn0
(x) = inf

t∈]xk,xk+1[
f(t).

Then ∀t ∈ I, f(t)− ε < f(x) < f(t) + ε this which yields that f is continuous in the
point x.

Proof of the theorem .
a) If f is Riemann-integrable on [a, b], we have

(L)

∫ b

a

f(x)dx = (U)

∫ b

a

f(x)dx =

∫ b

a

f(x)dx

and from (4.4) and (4.5) we shall have:

∫ b

a

h(x)dλ(x) =

∫ b

a

g(x)dλ(x). Thus
∫ b

a

(h(x) − g(x))dλ(x) = 0. Moreover h − g is a non-negative integrable function,

then h = g λ-almost everywhere and then f = g a.e on [a, b]. Thus f is measurable

and

∫ b

a

f(x)dx =

∫ b

a

f(x)d λ(x).
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b) f is Riemann-integrable ⇐⇒ (U)

∫ b

a

f(x)dx = (L)

∫ b

a

f(x)dx ⇐⇒ h = g

a.e and the result is deduced from the previous lemma; in fact :
f Riemann-integrable ⇐⇒ h = g a.e which is equivalent to {x/h(x) 6= g(x)} ∪
(
⋃

n σn) is a null set with respect to the Lebesgue measure, and this is equivalent to
the fact that f is continuous a.e on [a, b].

c) If the set of discontinuity of f is a null set. Then lim
n→+∞

gn(x) = lim
n→+∞

hn(x) =

f(x) at each point of continuity of f , then f is measurable and Dominate convergence
theorem yields

lim
n→+∞

∫

[a,b]

gn(x)dx =

∫

[a,b]

f(x)dx

lim
n→+∞

∫

[a,b]

hn(x)dx =

∫

[a,b]

f(x)dx

Thus f is Riemann integrable and

∫ b

a

f(x)d λ(x) =

∫ b

a

f(x)dx.

We give now a new proof of the theorem (4.1)

Proposition 4.3
Let f : [a, b] → R is a bounded function. f is Riemann integrable iff it is continuous
almost everywhere on [a, b].

Proof .
a) Suppose that f is Riemann integrable. For each x ∈ [a, b], set

g(x) = Sup
δ>0

inf
y∈[a,b],|y−x|≤δ

f(y),

h(x) = inf
δ>0

Sup
y∈[a,b],|y−x|≤δ

f(y),

so that f is continuous at x iff g(x) = h(x). We have g ≤ f ≤ h, so if σ is any
partition of [a, b] then S(g, σ) ≤ S(f, σ) ≤ S(h, σ) and s(g, σ) ≤ s(f, σ) ≤ s(h, σ).
But S(f, σ) = S(h, σ) and s(g, σ) = s(f, σ), because on any open interval ]c, d[⊂ [a, b]
we must have

inf
x∈]c,d[

g(x) = inf
x∈]c,d[

f(x), Sup
x∈]c,d[

f(x) = Sup
x∈]c,d[

h(x).

It follows that

s(f) = s(g) ≤ S(g) ≤ S(f), s(f) ≤ s(h) ≤ S(h) = S(f).

Because f is Riemann integrable, both g and h must be Riemann integrable,

with integrals equal to

∫ b

a

f(x)dx. Then, they are both Lebesgue integrable, with
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the same integral. But g ≤ h, so g = h a.e. Now f is continuous at any point where
g and h agree, so f is continuous a.e.

(b) Now suppose that f is continuous a.e. For each n ∈ N, let σn be the
partition of [a, b] into 2n equal intervals. Set

hn(x) = Sup
y∈]c,d[

f(y), gn(x) = inf
y∈]c,d[

f(y)

if ]c, d[ is an open interval of σn containing x; for definiteness, say hn(x) = gn(x) =
f(x) if x is one of the points of the list σn. Then (gn)n, (hn)n are, respectively,
increasing and decreasing sequences of functions, each function constant on a each of
a finite family of intervals covering [a, b]; and s(f, σn) =

∫

gnd µ, S(f, σn) =
∫

hnd µ.
Next,

limn→∞ gn(x) = limn→∞ hn(x) = f(x) at any point x at which f is continuous;
so f = limn→∞ gn = limn→∞ hn a.e. By Lebesgue’s Dominated Convergence Theorem,
limn→∞

∫

gnd µ =
∫

fd µ = limn→∞

∫

hnd µ; but this means that
s(f) ≥

∫

fd µ ≥ S(f),
so these are all equal and f is Riemann integrable.

