Contents

1	Mea	Measure Theory						
	1	Review	w on Riemann Integral	3				
		1.1	Definition of the Riemann Integral	3				
		1.2	Criterions of Integrability	5				
		1.3	Properties of the Riemann Integrals	7				
	2	Algeb	ora and σ -Algebra	9				
		2.1	Elementarily Operations on Sets	9				
		2.2	General Properties of σ -Algebra	12				
		2.3	Examples	13				
		2.4	σ -Algebra Generated by a Subset $P \subset \mathscr{P}(X)$	13				
		2.5	Borelian σ -Algebra in \mathbb{R}	14				
		2.6	Borelian σ -Algebra in a Topological Space	14				
		2.7	Product of σ -Algebras	14				
		2.8	Pull back of a σ -Algebra	15				
	3	Meas	ures	16				
		3.1	Generalities on Measures	16				
		3.2	Properties of Measures	19				
	4	Comp	plete Measure Spaces	19				
	5	Outer	r Measure	21				
		5.1	Monotone Class and σ -Algebra	24				
	6	Lebes	sgue Measure on \mathbb{R}	26				
	7	Meas	urable Functions	29				

1 Measure Theory

1 Review on Riemann Integral

1.1 Definition of the Riemann Integral

Definition 1.1

A finite ordered set $\sigma = \{x_0, \ldots, x_n\}$ is called a partition of the interval [a, b] if $a = x_0 < \ldots < x_n = b$. The interval $[x_j, x_{j+1}]$ is called the j^{th} subinterval of σ .

Definition 1.2

Let $f:[a,b] \longrightarrow \mathbb{R}$ be a bounded function. Define

$$M_{j} = \sup_{x \in [x_{j}, x_{j+1}]} f(x), \qquad m_{j} = \inf_{x \in [x_{j}, x_{j+1}]} f(x),$$
$$S(f, \sigma) = \sum_{j=0}^{n-1} M_{j}(x_{j+1} - x_{j})$$
(1.1)

and

$$s(f,\sigma) = \sum_{j=0}^{n-1} m_j (x_{j+1} - x_j).$$
(1.2)

 $S(f,\sigma)$ and $s(f,\sigma)$ are called respectively the upper sum and the lower sum of f on the partition σ . Note that $s(f,\sigma) \leq S(f,\sigma)$.

Definition 1.3

We say that a partition σ_1 is finer than the partition σ_2 if as sets $\sigma_2 \subset \sigma_1$.

Proposition 1.4

If σ_1 is finer than σ_2 and $f:[a,b] \longrightarrow \mathbb{R}$ is a bounded function, then

$$s(f,\sigma_2) \le s(f,\sigma_1) \le S(f,\sigma_1) \le S(f,\sigma_2) \tag{1.3}$$

Proof .

By induction, it suffices to prove the equation 1.3 for $\sigma_1 = \sigma_2 \cup \{\alpha\}$, with $\alpha \in]x_j, x_{j+1}[$. We remark that:

$$M'_{j} = \sup_{x \in [x_{j},\alpha]} f(x) \le M_{j}, \qquad M''_{j} = \sup_{x \in [\alpha, x_{j+1}]} f(x) \le M_{j},$$
$$M_{j} \ge M'_{j} = \sup_{x \in [x_{j},\alpha]} f(x), \qquad M_{j} \ge M''_{j} = \sup_{x \in [\alpha, x_{j+1}]} f(x).$$
$$m_{j} \le m'_{j} = \inf_{x \in [x_{j},\alpha]} f(x) \qquad \text{and} \qquad m_{j} \le m''_{j} = \inf_{x \in [\alpha, x_{j+1}]} f(x).$$

Then

$$S(f,\sigma_1) = \sum_{k=1}^{j-1} M_k(x_{k+1} - x_k) + M'_j(\alpha - x_j) + M''_j(x_{j+1} - \alpha) + \sum_{k=j+1}^{n-1} M_k(x_{k+1} - x_k)$$

$$\leq S(f,\sigma_2).$$

and

$$s(f,\sigma_1) = \sum_{k=1}^{j-1} m_k(x_{k+1} - x_k)) + m'_j(\alpha - x_j) + m''_j(x_{j+1} - \alpha) + \sum_{k=j+1}^{n-1} m_k(x_{k+1} - x_k))$$

$$\geq s(f,\sigma_2).$$

Proposition 1.5

If $f:[a,b] \longrightarrow \mathbb{R}$ is a bounded function and σ_1, σ_2 are two partitions of the interval [a,b], then $s(f,\sigma_1) \leq S(f,\sigma_2)$.

Proof .

 $s(f, \sigma_1) \le s(f, \sigma_1 \cup \sigma_2) \le S(f, \sigma_2).$

Definition 1.6

Let $f:[a,b] \longrightarrow \mathbb{R}$ be a bounded function. If we denote K([a,b]) the set of partitions of [a,b], then we define the upper integral of f on the interval [a,b] by:

$$S(f) = \inf_{\sigma \in K([a,b])} S(f,\sigma)$$

and the lower integral of f on the interval [a, b] by:

$$s(f) = \sup_{\sigma \in K([a,b])} s(f,\sigma)$$

Definition 1.7

Let $f: [a, b] \longrightarrow \mathbb{R}$ be a bounded function. We say that f is Riemann integrable on the interval [a, b] if S(f) = s(f).

If f is Riemann integrable on the interval [a, b], we denote $\int_{a}^{b} f(x)dx = S(f) = s(f)$ which called the integral of f on the interval [a, b].

The set of Riemann integrable functions on the interval [a, b] is denoted by $\mathscr{R}([a, b])$.

Examples .

1. If $\sigma = \{x_0 = a, \ldots, x_n = b\}$ is a partition of the interval [a, b] and $f: [a, b] \longrightarrow \mathbb{R}$ the function defined by $f(x) = c_j$ on the interval $[x_j, x_{j+1}]$ for $j = 0, \ldots, n-1$ and f(b) = 0, then f is Riemann integrable on [a, b] and $\int_a^b f(x) dx = \sum_{j=0}^{n-1} (x_{j+1} - b)$

 $x_j)c_j.$

2. Let $f = \chi_{\mathbb{Q} \cap [0,1]}$ defined on [0,1] and let $\sigma = \{x_0 = 0, \ldots, x_n = 1\}$ any partition of the interval [0,1]. Then $S(f,\sigma) = 1$ and $s(f,\sigma) = 0$. Hence f is not Riemann integrable on [0,1].

1.2 Criterions of Integrability

Theorem 1.8 (Riemann's criterion)

Let $f:[a,b] \longrightarrow \mathbb{R}$ be a bounded function. The following statements are equivalent i) f is Riemann-integrable.

ii) $\forall \varepsilon > 0$; there exists a partition σ such that $S(f, \sigma) - s(f, \sigma) \leq \varepsilon$.

Proof .

NC: If S(f) = s(f), then $\forall \varepsilon > 0$, there exists a partition σ such that $0 \le s(f) - s(f,\sigma) \le \frac{\varepsilon}{2}$ and there exists a partition σ' such that $0 \le S(f,\sigma') - S(f) \le \frac{\varepsilon}{2}$. Then $0 \le S(f,\sigma\cup\sigma') - S(f) \le S(f,\sigma') - S(f) \le \frac{\varepsilon}{2}$. In the same way $0 \le s(f) - s(f,\sigma\cup\sigma') \le s(f) - s(f,\sigma\cup\sigma') \le \frac{\varepsilon}{2}$. It follows that $S(f,\sigma\cup\sigma') - s(f,\sigma\cup\sigma') \le \varepsilon$. SC: $s(f,\sigma) \le s(f) \le S(f,\sigma)$ and $s(f,\sigma) \le S(f) \le S(f,\sigma)$, then $0 \le S(f) - s(f) \le S(f,\sigma) - s(f,\sigma) \le \varepsilon$.

Definition 1.9

If $\sigma = \{x_0, \ldots, x_n\}$ is a partition of the interval [a, b], we define the norm of σ by:

$$||\sigma|| = \sup_{0 \le j \le n-1} x_{j+1} - x_j.$$

Theorem 1.10 (Darboux's criterion)

Let $f: [a, b] \longrightarrow \mathbb{R}$ be a bounded function. The following statements are equivalent i) f is Riemann-integrable.

ii) For all $\varepsilon > 0$; there exists $\delta > 0$ such that for all partition of the interval [a, b] such that if $||\sigma|| \le \delta$ then $S(f, \sigma) - s(f, \sigma) \le \varepsilon$.

Proof .

From the theorem (1.8) the sufficient condition is obvious.

NC: assume that f is not constant. We know that there exists a partition $\sigma = \{x_0, \ldots, x_n\}$ such that $S(f, \sigma) - s(f, \sigma) \leq \varepsilon$. We denote $M = O(f, A) = \sup_{x \in [a,b]} f(x) - \inf_{x \in [a,b]} f(x)$ called the oscilation of f on the interval [a,b]. Let $\alpha_1 = \frac{\varepsilon}{nM}$, $\alpha_2 = \inf_{0 \leq j \leq n-1} (x_{j+1} - x_j)$ and $\alpha = \min(\alpha_1, \alpha_2)$.

Let $\sigma' = (y_0 = a, \ldots, y_m = b)$ a partition of [a, b] of norm $||\sigma'|| < \alpha$. There exists at most *n* intervals $]y_{j-1}, y_j[$ which contain some points x_j . The others are contained in the intervals $]x_{k-1}, x_k[$. We denote

$$M'_{j} = \sup_{x \in]y_{j}, y_{j+1}[} f(x), \quad M_{j} = \sup_{x \in]x_{j}, x_{j+1}[} f(x),$$

$$m'_{j} = \inf_{x \in]y_{j}, y_{j+1}[} f(x) \text{ and } m_{j} = \inf_{x \in]x_{j}, x_{j+1}[} f(x)$$

$$D(f,\sigma') - d(f,\sigma') = \sum_{\substack{|y_j,y_{j+1}[\subset]x_i,x_{i+1}[\\ + \sum_{x_i\in]y_j,y_{j+1}[} (y_{j+1} - y_j)(M'_j - m'_j)} (M'_j - m'_j)$$

It follows that

$$D(f,\sigma') - d(f,\sigma') \leq \sum_{i=0}^{n-1} (x_{i+1} - x_i)(M_i - m_i) + n\alpha M$$

= $D(f,\sigma) - d(f,\sigma) + n\alpha M \leq 2\varepsilon.$

Definition 1.11

Let $\sigma = \{x_0, \ldots, x_n\}$ be a partition of the interval [a, b]. We say that $\alpha = \{\alpha_0, \ldots, \alpha_{n-1}\}$ is a mark of σ if $\forall 0 \le j \le n-1$, $\alpha_j \in [x_j, x_{j+1}]$. We define

$$S(f,\sigma,\alpha) = \sum_{j=0}^{n-1} f(\alpha_j)(x_{j+1} - x_j)$$

called the Riemann sum of f on σ with respect to the mark α .

As particular case, if f is Riemann integrable on the interval [a, b], the sequence S_n defined by:

$$S_n = \frac{b-a}{n} \sum_{k=1}^n f(a+k\frac{b-a}{n})$$

converges to $\int_{a}^{b} f(x) dx$. (S_n is called a Riemann sum of f on the interval [a, b]).

1.3 Properties of the Riemann Integrals

Properties .

i) Linearity:
$$\int_{a}^{b} \alpha(f + \beta g)(x)dx = \alpha \int_{a}^{b} f(x)dx + \beta \int_{a}^{b} g(x)dx.$$

ii) If $f \ge 0$, then $\int_{a}^{b} f(x)dx \ge 0$.
iii) If $f \le g$, then $\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx.$
iv) $\left|\int_{a}^{b} f(x)dx\right| \le \int_{a}^{b} |f(x)|dx.$
v) If $m \le f(x) \le M$, for all $x \in [a, b]$, then
 $m(b-a) \le \int_{a}^{b} f(x)dx \le M(b-a).$

vi) $\forall c \in]a, b[; f \text{ is Riemann integrable on } [a, b] \text{ if and only if } f \text{ is Riemann integrable on } [a, c] \text{ and } f \text{ Riemann integrable on } [c, b] \text{ and }$

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

(This identity is called the Chasles identity)

Proof .

We put

We prove only the property vi), the others the other properties are left to the reader. Assume that f is Riemann integrable on the interval [a, b], then $\forall \varepsilon > 0$, there exists a partition σ of [a, b] such that $S(f, \sigma) - s(f, \sigma) \leq \varepsilon$. Let $\sigma' = \sigma \cup \{c\}$; then $S(f, \sigma') - s(f, \sigma') \leq S(f, \sigma) - s(f, \sigma) \leq \varepsilon$. We write $\sigma' = \sigma_1 \cup \sigma_2$, with σ_1 a partition of [a, c] with points of σ' contained in [a, c] and σ_2 a partition of [c, b] with points of σ' [c, b]. It follows that $S(f, \sigma_1) - s(f, \sigma_1) \leq \varepsilon$ and $S(f, \sigma_2) - s(f, \sigma_2) \leq \varepsilon$. Then f is Riemann integrable on [a, c] and on [c, b].

