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1 Measure Theory

1 Review on Riemann Integral

1.1 Definition of the Riemann Integral

Definition 1.1

A finite ordered set o = {x, ...

,Tn} is called a partition of the interval |a,b] if

a=x9<...<x,=">0. The interval [x;,xj41] is called the jth’ subinterval of o.

Definition 1.2

Let f:]a,b] — R be a bounded function. Define

M;= Sup f(z), m;= _inf f(x),
z€lx;,mj41] T€lw),wji1]

n—1

S(f.0) =) Mz — ;) (1.1)
=0

and

n—1

s(fro) =) my(w — ;). (1.2)
=0

S(f,0) and s(f,o) are called respectively the upper sum and the lower sum of f on
the partition o. Note that s(f,o) < S(f,0).

Definition 1.3

We say that a partition oy is finer than the partition oo if as sets o9 C 0.

Proposition 1.4

If o1 is finer than o9 and f:[a,b] — R is a bounded function, then

s(f,o2) < s(f,01) < S(f,01) < S(f,09)

Proof .

(1.3)

By induction, it suffices to prove the equation 1.3 for o7 = ooU{a}, with a €]x;, xj44].

We remark that:
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M; = Sup f(z) < Mj, M., = Sup f(z)<M

R
Z’E[LU]',O(} JZG[OZ,LU]'-Q-l}

M; > MJ/ = Sup f(x), M; > M]/-/ = Sup f(=).

z€zj,al r€lonxj41]
mj < m;- = inf f(x) and m; < m;/ = inf f(x).
z€[zj,a] z€onxj41)
Then
-1 n—1
S(f,o1) = My(wps1 — ) + Mj(a — 2j) + M (zj51 — o) + > My(zpes — 1))
k=1 k=j+1
S S f7 02)'
and
j—1 n—1
s(f,o1) = ka(xk—&-l — k) + mj(a — ;) + m; (Tjp1 —a) + Z my(Tpy1 — Tg))
k=1 k=j+1
Z S(fa 0-2)'

Proposition 1.5
If f:]la,b] — R is a bounded function and 01,09 are two partitions of the interval
la,b], then s(f,o1) < S(f,09).

Proof .
S(f, O'1> S S(f, 01 UO'Q) S S(f, 0'2).

Definition 1.6
Let f:]a,b] — R be a bounded function. If we denote K([a,b]) the set of partitions
of |a,b], then we define the upper integral of f on the interval [a,b] by:

S(f)= inf S(f,o
(= _jnt . 5(.0)
and the lower integral of f on the interval [a,b] by:

s(f)= Sup s(f o)

c€K([a,b])

Definition 1.7
Let f:[a,b] — R be a bounded function. We say that [ is Riemann integrable on the
interval [a,b] if S(f) = s(f).

If f is Riemann integrable on the interval [a,b], we denote / f(x)dx = S(f) = s(f)

which called the integral of f on the interval [a,b].
The set of Riemann integrable functions on the interval [a, b] is denoted by F2([a,b]).
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Examples .

1. Ifo ={xg =a, ... ,x, = b} is a partition of the interval [a, b] and f:[a,b] — R
the function defined by f(x) = ¢; on the interval [z;,z;41[for j =0, ... ,n—1
and f(b) = 0, then f is Riemann integrable on [a, b] and /b f(z)dx = nzl(xjH_
;)¢5 "

2. Let f = Xqnjo,1) defined on [0, 1] and let o = {zy =0, ... ,x, = 1} any partition

of the interval [0, 1]. Then S(f,0) =1 and s(f,0) = 0. Hence f is not Riemann
integrable on [0, 1].

1.2 Criterions of Integrability

Theorem 1.8 (Riemann’s criterion)

Let f:]a,b] — R be a bounded function. The following statements are equivalent
i) [ is Riemann-integrable.
ii) Ve > 0; there exists a partition o such that S(f,o0) — s(f,0) <e.

Proof .