4.2 Generalized Integral and Lebesgue Integral

Let ]a, b[ be an open interval of R and let f be a locally Riemann-integrable function
on ]a, b[ (i.e. f is Riemann-integrable on [α, β] for all α, β such that a < α < β < b.)
We say that the generalized Riemann integral of f exists on ]a, b[ if and only if

lim
β→b

∫ β

x0

f(x)dx exists and lim
α→a

∫ x0

α

f(x)dx exists. (x0 fixed in ]a, b[). This limit when

it exists does not depend on x0 and is denoted by:

∫ b

a

f(x)dx.

Proposition 4.4
Let f be a locally Riemann-integrable function defined on ]a, b[. Then f is Lebesgue-

integrable on ]a, b[ if and only if the improper integral

∫ b

a

f(x)dx is absolutely con-

vergent and in this case the Riemann integral and the Lebesgue integral coincide (i.e.
∫ b

a

f(x)dx =

∫ b

a

f(x)d λ(x).)

Proof .
We consider two sequences (an)n and (bn)n of ]a, b[ such that the sequence (an)n

decreases to a and the sequence (bn)n increases to b. Let ϕn(x) = |f(x)|χ[an,bn].
The sequence (ϕn)n increases to |f |χ]a,b[. The functions ϕn are measurable then f is
measurable. It follows from monotone convergence theorem that

lim
n−→+∞

∫

R

ϕn(x)d λ(x) =

∫ b

a

|f(x)|d λ(x)
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Moreover it follows from the previous theorem that

∫

R

ϕn(x)d λ(x) =

∫ bn

an

|f(x)|dx.

Then from the previous definition lim
n−→+∞

∫

R

ϕn(x)d λ(x) =

∫ b

a

|f(x)|dx. Then it

follows that f is Lebesgue integrable. To show that the two integrals coincide we set
gn = fχ[an,bn]. Then (gn)n converges to fχ]a,b[. The functions gn are integrable and
|gn| ≤ |f |χ[a,b]. It follows from the Dominate Convergence Theorem that

lim
n−→+∞

∫ b

a

gn(x)d λ(x) =

∫ b

a

f(x) d λ(x)

The result follows from previous result.
Conversely If f is Lebesgue-integrable on ]a, b[, then |f | is Lebesgue-integrable
on ]a, b[. Let (an)n and (bn)n two sequences in ]a, b[, such that the sequence (an)n

decreases to a and (bn)n increases to b. The sequence fn = |f |χ[an,bn] fulfill the
hypotheses of the monotone convergence theorem, then

lim
n−→+∞

∫ b

a

fn(x)d λ(x) =

∫ b

a

f(x) d λ(x) < +∞

Moreover

∫ b

a

fn(x)d λ(x) =

∫ bn

an

|f(x)|dx which follows from the previous theorem.

Then

lim
n−→+∞

∫ bn

an

|f(x)|dx exists in R. Then

∫ b

a

|f(x)|dx < +∞.

5 Fubini’s Theorem

5.1 Product Measure Spaces

Let (X1,A1, µ1) and (X2,A2, µ2) two measure spaces. We intend to construct the
product measure on a suitable σ-algebra contained in the power set of the Cartesian
product X = X1 × X2. By a rectangular set R in X we mean any set of the form
R = A×B where A ∈ A1 and B ∈ A2. We will take as the family of elementary sets
for the product measure

C = {E =
n
⋃

j=1

Rj; Rj = Aj ×Bj, Aj ∈ A1, Bj ∈ A2}, (5.6)

where Rj are disjoint rectangles and n is an arbitrary natural number. C is an
algebra.

Definition 5.1
We define the product measure

µ1 ⊗ µ2(E) =
n
∑

j=1

µ1(A)µ2(B)

for each elementary set E ∈ C as defined by the equation (5.6).
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This definition requires justification, because the decomposition given in equa-
tion (5.6) is not unique. Suppose

E =
n
⋃

j=1

Aj ×Bj =
m
⋃

j=1

Cj ×Dj

It follows from the finite additivity of each of the measures µ1 and µ2 that

µ1(Aj)µ2(Bj) =
m
∑

k=1

µ1(Aj ∩ Ck)µ2(Bj ∩Dk),

and

µ1(Ck)µ2(Dk) =
n
∑

j=1

µ1(Aj ∩ Ck)µ2(Bj ∩Dk).

and then

m
∑

k=1

µ1(Ck)µ2(Dk) =
n
∑

j=1

µ1(Aj)µ2(Bj).