If f is Riemann integrable on [a, c] and on [c, b], then $\forall \varepsilon > 0$, there exists a partition σ_1 of [a, c] and a partition σ_2 of [c, b] such that $S(f, \sigma_1) - s(f, \sigma_1) \leq \varepsilon$ and $S(f, \sigma_2) - s(f, \sigma_2) \leq \varepsilon$. We put $\sigma = \sigma_1 \cup \sigma_2$. σ is a partition of the interval [a, b] and $S(f, \sigma) - s(f, \sigma) \leq 2\varepsilon$, which proves that f is Riemann integrable on the interval [a, b]. We prove now that

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$
$$I = \int_{a}^{b} f(x) \, dx, I_{1} = \int_{a}^{c} f(x) \, dx \text{ and } I_{2} = \int_{c}^{b} f(x) \, dx.$$

 $\forall \varepsilon > 0$, there exists $\alpha > 0$ such that for all partitions σ of [a, b], σ_1 of [a, c] and σ_2 of [c, b], with $(|\sigma| < \alpha, |\sigma_1| < \alpha \text{ and } |\sigma_2| < \alpha \text{ we have:}$

$$|S(f,\sigma) - I| \le \varepsilon, \qquad |S(f,\sigma_1) - I_1| \le \varepsilon$$

and

$$|S(f,\sigma_2) - I_2| \le \varepsilon.$$

We take the partition $\sigma' = \sigma_1 \cup \sigma_2$, then $|\sigma'| < \alpha$ and $|S(f, \sigma') - I| \le \varepsilon$. in the same way $|S(f, \sigma') - I_1 - I_2| \le |S(f, \sigma_1) - I_1| + |S(f, \sigma_2) - I_2| \le 2\varepsilon$. Then $I = I_1 + I_2$.

Remark .

If
$$b < a$$
, we denote $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$

Theorem 1.12

Let $f:[a,b] \longrightarrow [c,d]$ be a Riemann integrable function and let $\varphi:[c,d] \longrightarrow \mathbb{R}$ be a continuous function. Then $\varphi \circ f$ is Riemann integrable.

Proof .

Let $\varepsilon > 0$, we which construct a partition $\sigma = (x_0 = a, x_1, \dots, x_n = b)$ of the interval [a, b] such that: $S(\varphi \circ f, \sigma) - s(\varphi \circ f, \sigma) < \varepsilon$.

the function φ is uniformly continuous on [c, d] and bounded, then there exists M > 0such that $|\varphi(x)| \leq M$, $\forall x \in [c, d]$ and if $\varepsilon' = \frac{\varepsilon}{2M + (b - a)}$, there exists $0 < \alpha < \varepsilon'$ such that for $|x - y| < \alpha$, $|\varphi(x) - \varphi(y)| \leq \varepsilon'$, for $x, y \in [c, d]$.

As f is Riemann integrable on the interval [a, b], there exists a partition $\sigma = (x_0 = a, x_1, \ldots, x_n = b)$ of [a, b] such that:

$$S(f,\sigma) - s(f,\sigma) < \alpha^2.$$
(1.4)

Let $M_j = \sup\{f(x); x \in [x_j, x_{j+1}]\}, m_j = \inf\{f(x); x \in [x_j, x_{j+1}]\}, \tilde{M}_j = \sup\{\varphi \circ f(x); x \in [x_j, x_{j+1}]\}, \tilde{m}_j = \inf\{\varphi \circ f(x); x \in [x_j, x_{j+1}]\}.$

we denote $J_1 = \{0 \le j \le n-1; M_j - m_j < \alpha \text{ and } J_2 = \{0 \le j \le n-1; M_j - m_j \ge \alpha.$ If $j \in J_1$, then from the uniform continuity of $\varphi \circ f$, we have $|\varphi \circ f(x) - \varphi \circ f(y)| < \varepsilon'$ for all $x, y \in [x_j, x_{j+1}]$, which gives that $\tilde{M}_j - \tilde{m}_j \le \varepsilon'$, then

$$\sum_{j \in J_1} (\tilde{M}_j - \tilde{m}_j) (x_{j+1} - x_j) \le \varepsilon'(b - a).$$
(1.5)

It follows from the equation 1.4,

$$\alpha^2 > \sum_{j \in J_2} (M_j - m_j)(x_{j+1} - x_j) \ge \alpha \sum_{j \in J_2} (x_{j+1} - x_j).$$

Then $\sum_{j \in J_2} (x_{j+1} - x_j) < \alpha < \varepsilon'$ and as $\tilde{M}_j - \tilde{m}_j \leq 2M$, we have:

$$\sum_{j \in J_2} (\tilde{M}_j - \tilde{m}_j) (x_{j+1} - x_j) \le 2M \sum_{j \in J_2} (x_{j+1} - x_j) < 2M\varepsilon'.$$
(1.6)

It follows from (1.5) and (1.6) that

$$D(\varphi \circ f, \sigma) - d(\varphi \circ f, \sigma) = \sum_{j=0}^{n-1} (\tilde{M}_j - \tilde{m}_j)(x_{j+1} - x_j) \le \varepsilon'((b-a) + 2M) = \varepsilon.$$

Theorem 1.13

Let $f:[a,b] \longrightarrow [c,d]$ be a Riemann integrable function, then the function F defined by

$$F(x) = \int_{a}^{x} f(t)dt$$

is continuous.

If f is continuous in the point c, then F is differentiable in c and F'(c) = f(c).

Theorem 1.14 (The fundamental theorem of calculus) Let $f: [a, b] \longrightarrow \mathbb{R}$ be a differentiable function and f' is Riemann integrable, then

$$\int_{a}^{b} f'(x)dx = f(b) - f(a)$$

Proof .

Let $\sigma = \{x_0, \ldots, x_n\}$ be any partition of [a, b], By the Mean-Value Theorem applied to f on $[x_{j-l}, x_j]$, there is $c_j \in [x_{j-l}, x_j]$ such that $f(x_j) - f(x_{j-1}) = f'(c_j)(x_j - x_{j-1})$. Thus

$$\sum_{j=1}^{n} f'(c_j)(x_j - x_{j-1}) = \sum_{j=1}^{n} f(x_j) - f(x_{j-1}) = f(b) - f(a).$$

The sum $\sum_{j=1}^{n} f'(c_j)(x_j - x_{j-1}) = S(f, \sigma, w)$, with $w = (c_1, \dots, c_n)$ the mark on

the partition σ given by the Mean-Value Theorem. Let new a sequence of partition σ_m of [a, b], each marked in this fashion and such that $||\sigma_n||$ converges to zero. As f' is Riemann integrable, the sequence $S(f, \sigma_m, w_m)$ converges to $\int_{a}^{b} f'(x) dx$, then

$$\int_{a}^{b} f'(x)dx = f(b) - f(a).$$

14		-
		I
		I

2 Algebra and σ -Algebra

2.1 Elementarily Operations on Sets

In all that follow, X will denote a nonempty set. We denote by $\mathscr{P}(X)$ the collection of subsets of X. If A and B are in $\mathscr{P}(X)$, we put: $A \setminus B := \{x \in A \text{ and } x \notin B\} =$ $A \cap B^c$. $A \Delta B = (A \setminus B) \bigcup (B \setminus A)$ called symmetric difference of B from A, and if $A = X, X \setminus B = B^c$

We show easily prove that

$$A \setminus B = A \setminus (A \cap B) = (A \cup B) \setminus B, \qquad A\Delta B = (A \cup B) \setminus (A \cap B).$$
$$(A \setminus B) \cap (C \setminus D) = (A \cap C) \setminus (B \cup D), \qquad (A \cap B)\Delta(A \cap C) = A \cap (B\Delta C).$$

Definition 2.1 Characteristic functions of sets —

For any subset $A \in \mathscr{P}(X)$; we denote χ_A the characteristic function (or the indicator function) of A defined by $\chi_A(x) = 1$; $\forall x \in A$ and $\chi_A(x) = 0$; $\forall x \notin A$.

Properties .

All the operations on sets can be translated easily in term of characteristic functions of sets by the correspondence: $A \longrightarrow \chi_A$ when $A \in \mathscr{P}(X)$. We have the following relations:

- 1. $A \subset B \iff \chi_A \leq \chi_B$. 2. $C = A \cap B \iff \chi_C = \chi_A \cdot \chi_B$. 3. $B = A^c \iff \chi_B = 1 - \chi_A$. 4. $C = A \cup B \iff \chi_C = \chi_A + \chi_B - \chi_A \cdot \chi_B$. 5. $C = A \setminus B \iff \chi_C = \chi_A (1 - \chi_B)$. 6. $C = A \Delta B \iff \chi_C = |\chi_A - \chi_B|$.
- 7. If $(A_n)_{n \in \mathbb{N}}$ is a sequence of subsets of X, then

$$\chi_{\bigcap_n A_n} = \inf_n \chi_{\{\bigcap_{p \le n} A_p\}} = \lim_{n \to +\infty} \prod_{k=1}^n \chi_{A_k}.$$
$$\chi_{\bigcup_n A_n} = \sup_n \chi_{\{\bigcup_{p \le n} A_p\}} = \lim_{n \to +\infty} \chi_{\{\bigcup_{p \le n} A_p\}}$$

8. If $(A_n)_{n\in\mathbb{N}}$ and $(B_n)_{n\in\mathbb{N}}$ are two sequences of subsets of X, then

$$\left(\bigcup_{n=1}^{+\infty} A_n\right) \Delta\left(\bigcup_{n=1}^{+\infty} B_n\right) \quad \subset \bigcup_{n=1}^{+\infty} (A_n \Delta B_n).$$

Definition 2.2

A family of subsets of X indexed by the set of indexes I, is a mapping $j \mapsto X(j)$ from I in $\mathscr{P}(X)$. We denote $X(j) = X_j$ and the family is denoted by $(X_j)_{j \in I}$.

- 1. The family $(X_j)_{j \in I}$ is called finite (resp countable) if I is finite (resp countable).
- 2. A family $(X_j)_j$, is called pairwise disjoint (or simply disjoints) if $X_j \cap X_k = \emptyset$, $\forall j \neq k$.

Definition 2.3

1. Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of real functions on X. We define

$$(\lim \operatorname{Sup})_{n \to +\infty} f_n = \overline{\lim}_{n \to +\infty} f_n = \inf_n \operatorname{Sup} \{f_m; m \ge n\}$$

and

$$(\lim \inf)_{n \to +\infty} f_n = \underline{\lim}_{n \to +\infty} f_n = \sup_n \inf \{f_m; m \ge n\}.$$

These two limits are always exist and can take the values $\pm \infty$.

2. Let $(A_n)_{n\in\mathbb{N}}$ be a sequence of subsets of X. We define

occur in all except finitely many of the sets A_n .

$$\overline{\lim}_{n \to +\infty} A_n = \bigcap_{n=1}^{+\infty} \bigcup_{m=n}^{+\infty} A_m \text{ and } \underline{\lim}_{n \to +\infty} A_n = \bigcup_{n=1}^{+\infty} \bigcap_{m=n}^{+\infty} A_m.$$

 $\overline{\lim}_{n \to +\infty} A_n \text{ (or } \limsup_{\substack{n \to +\infty \\ n \to +\infty}} A_n \text{) is called the limit superior and } \underline{\lim}_{n \to +\infty} A_n \text{ (or } \lim_{\substack{n \to +\infty \\ n \to +\infty}} A_n \text{) is called the limit inferior.}$

Note that $(\bigcup_{m=n}^{+\infty} A_m)_n$ is a decreasing sequence of subsets of X and t follows that $\lim_{n \to +\infty} \bigcup_{m=n}^{+\infty} A_m = \bigcap_{n=1}^{+\infty} \bigcup_{m=n}^{+\infty} A_m$ exists. Similarly $(\bigcap_{m=n}^{+\infty} A_m)_n$ is an increasing sequence of subsets of X and this implies that $\lim_{n \to +\infty} \bigcap_{m=n}^{+\infty} A_m = \bigcup_{n=1}^{+\infty} \bigcap_{m=n}^{+\infty} A_m$ exists. The interpretation is that $\limsup_n A_n$ contains those elements of X that occur "infinitely often" in the sets A_n , and $\liminf_n A_n$ contains those elements that

Remarks

.

- 1. If the sequence $(f_n)_{n \in \mathbb{N}}$ converges to the function f; then $\overline{\lim}_{n \to +\infty} f_n = \underline{\lim}_{n \to +\infty} f_n = f$.
- 2. $\overline{\lim}_{n\to+\infty}A_n$ is the set of the elements of X which are in an infinite sets of A_n . Thus

$$\overline{\lim}_{n \to +\infty} A_n = \{ x \in X : \sum_{n=1}^{\infty} \chi_{A_n}(x) = +\infty \}.$$

3. $\underline{\lim}_{n\to+\infty}A_n$ is the set of elements of X which are in all the A_n except a finite number and thus

$$\underline{\lim}_{n \to +\infty} A_n = \{ x \in X : \sum_{n=1}^{\infty} \chi_{A_n^c}(x) < +\infty \}.$$

- 4. $\underline{\lim}_{n \to +\infty} A_n \subset \overline{\lim}_{n \to +\infty} A_n$.
- 5. $\chi_{\overline{\lim}_{n \to +\infty} A_n} = \overline{\lim}_{n \to +\infty} \chi_{A_n}.$
- 6. $\chi_{\underline{\lim}_{n\to+\infty}A_n} = \underline{\lim}_{n\to+\infty}\chi_{A_n}.$

Example .