NC: If S(f) = s(f), then ¥V € > 0, there exists a partition o such that 0 < s(f) —
s(f,o) < § and there exists a partition ¢’ such that 0 < S(f,0") — S(f) < 5. Then
0 < S(f,0Ua’)=S(f) <S(f,0")=S(f) < 5. Inthesame way 0 < s(f)—s(f,oUo’) <
s(f) —s(f,0) < 5. It follows that S(f,cUo’) —s(f,cUd’) <e.

SC: s(f,0) <s(f) <S(f,0) and s(f,0) < S(f) < S(f,0), then 0 < S(f) — s(f) <
S(f,0) —s(f,0) <e, forall e > 0. It follows that S(f) = s(f).

O
Definition 1.9
If o = {xg, ... ,x,} is a partition of the interval [a,b], we define the norm of o by:
lol| = Sup zj41 —y.
0<j<n—1

Theorem 1.10 (Darbouz’s criterion)
Let f:]a,b] — R be a bounded function. The following statements are equivalent

i) f is Riemann-integrable.

it) For all € > 0; there exists 6 > 0 such that for all partition of the interval
la,b] such that if ||o|| < 0 then S(f,0) —s(f,0) <e.

Proof .
From the theorem (1.8) the sufficient condition is obvious.
NC: assume that f is not constant. We know that there exists a partition o =

{wo, ..., @, } such that S(f,0)—s(f,0) <e. Wedenote M = O(f, A) = Sup,¢(o 4 f(2)—
infyepap f(x) called the oscilation of f on the interval [a,b]. Let oy = LM’ ay =
n

Ogjgflil(qu,l — z;) and o = min(ay, o).
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Let o' = (yo = a, ... ,ym, = b) a partition of [a,b] of norm ||o’|| < . There exists at
most n intervals |y;_1,y;| which contain some points x;. The others are contained in
the intervals |zy_1, zx[. We denote

M; = Sup f(z), Mj= Sup [f(2),
z€ly; s+l z€lrj i
my = inf  f(z) and m; = inf  f(x).
z€lyj yj+1( z€lj,mj|
D(f,0") —d(f,0') = > (i —y) (M) —m))

1v5,yi+1[Clwi,zit1]

+ Y (W —y) (M) = m))

i €)Y ,Yj+1]

It follows that

i
L

D(f, O'/) — d(f, O'/) (xiJrl — xz)(Mz — m@) + naM

VAN
1

= D(f,0)—d(f,o)+naM < 2e.
O
Definition 1.11
Leto = {x, ... ,x,} be a partition of the interval [a,b]. We say that « = {ag, ... , 1}
is a mark of 0 if VO < j <n—1, o € [xj,7,41].
We define

5(7.,0) = 3 F(0) (w511~ ;)

called the Riemann sum of f on o with respect to the mark a.
As particular case, if f is Riemann integrable on the interval [a, b], the sequence

Sy defined by :

)

a
n n

k=1

b
converges to / f(z)dz. (S, is called a Riemann sum of f on the interval |a,b]).
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1.3 Properties of the Riemann Integrals

Properties . ) ) .
i) Linearity: / alf + Bg)(x)dx = a/ f(z)dx +ﬁ/ g(z)dz

b
i) If f >0, then/ f(z)dz > 0.

iii) If f <y, then/ f(zx dx</bg( )dx.

/f d:v’</[f )|dz.

v) If m < f(x) < M, for all x € [a,b], then

b
m(b— a) §/ f(z)de < M(b—a).

vi) Ve €la,b[; f is Riemann integrable on [a,b] if and only if f is Riemann
integrable on [a, ¢] and f Riemann integrable on [c, b] and

/abf(x)dx _ /acf(x)der /be(x)dx

(This identity is called the Chasles identity)

Proof .