Lemma 5.2

Suppose A×B =
+∞
⋃

j=1

Aj ×Bj, where A,Aj ∈ A1 and B,Bj ∈ A2 and the Aj ×Bj are

disjoint. Then

µ1 ⊗ µ2(A×B) =
+∞
∑

j=1

µ1 ⊗ µ2(Aj ×Bj).

Proof .
We have

χA(x)χB(y) = χA×B(x, y) =
+∞
∑

j=1

χAj
(x)χBj

(y)

By the Monotone Convergence Theorem

χA(x)µ2(B) =
+∞
∑

j=1

χAj
(x)µ2(Bj),

and also by the Monotone Convergence Theorem

µ1(A)µ2(B) =
+∞
∑

j=1

µ1(Aj)µ2(Bj).
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Definition 5.3
If E ⊂ X1 ×X2; we define the x−section of E by

Ex = {y ∈ X2; (x, y) ∈ E}, y ∈ X2

and the y−section by

Ey = {x ∈ X1; (x, y) ∈ E}, y ∈ X2.

Similarly, if f :X −→ R̄, then the x and y-sections of f are the mappings fx:X2 −→ R̄

and f y:X1 −→ R̄ defined by fx(y) = f(x, y) and f y(x) = f(x, y).

5.2 Fubini-Tonelli’s Theorem

Theorem 5.4 (Fubini Tonelli)
Let (X1,A1, µ1) and (X2,A2, µ2) be two σ− finite measure spaces, and let the product
measure space be denoted by (X,A , µ). Let f be a non negative measurable function

on X. Then the functions g(x) =

∫

X2

f(x, y)d µ2(y) and h(y) =

∫

X1

f(x, y)d µ1(x)

are measurable on X1 and X2 respectively; and

∫ ∫

X

f(x, y)d µ(x, y) =

∫

X2

(
∫

X1

f(x, y)d µ1(x)

)

d µ2(y) (5.7)

=

∫

X1

(
∫

X2

f(x, y)d µ2(y)

)

d µ1(x)

These three integrals may be +∞.

5.3 Fubini’s Theorem

Theorem 5.5 (Fubini )
Let (X1,A1, µ1) and (X2,A2, µ2) be two σ− finite measure spaces, and let the product
measure space be denoted by (X,A , µ). Let f ∈ L1(X, dµ). Then the functions
∫

X2

f(x, y)d µ2(y) ∈ L1(X1, µ1) and

∫

X1

f(x, y)d µ1(x) ∈ L1(X2, µ2) and (5.7) holds

The strategy of the proof is to begin by proving the result for characteris-
tic functions of rectangles, then simple functions, and extend the result to general
measurable functions on X.

Proposition 5.6
If E ∈ A , then the sections Ex and Ey respectively belong to A2 for each

x ∈ X1, and to A1 for each y ∈ X2. If f is measurable with respect to the product
algebra A1⊗A2, then its sections fx and f y are measurable with respect to the factors
A2 and A1 respectively.
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Proof .
Let C be the collection of all subsets E ⊂ X such that Ex ∈ A2 for all x ∈ X1 and
Ey ∈ A1 for all y ∈ X2. Then (A × B)x = B if x ∈ A and (A × B)x = ∅ if x ∈ Ac.
and similarly for the section (A × B)y. Hence C contains all rectangles. Moreover,

C is a σ− algebra, since

(

+∞
⋃

j=1

Ej

)

x

=
+∞
⋃

j=1

(Ej)x and (Ex)
c = (Ec)x, and similarly for

y−sections. Therefore C ⊂ A1 ⊗ A2. The measurability of fx and f y follows from
the first statement and the relationships

(fx)
−1(B) = (f−1(B))x; (f

y)−1(B) = (f−1(B))y.