Let $X = \mathbb{R}$ and let a sequence $(A_n)_n$ of subsets of \mathbb{R} be defined by $A_{2n+1} = [0, \frac{1}{2n+1}]$, and $A_{2n} = [0, 2n]$. Then

 $\underline{\lim}_{n \to +\infty} A_n = \{ x \in X; \ x \in A_n \text{ for all but finitely many } n \in \mathbb{N} \} = \{ 0 \}$

and

 $\overline{\lim}_{n \to +\infty} A_n = \{ x \in X; \ x \in A_n \text{ for infinitely many } n \in \mathbb{N} \} = [0, \infty[.$

2.2 General Properties of σ -Algebra

Definition 2.4

Let \mathscr{A} be a collection of subsets of X. \mathscr{A} is called an algebra or a field if:

- 1. $X \in \mathscr{A}$;
- 2. (Closure under complement) if $A \in \mathscr{A}$, then $A^c \in \mathscr{A}$;
- 3. (Closure under finite intersection) if $A_1, \ldots, A_n \in \mathscr{A}$, then $\bigcap_{j=1}^n A_j \in \mathscr{A}$. \mathscr{A} is called a σ -algebra or a σ -field if in addition
- 4. (Closure under countable intersection) if $(A_j)_{j\in\mathbb{N}}$ are in \mathscr{A} , then $\bigcap_{j=1}^{+\infty} A_j \in \mathcal{A}$.

If \mathscr{A} is a σ -algebra, the pair (X, \mathscr{A}) is called a **measurable space**, and the subsets in \mathscr{A} are called the measurable sets.

Remarks .

By complementarity

- 1. If \mathscr{A} is an algebra, then $\emptyset \in \mathscr{A}$.
- 2. (Closure under finite union) If \mathscr{A} is an algebra and $A_1, \ldots, A_n \in \mathscr{A}$, then $\bigcup_{j=1}^n A_j \in \mathscr{A}.$
- 3. (Closure under countable union) If \mathscr{A} is a σ -algebra and $(A_j)_{j\in\mathbb{N}}$ in \mathscr{A} , then $\bigcup_{j=1}^{+\infty} A_j \in \mathscr{A}.$

2.3 Examples

Example 1 :

 $\mathscr{A} = \{\emptyset, X\}$ is an algebra and a σ -algebra. This is the smallest σ -algebra in $\mathscr{P}(X)$.

Example 2:

 $\mathscr{A} = \mathscr{P}(X)$ is an algebra and a σ -algebra. This is the largest σ -algebra in $\mathscr{P}(X)$.

Example 3 :

Let $\mathscr{F} = \{A, B, C\}$ be a partition of X. The set

$$\mathscr{A} = \{\emptyset, X, A, B, C, A \cup B = C^c, A \cup C = B^c, B \cup C = A^c\}.$$

is a σ -algebra.

Example 4 :

1. Let $X = \mathbb{R}$ and \mathscr{A} the collection of subsets A of X such that either A or A^c is countable or \emptyset . \mathscr{A} is a σ -algebra. In fact let $(A_j)_{j \in \mathbb{N}}$ be a sequence of elements of \mathscr{A} .

If there exists p such that A_p is countable, then $\bigcap_{j=1}^{+\infty} A_j \subset A_p$ is countable and $\bigcap_{j=1}^{+\infty} A_j \in \mathscr{A}$.

If every A_j is not countable, then all A_k^c are countable, and then $\bigcup_{j=1}^{+\infty} A_j^c$ is a countable subset of \mathbb{R} and then $\bigcap_{j=1}^{+\infty} A_j \in \mathscr{A}$.

2. Let X be an infinite set and let \mathscr{A} the collection of subsets A of X such that either A or A^c is finite, then \mathscr{A} is an algebra but it is not a σ -algebra.

2.4 σ -Algebra Generated by a Subset $P \subset \mathscr{P}(X)$

Definition 2.5

Let X be a non empty set and \mathscr{A}_1 , \mathscr{A}_2 two σ -algebras on X. We say that \mathscr{A}_1 is finer then \mathscr{A}_2 if any element of \mathscr{A}_1 is an element of \mathscr{A}_2 . In this case we write $\mathscr{A}_1 \subset \mathscr{A}_2$.

Remark .

Any intersection of algebras (resp σ – algebra) is an algebra (resp σ – algebra).

Definition 2.6

Let X be a non empty set and $\mathcal{B} \subset \mathscr{P}(X)$. There exists a smallest algebra (resp σ -algebra) denoted by \mathcal{A} (\mathcal{B}), (resp $\sigma(\mathcal{B})$) that contain \mathcal{B} . This algebra (resp σ -algebra) is called the algebra (resp σ -algebra) generated by \mathcal{B} .

 $\mathcal{A}(\mathcal{B})$ (resp $\sigma(\mathcal{B})$) is the intersection of all the algebras on X (resp σ -algebra) containing \mathcal{B} . So this is the smallest algebra (resp σ -algebra) which contains \mathcal{B} .

Example 1 :

Let A be a subset of X with $A \neq \emptyset$ and $A \neq X$. The σ -algebra generated by $\{A\}$ is $\{\emptyset, X, A, A^c\}$.

Example 2 :

Let X be a non empty set and $(P_j)_{j \in J}$ is a finite partition of X. The algebra generated by (P_j) is constituted by the subsets of the form $\bigcup_{j \in I} P_j$, where $I \in \mathscr{P}(J)$, and the mapping

$$I\longmapsto \bigcup_{j\in I}P_j$$

is an isomorphism of $\mathscr{P}(J)$ in the algebra.

We remark that if J contains n elements, then the algebra contains 2^n elements.

Exercise .

Let X be an arbitrary nonempty set, and let \mathscr{A} be the family of all subsets $A \subset X$ such that either A or $X \setminus A$ is countable. Show that \mathscr{A} is the σ -algebra generated by the singleton sets $S = \{\{x\}; x \in X\}$.

Exercise .

Let X be a non empty set and $\mathcal{C} \subset \mathscr{P}(X)$. We define successively the sets: $\mathcal{C}_1 = \{\emptyset\} \cup \{X\} \cup \{A, A^c; A \in \mathcal{C}\},\$

 C_2 constituted by the finite intersections of elements of C_1 ,

 \mathcal{C}_3 constituted by the finite union of elements of \mathcal{C}_2 that are disjoints.

Prove that C_3 is the algebra generated by \mathscr{C} .

2.5 Borelian σ -Algebra in \mathbb{R}

If $X = \mathbb{R}$ and \mathscr{B} is the σ -algebra generated by the family $\{[a, b]; (a, b) \in \mathbb{R}^2\}$. This σ -algebra is denoted by $\mathscr{B}_{\mathbb{R}}$ and called the σ -algebra of Borel subsets on \mathbb{R} . ($\mathscr{B}_{\mathbb{R}}$ contains all open and closed subsets of \mathbb{R} .) Every element of $\mathscr{B}_{\mathbb{R}}$ is called a Borel subset of \mathbb{R} .

We can prove easily that

 $\mathscr{B}_{\mathbb{R}}$ is generated by $\{[a, b]; (a, b) \in \mathbb{R}^2\},\$

 $\mathscr{B}_{\mathbb{R}}$ is generated by the family of open subsets in \mathbb{R} ,

 $\mathscr{B}_{\mathbb{R}}$ is generated by the family of closed subsets in \mathbb{R} ,

 $\mathscr{B}_{\mathbb{R}}$ is generated by $\{]a, +\infty[; a \in \mathbb{R}\},\$

 $\mathscr{B}_{\mathbb{R}}$ is generated by $\{] - \infty, a]; a \in \mathbb{R}\},\$

2.6 Borelian σ -Algebra in a Topological Space

Let X be a topological space and \mathcal{A} be the family of the open subsets of X. Let \mathscr{B} be the σ -algebra generated by the family \mathcal{A} . Then \mathscr{B} is called the σ -algebra of Borel subsets on X and denoted by \mathscr{B}_X . All open and closed subsets of X are Borel subsets.

The family of the closed subsets of X generates \mathscr{B}_X .

2.7 Product of σ -Algebras

Definition 2.7

Let (X_1, \mathscr{A}_1) and (X_2, \mathscr{A}_2) be two measurable spaces. We denote by X the cartesian product $X_1 \times X_2$. A subset $R = A_1 \times A_2$ of $X_1 \times X_2$ is called a rectangle with $A_1 \in \mathscr{A}_1$ and $A_2 \in \mathscr{A}_2$. We denote by \mathcal{R} the set of all rectangles in X. The product σ -algebra of \mathscr{A}_1 and \mathscr{A}_2 on X is the σ -algebra generated by \mathcal{R} and will be denoted by $\mathscr{A}_1 \otimes \mathscr{A}_2$.

Remarks .

In the same way if (X_j, \mathscr{A}_j) , j = 1, ..., n are *n* measurable spaces, we define the σ -algebra $\otimes_{j=1}^n \mathscr{A}_j$ on the space $X = \prod_{j=1}^n X_j$, and for the remainder of this course, we provide the product space X with this σ -algebra.

2.8 Pull back of a σ -Algebra

Let X and X' two non empty sets, and let $f: X \longrightarrow X'$ a mapping. Let \mathscr{B} be a family of subsets of X'. We define

$$f^{-1}(\mathscr{B}) = \{ f^{-1}(A); \ A \in \mathscr{B} \}$$

Proposition 2.8

If \mathscr{B} is a σ -algebra on X', then $f^{-1}(\mathscr{B})$ is a σ -algebra on X called the pull back of \mathscr{B} by f.

Proof .

We have $f^{-1}(X') = X$ and $\bigcup_j f^{-1}(A_j) = f^{-1}(\bigcup_j A_j)$ and $(f^{-1}(A))^c = f^{-1}(A'^c)$. \Box

If X is a subset of X' and f is an injection of X into X', then the pull back of a σ -algebra on X' is called the **trace** of this σ -algebra on X.

Proposition 2.9

Let X and X' be two non empty sets and $f: X \longrightarrow X'$ a mapping. Let \mathcal{B} be a family of subsets of X' and \mathscr{B} the σ -algebra generated by \mathcal{B} . Then $f^{-1}(\mathscr{B})$ is the σ -algebra generated by $f^{-1}(\mathcal{B})$.

Proof .

If we denote by $\sigma(\mathcal{A})$ the σ -algebra generated by an arbitrary subset \mathcal{A} of $\mathscr{P}(X)$, then we must prove that $f^{-1}(\sigma(\mathcal{B})) = \sigma(f^{-1}(\mathcal{B}))$.

As $f^{-1}(\mathcal{B}) \subset f^{-1}(\sigma(\mathcal{B}))$, then $\sigma(f^{-1}(\mathcal{B})) \subset f^{-1}(\sigma(\mathcal{B})) = f^{-1}(\mathscr{B})$.

We shall prove the inverse inclusion in the particular case when f is surjective (onto). Let \mathscr{A} be a σ -algebra on X such that $f^{-1}(\mathscr{B}) \subset \mathscr{A} \subset f^{-1}(\mathscr{B})$. Let $\mathscr{B}_1 = f(\mathscr{A}) = \{f(A); A \in \mathscr{A}\}$. The family \mathscr{B}_1 is closed under countable union and as f is surjective (onto) and \mathscr{A} contains X then $X' \in \mathscr{B}_1$.

Let proving now that \mathscr{B}_1 is closed under complementarity.

For $K \in \mathscr{B}_1$, there exists $H \in \mathscr{A}$ such that K = f(H). As $H \in f^{-1}(\mathscr{B})$, there exists $L \in \mathscr{B}$ such that $H = f^{-1}(L)$. Thus $K = f(f^{-1}(L))$ with $L \in \mathscr{B}$. We deduce that $K^c = f(f^{-1}(L^c))$ and as $f^{-1}(L^c) = (f^{-1}(L))^c = H^c \in \mathscr{A}$, we conclude that $K^c = f(Z)$, with $Z = H^c \in \mathscr{A}$.

It results that \mathscr{B}_1 is a σ -algebra. So $\mathcal{B} \subset \mathscr{B}_1 \subset \mathscr{B}$, and as \mathscr{B} is the σ -algebra generated by \mathcal{B} , we deduce that $\mathscr{B}_1 = \mathscr{B}$.

(Let $Y \in \mathscr{B}$ then $Y \in \mathscr{B}_1$, there exists thus $Z \in \mathscr{A}$ such that $Z = f^{-1}(Y) \Rightarrow f^{-1}(Y) \in \mathscr{A}$, for any $Y \in \mathscr{B}$ where $f^{-1}(\mathscr{B}) \subset \mathscr{A}$.)

Assume now that f is injective.

We can identify X as a subset of X' and f is the canonical injection of $X \longrightarrow X'$. Let \mathscr{A} be a σ -algebra such that $f^{-1}(\mathcal{B}) \subset \mathscr{A} \subset f^{-1}(\mathscr{B})$. We put

$$\mathscr{B}_1 = \{ C \in \mathscr{P}(X'); C \cap X \in \mathscr{A} \}.$$

 \mathscr{B}_1 is a σ -algebra which contain \mathcal{B} . So $\mathscr{B}_1 \supset \mathscr{B}$. Thus $f^{-1}(\mathscr{B}_1) \supset f^{-1}(\mathscr{B})$. The result is deduced easily.

In the general case: we put Y = f(X). Let $f_1: X \longrightarrow Y$ be the mapping defined by f. Let f_2 be the canonical injection of Y into X'. $f = f_2 \circ f_1$ with f_1 surjective (onto) and f_2 injective. Let $A = f^{-1}(\mathcal{B})$ and $\mathscr{A} = f^{-1}(\mathscr{B})$. Thus $\mathscr{A} = f_1^{-1}(f_2^{-1}(\mathscr{B}))$.

From the previous result, $\sigma(f^{-1}(\mathcal{B})) = f_2^{-1}(\mathscr{B})$ is a σ -algebra generated by $f_2^{-1}(\mathcal{B})$ and $f_1^{-1}(\sigma(f^{-1}(\mathcal{B})))$ is generated by $f_1^{-1}(f_2^{-1}(\mathcal{B}))$.