We prove only the property vi), the others the other properties are left to the reader.
Assume that f is Riemann integrable on the interval [a,b], then ¥V ¢ > 0, there
exists a partition o of [a,b] such that S(f,o) — s(f,0) < e. Let 0/ = 0 U {c}; then
S(f,0") = s(f,0') < S(f,0)—s(f,0) <e. Wewrite 0’ = o1 U0y, with oy a partition
of [a, ¢] with points of ¢’ contained in [a, ¢] and o9 a partition of [c, b] with points of
o' [c,b]. Tt follows that S(f,01) — s(f,01) < e and S(f,09) — s(f,02) <e. Then f is
Riemann integrable on [a, ¢] and on [c, b].

If f is Riemann integrable on [a, ¢] and on [c, b], then ¥V & > 0, there exists a partition
o1 of [a,c] and a partition oy of [c, b] such that S(f,01) — s(f,01) < e and S(f,02) —
s(f,02) <e. We put 0 = 01 Uos. o is a partition of the interval [a, b] and S(f, o) —
s(f,0) < 2e, which proves that f is Riemann integrable on the interval [a, b].

We prove now that
b c b
/ f(x) dx:/ f(z) dm—l—/ f(z) dx

b

Weput[-/f ) de, I = /f ) dz and I, = /f()dx.

V e > 0, there exists a >0 such that for all partitions o of [a,b], o of [a, | and o9 of
[e, b], with (|o| < a, |o1] < a and |o9| < a we have:

‘S<f70-)_[‘§87 ’S(fvo-l)_jllgg
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and
|S(f,02) — L] < e.

We take the partition ¢’ = o1 Uy, then |0'| < a and |S(f,0") —I]| < e. in the
same way |S(f,0") — I — L] < |S(f,01) — 1|+ |S(f,02) — 1| < 2e. Then I = I, + L.
0

Remark .

a b
If b < a, we denote / f(x) de = —/ f(z) dx
b a

Theorem 1.12
Let f:la,b] — [c,d] be a Riemann integrable function and let p:[c,d] — R be a
continuous function. Then p o f is Riemann integrable.

Proof .
Let € > 0, we which construct a partition 0 = (g = a,x1, ... ,x, = b) of the interval
la, b] such that: S(po f,0) —s(po f,o) <e

the function ¢ is uniformly continuous on [¢, d| and bounded, then there exists M > 0
such that |p(z)| < M, Vz € [¢,d] and if &' = m, there exists 0 < a < &’
such that for |z —y| < a, |p(z) — ¢(y)| < ¢, for z,y € [¢,d].

As f is Riemann integrable on the interval [a, b], there exists a partition o = (xy =

a,ry, ... ,T, =b) of [a,b] such that:

S(f, o) —s(f,0) <a’ (1.4)

Let M; = Sup{f(z); = € [xj,xj1]}, m; = inf{f(x); = € [z;,x;11]}, M; = Sup{po
f(@); @ € [zj,win]}, my = inf{p o f(x); v € [r), z;1]}

we denote J; ={0<j<n—-1;, Mj—m; <aand J,={0<j<n—-1; M;—m; > a.
If j € Jy, then from the uniform continuity of ¢ o f, we have |po f(z) —¢o f(y)| < &
for all z,y € [z}, x,4+1], which gieves that Mj —m; < €', then

> (M5 — i)y — a5) < €(b—a). (1.5)

Jje€N

It follows from the equation 1.4,

a >Z —m;) xj+1—:vj)>az Tjt1 — Xj).

J€J2 JEJ2
Then Z(xj+1 — ;) <a<¢e and as M; —1n; < 2M, we have:
JE€J2
D (M=) (i — ) <2M Y (w500 — a) < 2Me'. (1.6)
J€J2 JjE2

It follows from (1.5) and (1.6) that

i
L

D(po f,0) —d(po fo) =) (My—i;)(xjm — ;) < ((b—a) +2M) =¢.

[
Il
o
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Theorem 1.13
Let f:[a,b] — [c,d] be a Riemann integrable function, then the function F defined

by N
Flz) = / F(t)dt

18 CcONtINUOUS.
If [ is continuous in the point ¢, then F' is differentiable in ¢ and F'(c) = f(c).

Theorem 1.14 (The fundamental theorem of calculus)
Let f:]a,b] — R be a differentiable function and f' is Riemann integrable, then

/ f(@)de = F(b) — f(a).