Lemma 5.7
Let (X1,A1, µ1) and (X2,A2, µ2) be two σ− finite measure spaces and (X,A , µ) be the
product measure space. Given E ∈ A , the sections (χE)x and (χE)y are measurable
in (X1,A1, µ1) and (X2,A2, µ2) respectively; and

µ(E) =

∫ ∫

X

χE(x, y)d µ(x, y) =

∫

X2

(
∫

X1

(χE)y(x)d µ1(x)

)

d µ2(y) (5.8)

=

∫

X1

(
∫

X2

(χE)x(y)d µ2(y)

)

d µ1(x)

Proof .
We shall establish the lemma for the case in which µ1 and µ2 are finite measures.
Let C be the class of sets in A for which the lemma holds. When E is a rectangle,
E = A × B, (χE)y(x) = (χE)x(y) = χA(x)χB(y) and (5.8) is equal to µ1(A)µ2(B).
Then E ∈ C .
C contain finite disjoint rectangles. It suffices to prove that C is a monotone class
(cf prop ???).
If E =

⋃+∞
j=1 Ej with (Ej)j is an increasing sequence of sets of C . Then by Monotone

Convergence Theorem E ∈ C .
If E =

⋂+∞
j=1 Ej with (Ej)j is a decreasing sequence of sets of C . Then since µ1 and

µ2 are finite measures, then by the Monotone Convergence Theorem E ∈ C .

Proof (Tonelli Theorem) .
Lemme 5.7 proves that theorem 5.4 is valid for characteristic functions for measurable
subsets and by additivity the theorem is valid for simples functions. If f is a non
negative measurable on (X,A , µ), there exists an increasing sequence of simples
functions and the result is deduced from the Monotone Convergence Theorem.

Proof (Fubini Theorem) .
If f is integrable on X, we decompose f = f+ − f− and apply Tonelli Theorem for
f+ and f−.
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A Regularity of Measures on
Metric Spaces

1 Regularity of Measures on Metric Spaces

Theorem 1.1
Let X be a metric space. We denote by BX the Borel σ−algebra on X. Then any
finite measure on X is regular. (i.e. ∀A ∈ BX and ∀ε > 0, there exist an open set U
and a closed set F of X such that F ⊂ A ⊂ U and µ(U \ F ) ≤ ε.)

Proof .
If A is a closed set we take F = A and we consider the sequence (Un)n defined by:
Un = {x; d(x,A) < 1

n
}. The sequence of open subsets (Un)n decreases to the set A

and since the measure µ is finite, then limn→+∞ µ(Un) = µ(A).
We consider C the class of subsets which fulfill the desired property:
C contains the closed sets. Let prove that C is a σ-algebra.
Let (An)n be a sequence of C , (Fn)n a sequence of closed subsets and (Un)n a sequence

of open subsets such that Fn ⊂ An ⊂ Un and µ(Un \ Fn) <
ε

2n+1
. We define U =

⋃+∞
n=1 Un, F̃ =

+∞
⋃

n=1

Fn and F =

n0
⋃

n=1

Fn. The integer n0 is selected so that µ(
+∞
⋃

n=n0

Fn) ≤

ε/2.

F ⊂
+∞
⋃

n=1

An ⊂ U and µ(U \ F ) < ε

C is closed under complementarity, then C is a σ-algebra.
If there exists a sequence (Km)m of compacts such that X =

⋃

mKm and µ is finite
on any compact, then µ is regular in the sense that for all A ∈ BX and ∀ε > 0,
there exist an open set U and a compact set K of X such that K ⊂ A ⊂ U and
µ(U \K) ≤ ε.

Lemma 1.2
Let X be a metric space and let F be a closed subset of X and ε > 0. There exists a
continuous function f on X such that f = 1 on F and f(x) = 0 if d(x, F ) > ε and
0 ≤ f(x) ≤ 1 on X.

25
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Proof .

We take ϕ(t)) =







1 if t ≤ 0
1 − t if 0 ≤ t ≤ 1

0 if t ≥ 1
and f(x) = ϕ(d(x,F )

ε
).

2 Application

Theorem 2.1
Let X be a metric space and BX the Borel σ-algebra of X. Let µ and ν two finite
measures on (X,BX). We assume that

∫

X

f(x)d µ(x) =

∫

X

f(x)d ν(x)

for any continuous function f on X, then µ = ν.

Proof .
Let F be a closed set of X. We take the same notations of the previous lemma and
we define for all n ∈ N

ϕn(t) = ϕ(nt), fn(x) = ϕn(d(x, F ))

(fn)n is a decreasing sequence of continuous functions which pointwise converges to
χF . We use the Dominate Convergence Theorem.