3 Measures

We wish define a non-negative set function called a measure μ on $\mathscr{P}(\mathbb{R})$ which satisfies the following conditions:

- i) μ is defined on $\mathscr{P}(\mathbb{R})$
- ii) For any interval I, $\mu(I) = \ell(I)$

iii) If $(E_n)_{n \in \mathbb{N}}$ is a disjoint sequence of $\mathscr{P}(\mathbb{R})$, $(E_j \cap E_k = \emptyset, \forall j \neq k)$, then $\mu(\bigcup_{j=1}^{+\infty} E_j) = \sum_{j=1}^{+\infty} \mu(E_j) \text{ (countable additivity)}$

iv) μ is invariant under translation, in the sens that $\mu(E+x) = \mu(E), \forall x \in \mathbb{R}$ and $\forall E \subset \mathbb{R}$.

So we can not find this function defined on all $\mathscr{P}(\mathbb{R})$, but we can define this function on special subsets of $\mathscr{P}(\mathbb{R})$. (See Halmos [?])

3.1 Generalities on Measures

Definition 3.1

Let (X, \mathscr{A}) be a measurable space. A measure (or a positive measure) on X is a function $\mu: \mathscr{A} \to [0, \infty]$ such that:

1.
$$\mu(\emptyset) = 0;$$

2. (Countable additivity:) For any disjoint sequence $(A_i)_i \in \mathscr{A}$,

$$\mu(\cup_{j=1}^{+\infty} A_j) = \sum_{j=1}^{+\infty} \mu(A_j).$$
(3.7)

3. MEASURES

(We mention that the term countably additive set function μ indicates that μ satisfies (3.7). We shall also use the term σ -additive set function.)

The set (X, \mathscr{A}, μ) will be called a measure space.

Examples .

- 1. Let X be any non empty set and let $\mathscr{A} = \mathscr{P}(X)$. For $A \in \mathscr{A}$, we define $\mu(A)$ the number of elements in A if A is finite and equal to $+\infty$ if not. μ is then a measure on \mathscr{A} . This measure is called the counting measure.
- 2. $\delta_x(A) = 1$ if $x \in A$ and 0 otherwise. The measure δ_x is called the point mass at x or the Dirac measure on x.
- 3. Let μ defined on $\mathscr{P}(\mathbb{R})$ by:

$$\mu(A) = \begin{cases} 0 & \text{if } A \text{ is finite} \\ \infty & \text{otherwise} \end{cases}$$

 μ is finite additive but not countably additive since $\mathbb{N} = \bigcup_{j=1}^{+\infty} \{j\}$, but $\mu(\mathbb{N}) = +\infty \neq \sum_{j=1}^{+\infty} \mu(\{j\}) = 0$. Then μ is not a measure.

Theorem 3.2

Let μ be a measure on the measurable space (X, \mathscr{A}) . It has the following basic properties:

- 1. μ is finitely additive: For any finite subsets $A_1, \ldots, A_n \in \mathscr{A}$ of disjoints elements of $\mathscr{A}, \ \mu(\cup_{j=1}^n A_j) = \sum_{j=1}^n \mu(A_j).$
- 2. μ is monotone: If $A, B \in \mathscr{A}$ with $A \subset B$, then $\mu(A) \leq \mu(B)$.
- 3. μ is countably subadditive: If $(A_j)_{j\in\mathbb{N}} \in \mathscr{A}$ and $A = \bigcup_{j=1}^{+\infty} A_j$, then

$$\mu(A) \le \sum_{j=1}^{+\infty} \mu(A_j).$$

- 4. (Continuity from below:) If $(A_j)_j$ is an increasing sequence in \mathscr{A} , and $A = \bigcup_{j=1}^{+\infty} A_j$, then $\mu(A) = \lim_{n \to +\infty} \mu(A_n)$.
- 5. μ is subtractive: If $A, B \in \mathscr{A}$ and $A \subset B$ and $\mu(B) < +\infty$, then $\mu(B \setminus A) = \mu(B) \mu(A)$. ($\mu(A) < \infty$ suffices).
- 6. (Continuity from above:) If $(A_j)_j$ is a decreasing sequence in \mathscr{A} with $\mu(A_1) < \infty$, then $\mu(A) = \lim_{n \to +\infty} \mu(A_n)$, with $A = \bigcap_{j=1}^{+\infty} A_j$.

Proof .

- 1. This property is obvious.
- 2. $B = A \cup (B \setminus A)$, then $\mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A)$. We use property property 2) of the measure definition.
- 3. Let $B_1 = A_1$, and $B_n = A_n \setminus \bigcup_{j=1}^{n-1} B_j$, for $n \ge 2$. The sequence $(B_n)_{n \in \mathbb{N}}$ are disjoints and $\bigcup_{n=1}^{+\infty} B_n = \bigcup_{n=1}^{+\infty} A_n$. So $\mu(A) = \sum_{n=1}^{+\infty} \mu(B_n) \le \sum_{n=1}^{+\infty} \mu(A_n)$.

4. Define $(B_n)_{n \in \mathbb{N}}$ as in 3). Since $\bigcup_{j=1}^n A_j = \bigcup_{j=1}^n B_j$, then

$$\mu(A) = \mu(\bigcup_{n=1}^{+\infty} A_n) = \mu(\bigcup_{n=1}^{+\infty} B_n) = \sum_{n=1}^{+\infty} \mu(B_n) = \lim_{n \to \infty} \sum_{j=1}^{n} \mu(B_j)$$
$$= \lim_{n \to \infty} \mu(\bigcup_{j=1}^{n} B_j) = \lim_{n \to \infty} \mu(\bigcup_{j=1}^{n} A_j).$$

- 5. $\mu(B \setminus A) + \mu(A) = \mu(B)$. If $\mu(A) < \infty$ then $\mu(B \setminus A) = \mu(B) \mu(A)$.
- 6. Apply 3) to the sequence $(A_1 \setminus A_j)_j$.

Remark . (Exercise)

It is easy to prove that μ is a measure on the measurable space (X, \mathscr{B}) if and only if:

i) $\mu(\emptyset) = 0$ ii) $\mu(A \cup B) = \mu(A) + \mu(B)$, if $A \cap B = \emptyset$. iii) If $(A_n)_{n \in \mathbb{N}}$ is an increasing sequence of the σ -algebra \mathscr{B} , then

 $\pm \infty$

$$\mu(\bigcup_{n=1}^{+\infty} A_n) = \sup_n \mu(A_n).$$

Definition 3.3

- 1. We say that the measure μ is finite if $\mu(X) < +\infty$.
- 2. We say that the measure μ is σ -finite if there exists an increasing sequence $(A_j)_j$ of measurable subsets of finite measure and $\bigcup_{j=1}^{+\infty} A_j = X$.
- 3. A probability measure is a measure on (X, \mathscr{A}) is a measure such that $\mu(X) = 1$. In this case the σ -algebra \mathscr{A} is called the space of events.

3.2 Properties of Measures

Let (X, \mathscr{B}) be a measurable space. We denote by $\mathscr{M}(X, \mathscr{B})$ or $\mathscr{M}(X)$ the set of measures on the measurable space (X, \mathscr{B}) . We have the following properties:

1. The set $\mathscr{M}(X)$ is a convex cone. If μ_1 and μ_2 are in $\mathscr{M}(X)$ and $\lambda \in \mathbb{R}^+$, then $\mu_1 + \mu_2$, $\lambda \mu_1$ are measures.

We order the set $\mathcal{M}(X)$ by the relationship

$$\mu_1 \le \mu_2 \iff \mu_1(A) \le \mu_2(A); \ \forall A \in \mathscr{B}.$$

2. If $(\mu_n)_{n\in\mathbb{N}}$ is an increasing sequence of measures, then the mapping $\mu: \mathscr{B} \longrightarrow [0, +\infty]$ defined by $\mu(A) = \lim_{n \to +\infty} \mu_n(A) = \sup_n \mu_n(A)$ for any $A \in \mathscr{B}$ is a measure on X.

It is clear that $\mu(\emptyset) = 0 = \lim_{n \to +\infty} \mu_n(\emptyset)$, and if A, B are two disjoints elements of \mathscr{B} , we have

$$\mu(A \cup B) = \lim_{n \to +\infty} \mu_n(A) + \lim_{n \to +\infty} \mu_n(B) = \mu(A) + \mu(B)$$

Let now (A_n) be an increasing sequence of \mathscr{B} and $A = \bigcup_n A_n$. We have $\mu_j(A_n) \leq \mu(A_n) \leq \mu(A)$. Then

$$\mu_j(A) = \lim_{n \to +\infty} \mu_j(A_n) \le \lim_{n \to +\infty} \mu(A_n) \le \mu(A)$$

and

$$\mu(A) = \lim_{j \to +\infty} \mu_j(A) \le \lim_{n \to +\infty} \mu(A_n) \le \mu(A).$$

Then $\mu(A) = \lim_{n \to +\infty} \mu(A_n).$

4 Complete Measure Spaces

Definition 4.1

Let (X, \mathcal{B}, μ) be a measure space. A subset A of X is called **a null set or a negligible** set if A is contained in a measurable subset of measure zero.

Example

Let (X, \mathscr{B}) be a measurable space such that $\forall x \in X; \{x\} \in \mathscr{B}$. If we take $\mu = \delta_a$, with $a \in X$; then every subset $A \subset \mathscr{B}$ such that $a \notin A$, is a null set.

Remarks .

We denote by \mathcal{N} the set of null sets. We have:

1. $\emptyset \in \mathcal{N}$.

- 2. Any subset of a null set is a null set. If $A \subset B$ and $B \in \mathcal{N}$, then there is an $C \in \mathscr{B}$ such that $\mu C = 0$ and $B \subset C$; now $A \subset C$.
- 3. A countable union of null sets is a null set. If $(A_n)_n$ is any sequence in \mathscr{N} . For each $n \in \mathbb{N}$ choose an $B_n \in \mathscr{B}$ such that $A_n \subset B_n$ and $\mu(B_n) = 0$. Now $B = \bigcup_{n \in \mathbb{N}} B_n \in \mathscr{B}$ and $\bigcup_{n \in \mathbb{N}} A_n \subset \bigcup_{n \in \mathbb{N}} B_n$, and $\mu(\bigcup_{n \in \mathbb{N}} B_n) \leq \sum_{n=0}^{\infty} \mu B_n$, so $\mu(\bigcup_{n \in \mathbb{N}} B_n) = 0$.

Definition 4.2

If P(x) is some assertion applicable to numbers x of the set X, we say that

P(x) for almost every $x \in X$ or P(x) a.e. (x)

or

$$P(x)$$
 for μ - almost every x , $P(x) \mu$ - a.e. (x) ,

to mean that

$$\{x \in X; P(x) \text{ is false}\}$$

is a null set.

Definition 4.3

A measure space (X, \mathcal{B}, μ) is said to be complete if any null set is measurable $(\mathcal{N} \subset \mathcal{B})$, we say that the measure μ is complete.

Theorem 4.4

Let (X, \mathcal{B}, μ) be a measure space, and let \mathcal{N} be the set of the null sets of X. Let $\mathcal{B}' = \{A \cup B; A \in \mathcal{B} \text{ and } B \in \mathcal{N}\}$. \mathcal{B}' is a σ -algebra on X and there exists a unique measure μ' which extends the measure μ on the σ -algebra \mathcal{B}' . The measure space (X, \mathcal{B}', μ') is complete.

Proof .

Let prove now that \mathscr{B}' is a σ -algebra.

 \mathscr{B}' is evidently closed under countable union. It suffices to prove that it is closed under complementarity. Let $A' = A \cup N$ be an element of \mathscr{B}' . As N is a null set there exists a subset B of $\mathscr{B} \cap \mathscr{N}$ and $N \subset B$. We have

$$A^{\prime c} = (A \cup N)^{c} = (A \cup B)^{c} \cup (B \setminus (A \cup N)).$$

It follows then that $A^{\prime c}$ is an element of \mathscr{B}^{\prime} .

If the measure μ' exists it is unique. In fact we must have $\mu'(N) = 0$ for any $N \in \mathcal{N}$, thus if $A' = A \cup N$ is an element of \mathscr{B}' we shall have $\mu'(A') = \mu(A)$.

To show that μ' is a mapping on \mathscr{B}' , we must show that if $A_1 \cup N_1 = A_2 \cup N_2$ with $A_1, A_2 \in \mathscr{B}$ and $N_1, N_2 \in \mathscr{N}$, then $\mu(A_1) = \mu(A_2)$. So we have $A_1 \setminus A_2 \in N_2$, then it is a null set. If $B = A_1 \cap A_2$, then $A_1 = B \cup (A_1 \setminus A_2)$ and $\mu(B) = \mu(A_1)$. In the same way we shall have $\mu(B) = \mu(A_2)$, then $\mu(A_1) = \mu(A_2)$.

5. OUTER MEASURE

Let we prove now that μ' defines a measure on the σ -algebra \mathscr{B}' . If $(A'_n)_{n\in\mathbb{N}}$ be a sequence of disjoint elements of \mathscr{B}' , with $A'_n = A_n \cup N_n$, $A_n \in \mathscr{B}$ and $N_n \in \mathcal{N}$; $\forall n \in \mathbb{N}$. We have

$$\mu'(\bigcup_{n=1}^{+\infty} A'_n) = \mu'\Big((\bigcup_{n=1}^{+\infty} A_n) \cup (\bigcup_{n=1}^{+\infty} N_n)\Big) = \mu(\bigcup_{n=1}^{+\infty} A_n) = \sum_{n=1}^{+\infty} \mu(A_n) = \sum_{n=1}^{+\infty} \mu'(A'_n).$$

Finally the measure space (X, \mathscr{B}', μ') is complete because the μ' -null sets are elements of \mathscr{N} . It is evident that μ' is the smallest complete extention of the measure μ . \Box

5 Outer Measure

Definition 5.1

Let X be a nonempty set. An outer measure μ^* on X is a mapping $\mu^*: \mathscr{P}(X) \longrightarrow [0, \infty]$ which fulfills the following axioms:

i) $\mu^*(\emptyset) = 0.$

ii) If $(A_n)_{n \in \mathbb{N}}$ is a sequence of subsets of X, then

$$\mu^*(\bigcup_{n=1}^{\infty} A_n) \le \sum_{n=1}^{\infty} \mu^*(A_n).$$

iii) μ^* is increasing (i.e. $\mu^*(A) \leq \mu^*(B)$ if $A \subset B$).

Example .

Any measure on $\mathscr{P}(X)$ is an outer measure.

Definition 5.2

Let X be a set and μ^* be an outer measure on X. A subset A of X is called μ^* -measurable if

$$\forall B \subset X; \quad \mu^*(B) = \mu^*(B \cap A) + \mu^*(B \cap A^c)$$

Now we introduce the most important method of constructing measures.

Theorem 5.3 (Caratheodory's construction)

Let X be a non empty set and μ^* be an outer measure on X. Then the set \mathscr{B}' of the μ^* -measurable subsets is a σ -algebra on X and the restriction of μ^* on \mathscr{B}' denoted $\mu^*|_{\mathscr{B}'}$ is a complete measure.

Proof .

i) \emptyset is μ^* -measurable. $(\mu^*(B \cap \emptyset) + \mu^*(B \cap \emptyset^c) = \mu^*(\emptyset) + \mu^*(B) = \mu^*(B)).$

ii) Let A be a μ^* -measurable set and let B a subset of X. It follows from the definition of the outer measure that $\mu^*(B) = \mu^*(B \cap A) + \mu^*(B \cap A^c)$, then A^c is μ^* -measurable.

iii) Let $A, B \in \mathscr{B}'$ and E a subset of X. As A is a measurable subset, we have

$$\mu^{*}(E \cap (A \cup B)) = \mu^{*}(E \cap (A \cup B) \cap A) + \mu^{*}(E \cap (A \cup B) \cap A^{c})$$

= $\mu^{*}(E \cap A) + \mu^{*}(E \cap B \cap A^{c})$ (5.8)

$$\mu^{*}(E \cap (A \cup B)) + \mu^{*}(E \cap (A \cup B)^{c}) = \mu^{*}(E \cap A) + \mu^{*}(E \cap B \cap A^{c}) + \mu^{*}(E \cap A^{c} \cap B^{c})$$
$$= \mu^{*}(E \cap A) + \mu^{*}(E \cap A^{c}) = \mu^{*}(E).$$
(5.9)

Then $A \cup B$ is in \mathscr{B}' .

iv) Let A_1, A_2 be two disjoint elements of \mathscr{B}' , B a subset of X and $E = B \cap (A_1 \cup A_2)$. As $E \cap (A_1 \cup A_2)^c = \emptyset$, we use the relationship given in iii) for the subset E, we will have:

$$\mu^*(E \cap (A_1 \cup A_2)) + \mu^*(E \cap (A_1 \cup A_2)^c) = \mu^*(E \cap A_1) + \mu^*(E \cap A_1^c)$$
$$= \mu^*(B \cap A_1) + \mu^*(B \cap A_2).$$

Then

$$\mu^*(B \cap (A_1 \cup A_2)) = \mu^*(B \cap A_1) + \mu^*(B \cap A_2).$$

Let $(A_n)_{n\in\mathbb{N}}$ be a sequence of disjoint elements of \mathscr{B}' , then we have

$$\mu^{*}(B) = \mu^{*}(B \cap \bigcup_{j=1}^{n} A_{j}) + \mu^{*}(B \cap (\bigcup_{j=1}^{n} A_{j})^{c})$$

$$\geq \mu^{*}(B \cap \bigcup_{j=1}^{n} A_{j}) + \mu^{*}(B \cap (\bigcup_{j=1}^{\infty} A_{j})^{c})$$

$$\geq \sum_{j=1}^{n} \mu^{*}(B \cap A_{j}) + \mu^{*}(B \cap (\bigcup_{j=1}^{\infty} A_{j})^{c}).$$

Then

$$\mu^*(B) \ge \sum_{j=1}^{\infty} \mu^*(B \cap A_j) + \mu^*(B \cap (\bigcup_{j=1}^{\infty} A_j)^c) \ge \mu^*(B \cap \bigcup_{j=1}^{\infty} A_j) + \mu^*(B \cap (\bigcup_{j=1}^{\infty} A_j)^c).$$

The other inequality results from the property ii) of the outer measure μ^* . To finish the proof we take a sequence $(B_n)_{n\in\mathbb{N}}$ of \mathscr{B}' , and put $A_1 = B_1$, $A_n = B_n \setminus \bigcup_{j=1}^{n-1} B_j$. We have $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n$. Thus \mathscr{B}' is a σ -algebra. It is evident that the restriction of μ^* on \mathscr{B}' is a measure.

It remains to show that the measure μ^* is complete. To prove this fact it suffices to prove that any null set A is measurable. If A is a null set, then there exist an element

 $B \in \mathscr{B}'$ such that $A \subset B$ and $\mu^*(B) = 0$. Let E be a subset of X, then $\mu^*(E \cap A) = 0$ and

$$\mu^*(E) \geq \mu^*(E \cap A^c) = \mu^*(E \cap A) + \mu^*(E \cap A^c).$$

The other inequality results from the definition of the outer measure μ^* . Thus A is μ^* -measurable.

Exercise .

Let (X, \mathscr{B}, μ) be a measure space. We define the mapping $\mu^* \colon \mathscr{P}(X) \longrightarrow [0, +\infty]$ by

$$\mu^*(A) = \inf\{\sum_{j=1}^{\infty} \mu(A_j); \ A \subset \bigcup_{j=1}^{\infty} A_j \text{ and } A_j \in \mathscr{B}\}.$$
(5.10)

Show that μ^* is an outer measure and any μ -measurable set is μ^* -measurable and the restriction of μ^* on \mathscr{B} is equal to the measure μ .

Solution .

It is easy to prove that $\mu^*(\emptyset) = 0$ and μ^* is increasing.

Let $(A_n)_{n\in\mathbb{N}}$ be a sequence of subsets of X. We want to prove that $\mu^*(\bigcup_{n=1}^{+\infty}A_n)\leq$ $\sum_{n \to \infty} \mu^*(A_n)$. If there exists A_n such that $\mu^*(A_n) = +\infty$, then the inequality is trivial.

Assume now that $\forall n \in \mathbb{N}; \ \mu^*(A_n) < +\infty$.

For every $n \in \mathbb{N}$, and for every $\varepsilon > 0$, there exists a sequence $(A_{n,j})_j \in \mathscr{B}$, such that $\mu^*(A_n) \ge \sum_{j=1}^{+\infty} \mu(A_{n,j}) - \frac{\varepsilon}{2^n}$. Then the sequence $(A_{n,j})_{j,n\in\mathbb{N}}$ is a covering of the set $A = \bigcup_{j=1}^{+\infty} A_n \text{ and } \sum_{n=1}^{+\infty} \sum_{j=1}^{+\infty} \mu(A_{n,j}) \le \sum_{n=1}^{+\infty} \mu^*(A_n) + \varepsilon. \text{ Then } \mu^*(A) \le \sum_{n=1}^{+\infty} \mu^*(A_n) + \varepsilon,$

for all $\varepsilon > 0$ and so $\mu^*(A) \le \sum_{n=1}^{+\infty} \mu^*(A_n)$. Then μ^* is an outer measure.

Let now proving that $\mu^* = \mu$ on \mathscr{B} . If $A \in \mathscr{B}$, then $\mu^*(A) \leq \mu(A)$, and if $\mu^*(A) = +\infty$ then $\mu^*(A) = \mu(A)$.

Assume now that $\mu^*(A) < +\infty$, then for every $\varepsilon > 0$, there exists $(A_n)_{n \in \mathbb{N}}$ a covering of A in \mathscr{B} and $\mu^*(A) \ge \sum_{n=1}^{+\infty} \mu(A_n) - \varepsilon$. As $\mu(A) \le \sum_{n=1}^{+\infty} \mu(A_n)$, then $\mu(A) \le \mu^*(A) + \varepsilon$

for every $\varepsilon > 0$. It result that $\mu(A) = \mu^*(A), \forall A \in \mathscr{B}$.

Let now proving that any μ -measurable set is μ^* -measurable.

If $A \in \mathscr{B}$ and $B \subset X$. From the definition of the outer measure μ^* , we have $\mu^*(B) \leq \mathcal{B}$ $\mu^*(B \cap A) + \mu^*(B \cap A^c)$. Then if $\mu^*(B) = +\infty$ we have the desired equality. Assume now that $\mu^*(B) < +\infty$. Then for every $\varepsilon > 0$, there exists a covering $(B_n)_{n \in \mathbb{N}}$ of B in $(2 + \infty) \rightarrow \sum_{i=1}^{+\infty} (D_i) \rightarrow \sum_{i=1}^{+\infty} (D_i)$ () \mathbf{D}) + (AC \mathbf{c} \mathbf{D})

$$\mathscr{B}$$
 and $\mu^*(B) \ge \sum_{n=1}^{n=1} \mu(B_n) - \varepsilon$. As μ is a measure $\mu(A \cap B_n) + \mu(A^c \cap B_n) = \mu(B_n)$,
 $+\infty + \infty + \infty$

then $\mu^*(B) \ge \sum_{n=1} \mu(B_n \cap A) + \sum_{n=1} \mu(B_n \cap A^c) - \varepsilon \ge \mu^*(B \cap A) + \mu^*(B \cap A^c) - \varepsilon.$ Then $\mu^*(B) \ge \mu^*(B \cap A) + \mu^*(B \cap A^c)$. Then $\mu^*(B) = \mu^*(B \cap A) + \mu^*(B \cap A^c)$ and

A is μ^* measurable.

Theorem 5.4

Let (X, \mathscr{B}, μ) be a measure space and μ sigma-finite measure. Let μ^* the outer measure defined on $\mathscr{P}(X)$ by $\mu^*(A) = \inf\{\sum_j \mu(A_j); A \subset \bigcup_j A_j \text{ and } A_j \in \mathscr{B}\}$. We denote by $\hat{\mathscr{B}}$ the complete σ -algebra and \mathscr{B}_0 the σ -algebra of the μ^* -measurable sets. Then $\hat{\mathscr{B}} = \mathscr{B}_0$.

Proof .

According to the previous exercise $\mathscr{B} \subset \mathscr{B}_0$. Let A be a null set, there exists a measurable set B such that $A \subset B$ and $\mu(B) = 0$. Let E be a subset of X; $\mu^*(E \cap A) \leq \mu(B) = 0$ and $\mu^*(E \cap A^c) \leq \mu^*(E)$ then $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$ and $\mathscr{B} \subset \mathscr{B}_0$. Let $A \in \mathscr{B}_0$, assume that $\mu^*(A) < +\infty$, there exists a sequence $(A_{j,n})$ of \mathscr{B} such that $A \subset \bigcup_j A_{j,n}$ and $\sum_j \mu(A_{j,n}) \leq \mu^*(A) + 1/n$. We denote $B_n = \bigcup_{j=1}^{\infty} A_{j,n}$. $B_n \supset A$ and $\mu(B_n) \leq \mu^*(A) + 1/n$. Let $B = \bigcap_n B_n$, $B \in \mathscr{B}$; $A \subset B \Rightarrow \mu^*(A) \leq \mu(B)$, and we have $\mu(B) \leq \mu(B_n) \leq \mu^*(A) + 1/n$, $\forall n \Rightarrow \mu(B) \leq \mu^*(A) \Rightarrow \mu(B) = \mu^*(A) \Rightarrow \mu^*(B \setminus A) = 0$, because $\mu^*(A) < \infty$. Then $A = B \setminus (B \setminus A) = B \cap (B \setminus A)^c$. $(B \setminus A)$ is a null set then it is in the σ -algebra \mathscr{B} and in the same way for B, then $A \in \mathscr{B}$.

If $\mu^*(A) = +\infty$. Since μ is σ -finite, there exists a sequence $(E_n)_{n \in \mathbb{N}}$ of measurable

sets such that $\mu(E_n) < +\infty$ and $\bigcup_{n=1}^{+\infty} E_n = X$. Then any $A \in \mathscr{B}_0$ is written as

$$A = \bigcup_{n=1}^{+\infty} A_n, \quad A_n \in \mathscr{B}_0, \text{ and } \mu^*(A_n) < +\infty.$$

Then $A_n \in \hat{\mathscr{B}}$ and $A \in \hat{\mathscr{B}}$.

5.1 Monotone Class and σ -Algebra

Definition 5.5

A collection of sets \mathcal{M} is called a **monotone class** if for any monotone sequence $(A_n)_{n\in\mathbb{N}}$ of \mathcal{M} ; $\lim_{n\to+\infty} A_n \in \mathcal{M}$.

Examples .

- 1. Any σ -algebra is a monotone class.
- 2. An arbitrary intersection of monotone classes is a monotone class.
- 3. If $A \subset X$, the intersection of all monotone classes that contain A is called the monotone class generated by A and denoted by $\mathcal{M}(A)$.

Theorem 5.6

Let \mathcal{A} be an algebra of X. We denote by $\mathscr{M}(\mathcal{A})$ the monotone class generated by \mathcal{A} , and by $\sigma(\mathcal{A})$ the σ -algebra generated by \mathcal{A} . Then $\mathscr{M}(\mathcal{A}) = \sigma(\mathcal{A})$.

Proof .