µ(F ) = lim
n−→+∞

∫

X

fn(x)d µ(x) =

∫

X

fn(x)d ν(x)

Then the two measures coincide.



B Riesz Theorem and
Lebesgue-Stieljes Measure

1 Riesz Theorem

Theorem 1.1
Let f be a measurable function almost everywhere finite on [0, 1]. Then for all ε > 0
there exist a closed set F ⊂ [0, 1] such that the restriction of f on F is continuous
and λ(F ) > 1 − ε.

Proof .
Since {x; f(x) = ±∞} is a null set, there exist a closed set B ⊂ [0, 1], such that
λ(B) > 1 − ε/2 and the restriction of f on B is bounded. Thus without loss of
generalities, we can suppose that f is bounded on [0, 1].
We assume in the first time that f = χA, for A a measurable subset in [0, 1]. Since the
measure λ is regular there exist a closed set G ⊂ A in [0, 1] such that λ(A \G) < ε/2
and there exist an open set H ⊃ A in [0, 1] such that λ(H \ A) < ε/2. It suffices to
take F = G ∪Hc.

If f is a simple function, f =
n
∑

j=1

λjχAj
, with Aj measurable subsets. We can always

assume that the numbers λj are real. For the function fj = λjχAj
, there exist a closed

set Fj such that the restriction of fj on Fj is continuous and λ(Fj) > 1 − ε/2n. The
function f is continuous on the closed set F =

⋂n
j=1 Fj and λ(F ) > 1 − ε.

If f is a measurable function bounded on [0, 1]. There exist a sequence of simple
functions (fn)n which converges uniformly to f . For any function fn there exists a
closed set Fn such that fn is continuous on Fn and λ(Fn) > 1−ε/2n. We consider the
compact set F =

⋂

n Fn. The sequence (fn)n converges uniformly on F to f . Then
the restriction of f on F is continuous and λ(F ) > 1 − ε.

2 Lebesgue-Stieljes Measure

We recall that if we take the Borel σ-algebra BR on R and if µ is a non-negative
measure and finite on the compacts, we associate the increasing function ϕ: R −→ R

defined by:

27
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ϕ(x) =







µ([0, x[) if x > 0
0 if x = 0

−µ([x, 0[) if x < 0

ϕ is continuous at left.
Inversely, any increasing and continuous at left function ϕ: R −→ R, we can associate
a unique non-negative measure µ such that µ([a, b[) = ϕ(b) − ϕ(a), for all a and b
in R. We recall that if two non-negative measures µ and ν on BR are such that
µ([a, b[) = ν([a, b[), for all a and b in R, then µ = ν.
Let Cc(R) the space of continuous functions on R with compact support. A linear
form L on Cc(R) is called non-negative if L(f) ≥ 0, for all non-negative function
f ∈ Cc(R). Then we have the following theorem.

Theorem 2.1 (F.Riesz’s theorem)
For any non-negative linear form L on Cc(R), we can associate a unique measure µ
on
BR such that

∫

R

f(x)d µ(x) = L(f) ∀f ∈ Cc(R)

Proof .
Uniqueness : Let µ and ν two measures on BR such that

∫

R

f(x)d µ(x) =

∫

R

f(x)d ν = L(f) ∀f ∈ Cc(R)

For any a, b of R, we take the sequence of functions (fn)n ∈ Cc(R) defined by:

fn(x) =







0 if x < a− 1
n

or x > b
1 if a ≤ x ≤ b− 1

n

nx+ (1 − na) if a− 1
n
≤ x ≤ a and − nx+ nb if b− 1

n
≤ x ≤ b

The sequence (fn)n is dominated by any function ϕ ∈ Cc(R) equal to 1 on [a − 1, b].
Then it follows from the Dominate Convergence Theorem that : µ([a, b[) = ν([a, b[),
and then µ = ν.
Existence :
Let E1 the set of functions f : R −→ R such that there exist an increasing sequence of
Cc(R) converging to f and dominated by a function h ∈ Cc(R).
For any interval ]a, b[∈ R, the characteristic function of the interval ]a, b[ is in E1. We
extend L on E1 by:

L(f) = lim
n−→+∞

L(fn)

for all f ∈ E1. It suffices to prove that L(f) does not depends on the sequence (fn)n.
Let (fn)n and (gn)n be two increasing sequences of E1 dominated by a function h ∈
Cc(R) and lim

n−→+∞
fn = lim

n−→+∞
gn.
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We want to show that lim
n−→+∞

L(fn) = lim
n−→+∞

L(gn). Let (ϕk)k, the sequence defined

by ϕk(x) = (gn(x) − fk(x))
+. ϕk ∈ Cc(R) and ϕk ≥ 0. The sequence (ϕk)k is

decreasing to 0. From the Dini theorem The convergence is uniform. Let ψ ∈ Cc(R)
such that ψ = 1 on the support of h. Then for all ε > 0, there exist k0 such that for
all k ≥ k0, 0 ≤ ϕk ≤ εψ. Then 0 ≤ L(ϕk) ≤ εL(ψ) and then lim

k−→+∞
L(ϕk) = 0. We

have: gn−fk ≤ ϕk, then L(gn) ≤ L(fk)+εL(ψ). It follows that L(gn) ≤ lim
k−→+∞

L(fk)

and then lim
k−→+∞

L(gk) = lim
k−→+∞

L(fk).

L fulfill L(f + g) = L(f) + L(g) and L(λf) = λL(f), for all λ ≥ 0 and all f, g ∈ E1.
We put

E = E1 − E1 = {f − g, f ∈ E1, g ∈ E1}

E is a vector space and contains the characteristic functions of bounded intervals. For
h ∈ E and h = f − g with f and g in E1, we still put L(h) = L(f) − L(g). This
definition of L on E does not depend of the representing. L in this way is defined on
E and non-negative. Let

ϕ(x) =







L(χ[0,x[) if x > 0
0 if x = 0

−L(χ[x,0[) if x < 0

We have L(χ[a,b[) = ϕ(b)−ϕ(a). ϕ is increasing and continuous at the left. Let µ the
measure associated to ϕ. We have: µ([a, b[) = ϕ(b) − ϕ(a) = L(χ[a,b[), then for all

bounded interval I, µ(I) = L(χI), then for any simple function f ,

∫

f(x)d µ(x) =

L(f). Let f be a continuous function with compact support, there exist a sequence
of simple functions (fn)n which converges uniformly to f and the support of the
functions fn are in a compact K fixed. Let ψ ∈ Cc(R) such that ψ = 1 on K. Let
ε > 0, there exist N ∈ N such that |f − fn| ≤ εψ for n ≥ N . Then |L(f) − L(fn)| ≤
εL(ψ) and lim

n−→+∞
L(fn) = L(f). The Dominate Convergence Theorem gives that

lim
n−→+∞

∫

R

fn(x)d µ(x) =

∫

R

f(x)d µ(x).
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C Measure Image

0.1 Measures Image

Proposition 0.2
Let (X,A , µ) be a measure space, Y any non empty set, and φ:X → Y a mapping.
Set

B = {F ⊂ Y, φ−1{F} ∈ A }, ν(F ) = µ(φ−1{F}) for every F ∈ B.

Then (Y,B, ν) is a measure space.

Proof .
• ∅ = φ−1{∅} ∈ A so ∅ ∈ B.
• If F ∈ B, then φ−1{F} ∈ A , so X \φ−1{F} ∈ A ; but X \φ−1{F} = φ−1{Y \F},
so Y \ F ∈ B.
• If (Fn)n is a sequence in B, then φ−1{Fn} ∈ A for every n, so

⋃+∞
n=1 φ

−1{Fn} ∈ A ;
but φ−1

(
⋃+∞

n=1 Fn

)

=
⋃+∞

n=1 φ
−1{Fn}, so

⋃+∞
n=1 Fn ∈ B.

Thus B is a σ-algebra.
• ν(∅) = µ(φ−1{∅}) = µ(∅) = 0.
If (Fn)n is a disjoint sequence in B, then (φ−1{Fn})n is a disjoint sequence in A , so

ν(
+∞
⋃

n=1

Fn) = µ(φ−1

(

+∞
⋃

n=1

Fn

)

) = µ(
+∞
⋃

n=1

φ−1{Fn}) =
+∞
∑

n=0

µ(φ−1{Fn}) =
+∞
∑

n=0

ν(Fn).

So ν is a measure.

Definition 0.3
The measure ν is called the image measure of µ by φ.

0.2 Examples
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