It follows from the above remark that $\sigma(\mathcal{A})$ is a monotone class, as $\sigma(\mathcal{A})$ contains \mathcal{A} , then $\sigma(\mathcal{A})$ contains the smallest monotone class containing \mathcal{A} thus $\sigma(\mathcal{A}) \supset$ $\mathcal{M}(\mathcal{A}).$

For proving that $\sigma(\mathcal{A}) \subset \mathcal{M}(\mathcal{A})$, we define for every subset S of X the set \tilde{S} by:

$$\tilde{S} = \{T \in \mathscr{P}(X); \ S \cup T, S \setminus T \text{ and } T \setminus S \in \mathscr{M}(\mathcal{A})\}.$$

This definition is symmetric with respect to S and T, then $S \in \tilde{T} \iff T \in \tilde{S}$. We want to prove that \tilde{S} is a monotone class if it exists.

If $(A_n)_{n\in\mathbb{N}}$ is an increasing sequence of \tilde{S} ; $(S\cup A_n)_{n\in\mathbb{N}}$ is a increasing sequence of $\mathcal{M}(\mathcal{A})$, the same for the sequence $(A_n \setminus S)_{n \in \mathbb{N}}$, the sequence $(S \setminus A_n)_{n \in \mathbb{N}}$ is a decreasing sequence of $\mathcal{M}(\mathcal{A})$. Then the limit of the sequences are in $\mathcal{M}(\mathcal{A})$.

Let $A \in \mathcal{A}$, then $\forall B \in \mathcal{A}, B \in A$, then A is a monotone class containing \mathcal{A} , then $\tilde{A} \supset \mathcal{M}(\mathcal{A})$. So $\forall S \in \mathcal{M}(\mathcal{A}), S \in \tilde{A}$ for any $A \in \mathcal{A}$, and so $A \in \tilde{S}$, then $\mathcal{A} \subset \tilde{S}$; $\forall S \in \mathscr{M}(\mathcal{A})$. As \tilde{S} is a monotone class then $\mathscr{M}(\mathcal{A}) \subset \tilde{S}$.

We prove that:

 $\forall S, S' \in \mathcal{M}(\mathcal{A}), S \setminus S', S' \setminus S, S \cup S' \in \mathcal{M}(\mathcal{A}).$ If we take S' = X, we find that $S^c \in \mathscr{M}(\mathcal{A})$, in this way $\mathscr{M}(\mathcal{A})$ is an algebra. The result can be deduced from the following lemma.

Lemma 5.7

Let \mathscr{M} be an algebra closed under increasing limit, (i.e. if $(A_n)_{n\in\mathbb{N}}$ is an increasing sequence of \mathcal{M} then the limit of A_n is in \mathcal{M}), then \mathcal{M} is a σ -algebra.

Proof .

Let $(A_n)_{n \in \mathbb{N}}$ be a sequence of \mathscr{M} . Consider $B_n = \bigcup_{1 \leq j \leq n} A_j$, the sequence B_n is increasing in \mathscr{M} and $\cup_n A_n = \cup_n B_n \in \mathscr{M}$.

We end this paragraph with a property of measure that we need in the construction of Lebesgue measure.

Theorem 5.8

Let μ_1 and μ_2 be two positive measures on a measurable space (X, \mathscr{B}) . Assume that there exists a class \mathscr{C} of measurable subsets such that:

a) \mathscr{C} is closed under finite intersection and that the σ -algebra generated by \mathscr{C} is equal to \mathcal{B} .

b) There exists an increasing sequence $(E_n)_{n\in\mathbb{N}}$ in \mathscr{C} such that $\lim_{n \to \infty} E_n = X$. c) $\mu_1(C) = \mu_2(C) < +\infty$, for any $C \in \mathscr{C}$. *Then* $\mu_1 = \mu_2$.

Proof .

We suppose in the first case that $\mu_1(X) = \mu_2(X) < +\infty$.

Let $\mathscr{A} = \{A \in \mathscr{B}; \ \mu_1(A) = \mu_2(A)\}$. By hypothesis $X \in \mathscr{C}$ and $\mathscr{C} \subset \mathscr{A}$. It is easy to prove that \mathscr{A} is a monotone class. (If $(A_n)_{n\in\mathbb{N}}$ is an increasing sequence of \mathscr{A} , then $\mu_1(A_n) = \mu_2(A_n)$ for all n, and then

$$\mu_1(\bigcup_{n=1}^{+\infty} A_n) = \mu_2(\bigcup_{n=1}^{+\infty} A_n) = \mu_1(\lim A_n) = \mu_2(\lim A_n).$$

If $(A_n)_{n\in\mathbb{N}}$ is a decreasing sequence of \mathscr{A} , then $\mu_1(A_n) = \mu_2(A_n)$ for all n, as $\mu_1(X) = \mu_2(X) < +\infty$, then $\mu_1(\bigcap_{n=1}^{+\infty} A_n) = \mu_2(\bigcap_{n=1}^{+\infty} A_n)$.)

 \mathscr{A} is a σ -algebra. (If $A, B \in \mathscr{A}$ with $A \subset B$, then $\mu_1(B \setminus A) = \mu_1(B) - \mu_1(A) = \mu_2(B) - \mu_2(A) = \mu_2(B \setminus A)$ and so $B \setminus A \in \mathscr{A}$. We use the fact that μ_1, μ_2 are finite and $\mu_1(X) = \mu_2(X)$). Then $\sigma(\mathscr{C}) = \mathscr{B} \subset \mathscr{A}$ and $\mathscr{A} = \mathscr{B}$ and $\mu_1 = \mu_2$.

In the general case we take $\mu_{j,n}$ the restriction of μ_j on E_n for all $n \in \mathbb{N}$. From the first case $\mu_{1,n} = \mu_{2,n}$, which gives $\mu_1 = \mu_2$, because $\mu_j = \lim_{n \to +\infty} \mu_{j,n}$; j = 1, 2.

6 Lebesgue Measure on \mathbb{R}

Theorem 6.1

There exists only and only one measure λ on $\mathscr{B}_{\mathbb{R}}$ satisfying:

i) λ is invariant under translation. (i.e. $\forall x \in \mathbb{R}, \forall A \in \mathscr{B}_{\mathbb{R}}; \lambda(x+A) = \lambda(A)$). ii) $\lambda([0,1]) = 1$.

Proof .

Uniqueness: Assume that there exists two measures μ and ν on $\mathscr{B}_{\mathbb{R}}$ satisfying (i) and (ii) then $\nu[0, 1/n] \leq 1/n \Rightarrow \nu\{0\} = 0$ and then any finite set or countable set is a null set and all the intervals [a, b], [a, b], [a, b[and]a, b[have the same measure and equal to b-a. (We treat the case of a and b are rationals and then we take the limit.) We denote by \mathscr{E} the set of finite union of intervals of \mathbb{R} of the form $[a, b]; a, b \in \mathbb{R}$. The set \mathscr{E} is closed under finite intersection and $\mathbb{R} = \bigcup_n [-n, n[$. Then we shall have $\mu = \nu$ on \mathscr{E} . It follows from the unicity theorem 4.4 that μ and ν are equal on $\mathscr{B}_{\mathbb{R}}$. **Existence:** Define for any subset A of \mathbb{R}

$$\mu^*(A) = \inf_{\mathscr{R}} \sum_{I \in \mathscr{R}} \mathscr{L}(I).$$

 \mathscr{R} describes the whole of finite or countable coverings of A by open intervals, and $\mathscr{L}(I)$ is the length of I.

We first prove that for any interval I of \mathbb{R} , $\mu^*(I) = \mathscr{L}(I)$.

If a and b are the endpoints of I and $\varepsilon > 0$, then $I \subset]a - \varepsilon, b + \varepsilon[$ and $\mu^*(I) \leq \mathscr{L}(I) + 2\varepsilon$. It follows that $\mu^*(I) \leq \mathscr{L}(I)$.

Conversely let $(I_k)_k$ be an open covering of I, then $[a+\varepsilon, b-\varepsilon] \subset \bigcup_k I_k$. As $[a+\varepsilon, b-\varepsilon]$ is compact, there exist a finite sub-covering $(I_k)_{1\leq k\leq n}$ such that $[a+\varepsilon, b-\varepsilon] \subset \bigcup_{k=1}^n I_k$. It results that $b-a-2\varepsilon \leq \sum_{k=1}^n \mathscr{L}(I_k) \leq \sum_{k=1}^{+\infty} \mathscr{L}(I_k)$. Thus $b-a-2\varepsilon \leq \mu^*(I)$ for any $\varepsilon > 0$ and then $\mathscr{L}(I) = \mu^*(I)$.

Let Ω be an open set of \mathbb{R} and let $(I_n)_{n \in \mathbb{N}}$ be the connected components of Ω , then $\mu^*(\Omega) = \sum_{n=1}^{\infty} \mathscr{L}(I_n)$. In fact from the definition of μ^*

$$\mu^*(\Omega) \le \sum_{n=1}^{\infty} \mathscr{L}(I_n).$$
(6.11)

Conversely let $(J_k)_k$ be a covering of Ω by open intervals, we have $I_n = \bigcup_k J_k \cap I_n$. It

results that
$$\sum_{n=1}^{+\infty} \mathscr{L}(I_n) \le \sum_{n=1}^{+\infty} \sum_{k=1}^{+\infty} \mathscr{L}(I_n \cap J_k) = \sum_{k=1}^{+\infty} \sum_{n=1}^{+\infty} \mathscr{L}(I_n \cap J_k)$$
. In the other hand

the intervals $(I_n)_n$ are disjoints, then for any m, $\bigcup_{n=1}^{\infty} (J_k \cap I_n) \subset J_k$ and for all $m \in \mathbb{N}$; $\sum_{n=1}^{\infty} \mathscr{Q}(I_n \cap I_n) \subset \mathscr{Q}(I_n) \quad \text{thereafter that} \sum_{n=1}^{\infty} \mathscr{Q}(I_n \cap I_n) \subset \sum_{n=1}^{\infty} \mathscr{Q}(I_n)$

$$\sum_{n=1}^{\infty} \mathscr{L}(J_k \cap I_n) \le \mathscr{L}(J_k). \text{ It results that } \sum_{n=1}^{\infty} \mathscr{L}(I_n \cap J_k) \le \sum_{k=1}^{\infty} \mathscr{L}(J_k)$$

Then

$$\sum_{n=1}^{+\infty} \mathscr{L}(I_n) \le \mu^*(\Omega).$$
(6.12)

So relations (6.11) and (6.12) gives that $\mu^*(\Omega) \leq \sum_{n=1}^{\infty} \mathscr{L}(I_n)$.

We deduce that if $(\omega_n)_{n \in \mathbb{N}}$ is a sequence of open sets, then $\mu^*(\bigcup_n \omega_n) \leq \sum_{n=1}^{+\infty} \mu^*(\omega_n)$. In fact if $(I_{n,k})_k$ are the connected components of ω_n , we have: $\mu^*(\omega_n) = \sum_{k=1}^{+\infty} \mathscr{L}(I_{n,k})$ and

$$\mu^*(\bigcup_{n=1}^{+\infty}\omega_n) = \mu^*(\bigcup_{n,k=1}^{+\infty}I_{n,k}) \le \sum_{n,k=1}^{+\infty}\mathcal{L}(I_{n,k}) = \sum_{n=1}^{+\infty}\sum_{k=1}^{+\infty}\mathcal{L}(I_{n,k}) = \sum_{n=1}^{+\infty}\mu^*(\omega_n).$$

Let now prove that for any subset $A \subset \mathbb{R}$, $\mu^*(A) = \inf_{\substack{O \text{ open}\supset A}} \mu^*(O)$. If (I_n) be a finite or countable covering of A by open intervals. Put $\omega = \bigcup_{n=1}^{+\infty} I_n$, then $\mu^*(A) \leq \mu^*(\omega) \leq \sum_{n=1}^{+\infty} \mathscr{L}(I_n)$. We deduce that μ^* is an outer measure on $\mathscr{P}(\mathbb{R})$; in fact: i) $\mu^*(\emptyset) = 0$. ii) If $A \subset B$, then $\mu^*(A) = \inf_{\omega(open)\supset A} \mu^*(\omega) \leq \inf_{\omega(open)\supset B} \mu^*(\omega) = \mu^*(B)$.

iii) If $(A_n)_{n \in \mathbb{N}}$ is a sequence of subsets of \mathbb{R} . Our goal is to prove that

$$\mu^*(\cup_n A_n) \le \sum_n \mu^*(A_n).$$
 (6.13)

If there exists n_0 such that $\mu^*(A_{n_0}) = +\infty$, the inequality (6.13) is trivially fulfilled. Assume now that $\mu^*(A_n) < +\infty$ for all $n \in \mathbb{N}$. Let $\varepsilon > 0$, for any $n \in \mathbb{N}$ there exists an open set ω_n containing A_n such that $\mu^*(\omega_n) \le \mu^*(A_n) + \frac{\varepsilon}{2^n}$.

$$\mu^*(\cup_{n=1}^{+\infty}A_n) \le \mu^*(\cup_{n=1}^{+\infty}\omega_n) \le \sum_{n=1}^{+\infty}\mu^*(\omega_n) \le \sum_{n=1}^{+\infty}\mu^*(A_n) + \sum_{n=1}^{+\infty}\frac{\varepsilon}{2^n} = \sum_{n=1}^{+\infty}\mu^*(A_n) + \varepsilon$$
(6.14)

for any $\varepsilon > 0$, thus $\mu^*(\bigcup_{n=1}^{+\infty} A_n) \le \sum_{n=1}^{+\infty} \mu^*(A_n)$.

According to the theorem 5.3 the set of the μ^* -measurable subsets is a σ -algebra \mathscr{L} on \mathbb{R} and $\mu^*|_{\mathscr{L}}$ is a complete measure. This σ -algebra is called the **Lebesgue** σ -algebra, and the elements of \mathscr{L} are called the **Lebesgue measurable sets**. We will note $\mathscr{B}^*_{\mathbb{R}}$ this σ -algebra.

Proposition 6.2

Any Borelian subset is Lebesgue measurable.

Proof .

It suffices to show that $\forall a \in \mathbb{R}$, $]a, +\infty [\in \mathscr{L}$. Let *E* be a subset of \mathbb{R} . our goal is to prove that

$$\mu^*(E) = \mu^*(E \cap]a, +\infty[) + \mu^*(E \cap] - \infty, a]).$$
(6.15)

The inequality $\mu^*(E) \leq \mu^*(E \cap]a, +\infty[) + \mu^*(E \cap] - \infty, a])$ results from the fact that μ^* is an outer measure. For the other inequality the result is trivial if $\mu^*(E) = +\infty$. Assume that $\mu^*(E) < +\infty$. Let $\varepsilon > 0$ there exists an open set $\Omega_{\varepsilon} \supset E$ such that : $\mu^*(\Omega_{\varepsilon}) \leq \mu^*(E) + \varepsilon$. Assume in the first time that $a \notin \Omega_{\varepsilon}$.

$$\mu^*(\Omega_{\varepsilon}) = \sum_{I \in \mathcal{C}} \mathscr{L}(I) = \sum_{I \in \mathcal{C} \cap]a, +\infty[} \mathscr{L}(I) + \sum_{I \in \mathcal{C} \cap]-\infty, a[} \mathscr{L}(I)$$
(6.16)

with \mathcal{C} the set of the connected components of Ω_{ε} . Then it results that

$$\mu^*(\Omega_{\varepsilon}) = \mu^*(\Omega_{\varepsilon} \cap]a, +\infty[) + \mu^*(\Omega_{\varepsilon} \cap] - \infty, a[) \ge \mu^*(E \cap]a, +\infty[) + \mu^*(E \cap] - \infty, a[).$$

Then $\mu^*(E) \ge \mu^*(E \cap]a, +\infty[) + \mu^*(E \cap] - \infty, a]).$

If now $a \in \Omega_{\varepsilon}$, let $\Omega'_{\varepsilon} = \Omega_{\varepsilon} \setminus \{a\}$. According to the first remark $\mu^*(\Omega'_{\varepsilon}) = \mu^*(\Omega_{\varepsilon})$. This which ends the proof of the theorem in taking $\lambda = \mu^*$. The measure λ on $\mathscr{B}^*_{\mathbb{R}}$ is called the **Lebesgue measure** on \mathbb{R} .

Proposition 6.3

Let $\mathscr{B}^*_{\mathbb{R}}$ the Lebesgue σ -algebra on \mathbb{R} , then $\forall A \in \mathscr{B}^*_{\mathbb{R}}$

$$\lambda(A) = \inf_{\omega \text{ open} \supset A} \lambda(\omega)$$
$$\lambda(A) = \sup_{K \text{ compact} \subset A} \lambda(K).$$

We say that the measure λ is regular.

Proof .

If A is bounded, there exists $n \in \mathbb{N}$ such that $A \subset [-n, n]$. Let $\varepsilon > 0$, the set $[-n, n] \setminus A$ is measurable, then there exists an open set $\omega \supset ([-n, n] \setminus A)$ such that

$$\lambda(\omega) \le \lambda([-n,n] \setminus A) + \varepsilon = \lambda[-n,n] - \lambda(A) + \varepsilon$$

because $\lambda([-n,n] \setminus A) = \inf_{\omega \text{ open} \supset ([-n,n] \setminus A)} \lambda(\omega)$. Let $K = [-n,n] \cap \omega^c$. K is a compact in A.

$$2n = \lambda[-n, n] = \lambda([-n, n] \cap \omega^c) + \lambda([-n, n] \cap \omega) \le \lambda(K) + \varepsilon + \lambda[-n, n] - \lambda(A).$$

Then $\lambda(A) \leq \lambda(K) + \varepsilon$ and $\lambda(A) = \operatorname{Sup}_{K \operatorname{compact} \subset A} \lambda(K)$. If A is not bounded, then $\forall n \in \mathbb{N}$ there exists a compact $K_n \subset [-n, n] \cap A$ such that

$$\lambda(K_n) \ge \lambda([-n,n] \cap A) - 1/n$$

then

$$\sup_{K \text{ compact} \subset A} \lambda(K) \ge \sup_{n} (\lambda(K_n)) \ge \lim_{n \to +\infty} (\lambda([-n, n] \cap A) - 1/n) = \lambda(A)$$

7 Measurable Functions

Let X and Y be two nonempty sets. We showed in the previous section 2.9 that the pull back of a σ -algebra by a mapping $f: X \longrightarrow Y$ is a σ -algebra of X.

Definition 7.1

If (X, \mathscr{A}) and (Y, \mathscr{B}) are two measurable spaces. A mapping $f: X \longrightarrow Y$ is called measurable if the σ -algebra $f^{-1}(\mathscr{B}) \subset \mathscr{A}$.

Theorem 7.2

Let (X, \mathscr{A}) and (Y, \mathscr{B}) be two measurable spaces, and suppose that \mathcal{B} generates the σ -algebra \mathscr{B} . A function $f: X \to Y$ is measurable if and only if for every subset V in the generator set \mathcal{B} , its pre-image $f^{-1}(V)$ is in \mathscr{A} .

Proof .

The sufficient condition is just the definition of measurability.

For the "if" direction, define

 $\mathcal{H} = \{ V \in \mathscr{B} : f^{-1}(V) \in \mathscr{A} \}.$

It is easily verified that \mathcal{H} is a σ -algebra, since the operation of taking the inverse image commutes with the set operations of union, intersection and complement.

By hypothesis, $\mathcal{B} \subseteq \mathcal{H}$. Therefore, $\sigma(\mathcal{B}) \subseteq \sigma(\mathcal{H})$. But $\mathscr{B} = \sigma(\mathcal{B})$ by the definition of \mathcal{B} , and $\mathcal{H} = \sigma(\mathcal{H})$ since \mathcal{H} is a σ -algebra. This means that $f^{-1}(V) \in \mathscr{A}$ for every $V \in \mathscr{B}$.

Remark .

To show that a mapping $f: X \longrightarrow Y$ is measurable; it suffices to give a set \mathcal{C} which generates \mathscr{B} and such that $f^{-1}(\mathcal{C}) \subset \mathscr{A}$.

Proposition 7.3

Let (X, \mathscr{A}) be a measurable space and let $f: X \longrightarrow \mathbb{R}$ (or in \mathbb{R}) a mapping. Then f is measurable, if one of the following conditions is fulfilled:

- 1. $\forall a \in \mathbb{R} \ \{x \in X; \ f(x) \ge a\} \in \mathscr{A}.$
- 2. $\forall a \in \mathbb{R} \ \{x \in X; \ f(x) < a\} \in \mathscr{A}.$
- 3. $\forall a \in \mathbb{R} \ \{x \in X; \ f(x) \le a\} \in \mathscr{A}.$
- $4. \ \forall a, b \in \mathbb{R} \ \{x \in X; \ a < f(x) < b\} \in \mathscr{A}.$
- 5. $\forall a, b \in \mathbb{R} \ \{x \in X; \ a \leq f(x) < b\} \in \mathscr{A}.$ The space $\mathbb{R} \ (resp \ \overline{\mathbb{R}})$ is equipped with the Borel σ -algebra $\mathscr{B}_{\mathbb{R}} \ (resp \ \mathscr{B}_{\overline{\mathbb{R}}}).$ We take the measurable spaces $(\mathbb{R}, \mathscr{B}_{\mathbb{R}})$ and $(\overline{\mathbb{R}}, \mathscr{B}_{\overline{\mathbb{R}}}).$

Proof .

Let taking for example the measurable space $(\overline{\mathbb{R}}, \mathscr{B}_{\overline{\mathbb{R}}})$. As $\{x \in \overline{\mathbb{R}}; f(x) < a\} = f^{-1}([-\infty, a]) \in \mathscr{A}$. The first condition of the proposition is still written $f^{-1}\{\mathcal{C}\} \subset \mathscr{A}$, where \mathcal{C} is the class of the intervals $[-\infty, a]$ of $\overline{\mathbb{R}}$, with $a \in \mathbb{R}$. To show that f is measurable it suffices to show that the σ -algebra generated by \mathcal{C} is the Borelian σ -algebra of $\overline{\mathbb{R}}$. It is easy to show that the open intervals of $\overline{\mathbb{R}}$ are in the σ -algebra generated by \mathcal{C} .

Let
$$\mathcal{T}$$
 the σ -algebra generated by \mathcal{C} . By complementarity $[a, +\infty] \in \mathcal{T}$, and $[a, b] \in \mathcal{T}$, $\forall a, b \in \mathbb{R}$, because $[a, b] = [a, +\infty] \cap [-\infty, b]$. And $]a, b] = \bigcup_{n=1}^{+\infty} [a + \frac{1}{n}, b] \in \mathcal{T}$. And

for the same way $]a, +\infty] = \bigcup_{n=1}^{\infty} [a + \frac{1}{n}, +\infty]$. Then \mathcal{T} contains all the open sets of X and then $\mathcal{T} = \mathscr{B}_{\mathbb{R}}$.

Particular Case

Let X and Y two topological spaces and let \mathscr{B}_X and \mathscr{B}_Y the Borelian σ -algebras on X and Y respectively. Then every continuous function is measurable.

X and Y two topological spaces and let \mathscr{B}_X and \mathscr{B}_Y the Borelian σ -algebras on X and Y respectively. Then every measurable function $f: X \longrightarrow Y$ is called a Borelian function.

Proposition 7.4

Let (X_0, \mathscr{B}_0) , (X_1, \mathscr{B}_1) and (X_2, \mathscr{B}_2) three measurable spaces. Let $f_1: X_0 \longrightarrow X_1$ and $f_2: X_1 \longrightarrow X_2$ two measurable mappings, then the mapping $f_2 \circ f_1$ is measurable.

The proposition results from the fact that

$$(f_2 \circ f_1)^{-1}(\mathscr{B}_2) = f_1^{-1}(f_2^{-1}(\mathscr{B}_2)) \subset f_1^{-1}(\mathscr{B}_1) \subset \mathscr{B}_0.$$

Proposition 7.5

Let (X, \mathscr{B}) and (X_j, \mathscr{B}_j) , j = 1, ..., n (n + 1) measurable spaces, and let $f: X \longrightarrow \prod_{j=1}^{n} X_j$, a mapping $f = (f_1, ..., f_n)$. Then f is measurable if and only if each partial mapping $f_j: X \longrightarrow X_j$ is measurable.

Proof .

We remark that if p_j is the natural projection $p_j: \prod_{k=1}^n X_k \longrightarrow X_j$, $p_j^{-1}(A_j) = X_1 \times X_2 \dots \times A_j \times \dots \times X_n$, which is measurable if A_j is measurable. Then p_j is a measurable mapping.

The partial mappings $f_j = p_j \circ f$ are measurable if f is measurable. Let now suppose that $f_j, j = 1, ..., n$ are measurable. Let $A_1 \times ... \times A_n$ be a rectangle in $\prod_{k=1}^n X_k$, then

$$f^{-1}(A_1 \times \dots \times A_n) = f^{-1}(\bigcap_{j=1}^n p_j^{-1}(A_j)) = \bigcap_{j=1}^n f^{-1}(p_j^{-1}(A_j)) = \bigcap_{j=1}^n f_j^{-1}(A_j).$$

Then f is measurable.

Corollary 7.6

Let (X, \mathscr{B}) be a measurable space, f and g are two measurable functions on X with values in \mathbb{R} or $\overline{\mathbb{R}}$. Let $F: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a continuous function. Then the function h = F(f, g) is a measurable function.

Proof .

The mapping (f, g) is measurable on X with values in \mathbb{R}^2 and F is measurable thus h is measurable on X.

Corollary 7.7

Let (X, \mathscr{B}) , (Y, \mathscr{B}') and (Z, \mathscr{T}) three measurable spaces and let $f: X \times Y \longrightarrow Z$ a mapping. Then for any $a \in X$ (resp $b \in Y$), the partial mapping f(a, .) (resp f(., b)) is measurable.

Proof .

Let us fix an element $a \in X$. The mapping $g: Y \longrightarrow X \times Y$, defined by g(y) = (a, y) is measurable from the previous proposition. $f(a, .) = f \circ g$ this which shows the corollary.

Corollary 7.8

Let $(X_1, \mathscr{B}_1), \ldots, (X_n \mathscr{B}_n)$, *n* measurable spaces, $f_j: X_j \longrightarrow \overline{\mathbb{R}}$, $j = 1, \ldots, n$ and $f: \prod_{j=1}^n X_j \longrightarrow \overline{\mathbb{R}}$ defined by $f(x_1, \ldots, x_n) = f_1(x_1) \ldots f_n(x_n)$. Assume that $f_j \neq 0$. Then *f* is measurable if and only if the functions f_1, \ldots, f_n are measurable.

Proof

As the mapping $(y_1, \ldots, y_n) \longmapsto y_1.y_2...y_n$ from \mathbb{R}^n to \mathbb{R} is measurable, then it is clear that f is measurable if the mappings f_j are measurable. For proving the measurability of f_1 for example knowing that f is measurable, we choose a_2, \ldots, a_n such that $f_j(a_j) \neq 0$ for any $j = 2, \ldots, n$. For $x \in X_1$ we have:

$$f_1(x) = \frac{f(x, a_2, \dots, a_n)}{\prod_{j=2}^n (f_j(a_j))}$$

This proves that f_1 is measurable.

In particular a non empty rectangle $\prod_{j=1}^{n} A_j$ is measurable if and only if each A_j is.

Proposition 7.9

Let (X, \mathscr{B}) be a measurable space.

a) If f is measurable of (X, \mathscr{B}) with values in \mathbb{R} or $\overline{\mathbb{R}}$, then |f| is measurable. b) If $(f_n)_{n \in \mathbb{N}}$ is a sequence of measurable functions of (X, \mathscr{B}) with values in \mathbb{R} or in $\overline{\mathbb{R}}$, then the functions g,h,k defined by $g(x) = \sup_{n \in \mathbb{N}} f_n(x)$, $h(x) = \overline{\lim}_{n \to +\infty} f_n(x)$ and $k(x) = \underline{\lim}_{n \to +\infty} f_n(x)$ are measurable.

Proof .

a) If a < 0; $\{x \in X; |f(x)| > a\} = X$. If $a \ge 0$; $\{x \in X; |f(x)| > a\} = \{x \in X; f(x) > a\} \cup \{x \in X; f(x) < -a\} = f^{-1}(]a, +\infty]) \cup f^{-1}([-\infty, -a[]) \in \mathscr{B}$. b) $\{x \in X; g(x) > a\} = \bigcup_{n \in \mathbb{N}} \{x \in X; f_n(x) > a\} \in \mathscr{B}$. $h(x) = \inf_{n \in \mathbb{N}} (\operatorname{Sup}_{j \ge n} f_j(x))$

$$\{x \in X; h(x) > a\} = \bigcap_{n=1}^{+\infty} \bigcup_{j=n}^{\infty} \{x \in X; f_j(x) > a\} \in \mathscr{B}.$$

 $k(x) = \operatorname{Sup}_{n \in \mathbb{N}}(\inf_{j \ge n} f_j(x))$

$$\{x \in X; \ k(x) > a\} = \bigcup_{n=1}^{+\infty} \bigcap_{j=n}^{\infty} \{x \in X; \ f_j(x) > a\} \in \mathscr{B}.$$

Remark .

It results from the previous proposition that if f is measurable then the functions $f^+ = \text{Sup}(f, 0)$ and $f^- = \inf(f, 0)$ are measurable, and if $(f_n)_{n \in \mathbb{N}}$ is a sequence of measurable functions which converges point wise toward a function f on X, then f is measurable.

Corollary 7.10

For any sequence $(f_n)_{n\in\mathbb{N}}$ of measurable functions with real values on a measurable space X, if $C = \{x \in X; \lim_{n \to +\infty} f_n(x) \text{ exists in } \overline{\mathbb{R}}\}$. Then C is measurable.

Proof .

We put $D = C^c$, $D = \{x \in X; \underline{\lim}_{n \to +\infty} f_n(x) < \overline{\lim}_{n \to +\infty} f_n(x)\}$. If we put $g = \underline{\lim}_{n \to +\infty} f_n$ and $h = \overline{\lim}_{n \to +\infty} f_n$. For each rational r, let

$$D_r = \{x \in X; \ g(x) < r < h(x)\} = \{g(x) < r\} \cap \{h(x) > r\}$$

which is measurable. $D = \bigcup_{r \in \mathbb{Q}} D_r$ which proves the measurability of D.

Theorem 7.11

Let $A \subset \mathbb{R}^m$ and $f: A \longrightarrow \mathbb{R}^n$ a mapping. Assume that for any point $a \in A$, there exists a neighborhood V(a) such that

$$\mu_n^*(f(A \cap V(a))) = 0$$

Then $\mu_n^*(f(A)) = 0.$

Proof .

For any $a \in A$, there exists a ball $B \subset \mathbb{R}^m$ of center of rational coordinates such that $a \in B$ and $\mu_n^*(f(A \cap B)) = 0$. The family \mathcal{B} of these balls is at least countable and cover A. It follows that f(A) is covered by the sequence $f(A \cap B)$, $B \in \mathcal{B}$, and every one is of measure zero. It follows that $\mu_n^*(f(A)) = 0$.

Theorem 7.12

Let $A \subset \mathbb{R}^m$ and $f: \mathbb{R}^m \longrightarrow \mathbb{R}^n$ a mapping such that, there exists $s \geq m/n$ and

$$|f(x) - f(y)| \le M^s |x - y|^s, \quad \forall x, y \in A.$$

Then

1. If
$$s > m/n \Rightarrow \mu_n^*(f(A)) = 0$$
.
2. If $s = m/n \Rightarrow \mu_n^*(f(A)) \le 2^n (M\sqrt{m})^m \mu_n^*(A)$.

Proof .

We can suppose that $\mu_m^*(A) < \infty$, if not we take the sequence $A \cap [-p, p]$; $p \in \mathbb{N}$. We denote $||x||_{\infty} = \sup_{1 \le j \le k} |x_j|$ if $x \in \mathbb{R}^k$. We have $||x||_{\infty} \le |x| \le \sqrt{n} ||x||_{\infty}$ on \mathbb{R}^n and $||x||_{\infty} \le |x| \le \sqrt{m} ||x||_{\infty}$ on \mathbb{R}^m . Thus

$$||f(x) - f(y)||_{\infty} \le (M\sqrt{m})^s ||x - y||_{\infty}^s, \quad \forall \ x, y \in A$$

Let $0 < \varepsilon < 1$ and P = P(b, r) a rectangle with $r < \varepsilon < 1$. Assume that $P \cap A \neq \emptyset$. Let $a, b \in A \cap P \Rightarrow ||x - b||_{\infty} \le r/2$, $||a - b||_{\infty} \le r/2$ and $||x - a||_{\infty} \le r$. Then it follows that $||f(x) - f(a)||_{\infty} \le (M\sqrt{m})^s r^s$ and

$$f(A \cap P) \subset P(f(a)), 2(M\sqrt{m})^s r^s \Rightarrow \mu_n^*(f(A \cap P)) \le 2^n (M\sqrt{m})^{ns} r^m r^{ns-m}$$

If $(P_k)_k$ is a covering of A by of the rectangles of thisôtés $\leq \varepsilon$, then

$$\mu_n^*(f(A)) \le 2^n (M\sqrt{m})^{ns} \varepsilon^{ns-m} \sum_k Vol(P_k)$$

Thus $\mu_n^*(f(A)) \le 2^n (M\sqrt{m})^{ns} \varepsilon^{ns-m} \mu_m^*(A).$

Corollary 7.13

- 1. Every null set in \mathbb{R}^n is of measure zero in any system of coordinate in \mathbb{R}^n .
- 2. Every subspace of dimension m < n is a null set in \mathbb{R}^n .

zero.

Proof .

1. Every linear mapping $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ fulfills $||f(x)|| \le M ||x||$. The result follows from the previous theorem with $m \le n$ and s = 1.

2. If V is a subspace of dimension $m < n, V = f(\mathbb{R}^m)$ and we applied the first result of this corollary.

Corollary 7.14

Let $f: \mathbb{R}^m \longrightarrow \mathbb{R}^n$ be a mapping of class \mathcal{C}^1 in any point a of $A \subset \mathbb{R}^m$. If m < n then $\mu_n^*(f(A)) = 0$.

Proof .

For any $a \in A$ there exists an open ball B(a, r) such that

$$||f(x) - f(y)|| \le (1 + ||df(a)||)||x - y||$$

for any $x, y \in B(a, r)$, df(a) is the differential of f in the point a. It follows that

$$\mu_n^*(f(A \cap B(a, r))) = 0 \Rightarrow \mu_n^*(f(A)) = 0$$

c		
L		
		ı

Corollary 7.15

Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a mapping of class \mathcal{C}^1 in any point a of $A \subset \mathbb{R}^n$. If $\mu_n^*(A) = 0$ then $\mu_n^*(f(A)) = 0$.

Exercise .

Let $f: \mathbb{R}^m \longrightarrow \mathbb{R}^n$ be a mapping of class \mathcal{C}^p and let A a subset of \mathbb{R}^m . Assume that $p > m/n, D_j f = 0$ on A for any $0 \le j \le p - 1$. Show that $\mu_n^*(f(A)) = 0$. (ind: we can prove that $||f(x) - f(y)|| \le M ||x - y||^p$ locally on A)

Exercise .

Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear mapping such that $f(e_j) = \lambda_j e_j, e_1, \ldots, e_n$ is a base of \mathbb{R}^n . Show that if A is a subset of \mathbb{R}^n

$$\mu_n^*(f(A)) \le |\lambda_1, \dots, \lambda_n| \mu_n^*(A)$$

(ind: if P is a rectangle of center a and of sides of lengths s_1, \ldots, s_n , then f(P) is a rectangle of center f(a) and of sides of lengths $|\lambda_1|s_1, \ldots, |\lambda_n|s_n$. If any $|\lambda_j| = 0$ the result is trivial and if not we can applied the result to f^{-1} .

Theorem 7.16 (Egoroff)

Let $(X, \mathscr{B}), \mu$ be a measure space. Assume that the measure μ is bounded. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of real or complex measurable functions on X which converges point wise on X to a function f. For any $\varepsilon > 0$ there exists a set $A_{\varepsilon} \in \mathscr{B}$, such that $\mu(A_{\varepsilon}) \leq \varepsilon$ and the restriction of the sequence (f_n) on the complementary of A_{ε} is uniformly convergent.

Proof .

The function f is measurable. For any integers (n, k), k > 0, let

$$E_n^{(k)} = \bigcap_{p=n}^{+\infty} \{x; |f_p(x) - f(x)| \le \frac{1}{k}.\}$$

This set is measurable. For a given k, the sequence $(E_n^{(k)})_{n\in\mathbb{N}}$ is increasing and $\lim_{n\to+\infty} E_n^{(k)} = X$. (Because the sequence $(f_n)_{n\in\mathbb{N}}$ converges to f on X). As μ is bounded, $\lim_{n\to+\infty} \mu(E_n^{(k)})^c = 0$. Then there exists an integer n(k) such that $\mu(E_{n(k)}^{(k)})^c \leq \varepsilon/2^k$. The set $A_{\varepsilon} = \bigcup_{k=1}^{+\infty} (E_{n(k)}^{(k)})^c$ is appropriate. In fact $\mu(A_{\varepsilon}) \leq \varepsilon$, and on the complementary of A_{ε} the sequence $(f_n)_{n\in\mathbb{N}}$ converges uniformly to f.

Remark .

The requirement that μ is bounded is essential. For constructing a counterexample it suffices of take μ the Lebesgue measure on \mathbb{R} and f_n the characteristic function of the range $[n, +\infty]$. (Assume the existence of an invariant measure by translation on \mathbb{R} , called Lebesgue measure.)

The classical Cantor ternary set .

we recall E_2 this which remains

Let a < b two real numbers. We call "tiers median" of the interval $I \subset [a, b]$, the open interval of length $\frac{b-a}{3}$ and of the same center that [a, b]. $(I =]\frac{b-a}{3}, \frac{2(b-a)}{3}]$. Let $E_0 = [0, 1]$. We remove the tiers-median of E_0 , and we recall E_1 this which remains. $E_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$. We remove the tiers-median of these two intervals and

$$E_2 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{3}{9}] \cup [\frac{6}{9}, \frac{7}{9}] \cup [\frac{8}{9}, 1].$$

By repeating this operation successively, we construct a sequence of decreasing sets $(E_n)_{n \in \mathbb{N}}$ such that each E_n is union of 2^n intervals each one is of length $\frac{1}{3^n}$. We denote $I_{n,k}$ $(k = 1, \ldots, 2^n)$ the intervals of E_n . We call **triadic Cantor's set** the set

$$P = \bigcap_{n=1}^{\infty} E_n$$

 $P \neq \emptyset$ because it is clear that 0 and 1 are in P. P is compact because P is closed and bounded. P does not contain any non empty open interval. In fact E_n can not contain intervals of length greater than $\frac{1}{3^n}$. If I is an interval in P, $I \subset P \subset E_n$, thus the length of I is small that $\frac{1}{3^n}$, this for any n, then I is of length zero, and thus P is of interior empty. From the construction if x is an endpoint of an interval $I_{n,k}$, then x remains an endpoint of an interval $I_{n+p,k(p)}$ for any $p \in \mathbb{N}$. Thus $x \in P$. It results that P is a perfect set; in fact for any $x \in P$ and for any $n \in \mathbb{N}$, there exists a_n and b_n in P such that $a_n \leq x \leq b_n$ and $\lim_{n \to +\infty} (b_n - a_n) = 0$. It suffices to take a_n and b_n the endpoints of the intervals $I_{m,k}$. The sequences $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ are bounded, then we can extract a convergent sub-sequence. And as $b_n - a_n > 0$ and $\lim_{n \to +\infty} (b_n - a_n) = 0$, $x = \lim_{n \to +\infty} b_n = \lim_{n \to +\infty} a_n$ and it is an accumulation point. It is easy to verify that the left endpoints of the intervals $I_{n,k}$ are of the form $\sum_{p=1}^{n} \frac{\alpha_p}{3^p}$ where $\alpha_p = 0$ or 2. There result that any point x of P is limit of a sequence of points of P which are of the endpoints space of intervals of the form $I_{n,k}$. Thus $x = \sum_{p=1}^{+\infty} \frac{\alpha_p}{3^p}$,

with $\alpha_p = 0$ or 2. It result that P is in bijection with the sets of the mapping of $\mathbb{N} \longrightarrow \{0, 2\}$ which is not countable. We have P is in bijection with [0, 1]. Thus P is a compact of measure zero and in bijection with [0, 1].