Proof .

Let 0 = {zo, ... ,z,} be any partition of [a, b], By the Mean-Value Theorem applied
to f on [x;_y, x;], there is ¢; € [z;_;, x| such that f(z;)— f(x;—1) = f'(¢;)(x; —xj-1).
Thus

Z fle)(zy —xj0) = Z f(x;) = f(xj-1) = f(b) — f(a).

The sum Z () (@;—x;—1) = S(f,0,w), with w = (¢q, ... ,¢,) the mark on
j=1
the partition o given by the Mean-Value Theorem. Let new a sequence of partition
om of [a, b], each marked in this fashion and such that ||o,|| converges to zero. As f’
b

is Riemann integrable, the sequence S(f, 0y, w,,) converges to / f'(z)dx, then
a

| r@de= 50) - f(a)

2  Algebra and c—Algebra

2.1 Elementarily Operations on Sets

In all that follow, X will denote a nonempty set. We denote by (X)) the collection
of subsets of X. If A and B are in Z(X), weput: A\B:={r € Aandz ¢ B} =
AN B¢ AAB = (A\ B)J(B \ A) called symmetric difference of B from A, and if
A=X,X\B=B

We show easily prove that
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A\B=A\(ANnB)=(AuB)\B, AAB=(AUB)\(ANB).
(A\B)N(C\D)=(AnC)\(BUD), (ANB)A(ANC)=AnN(BAC)

Definition 2.1 Characteristic functions of sets —
For any subset A € Z(X); we denote x a the characteristic function (or the indicator
function) of A defined by xa(z) =1; Vo € A and xa(z) =0; Vx ¢ A.

Properties .

All the operations on sets can be translated easily in term of characteristic functions
of sets by the correspondence: A — x4 when A € Z(X). We have the following
relations:

1. ACB <= x4 < xs

2.C =ANB <= X¢c=X4-XB-

3. B = A° < xp=1—xa.

4. C = AUB < Xc=Xxa+tXB— XAXB-
5. C = A\ B <= xc = xa(l—x5).

6. C = AAB <= xc=|xa—xz|-

7. If (A,)nen is a sequence of subsets of X, then
XﬂnAn = Hﬁf X{ﬂpgnAp} = lim HXAk‘
k
Xy, an = Sgp X{Upen 4pt — nl_l,rfoo X{Up<n 4p}°
8. If (Ay)nen and (By)nen are two sequences of subsets of X, then

(JAanAal By < | J(A.AB,).

n=1

Definition 2.2
A family of subsets of X indexed by the set of indezes I, is a mapping j — X (j)
from I in P(X). We denote X(j) = X; and the family is denoted by (X;)jer-

1. The family (X;),er is called finite (resp countable) if I is finite (resp countable).

2. A family (X;);, is called pairwise disjoint (or simply disjoints) if X; N Xy =0,
Vi # k.

Definition 2.3
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1. Let (fn)nen be a sequence of real functions on X. We define

(hm Sup)n—>+oo fn :mn—»-i-oofn = inf Sup {fmam Z n}
and
(lim inf),—yoo fn =lim, ,  fn = Sup inf {f,;m >n}.

These two limits are always exist and can take the values oc0.

2. Let (Ap)nen be a sequence of subsets of X. We define

. +o0 400 oo 400
lim,, . Ap ﬂ U Ay and lim, A U m A,
n=1m=n n=1m=n
lim,, 00 A, (or limsup A, ) is called the limit superior and lim, . A, (or
n——+o00
lim Jinf A,,) is called the limit inferior.
+0o0o
Note that (U Ap)n 18 a decreasing sequence of subsets of X and t follows
—ir-nojn +00 +o00
that nEElm L_J Am q U A, exists. Similarly ( m Ap)n s an increasing
+oo +oo +oo
sequence of subsets of X and this implies that hrf Anm U ﬂ A,, exists.
m=n n=1m=n

The interpretation is that limsup,, A,, contains those elements of X that occur
"infinitely often” in the sets A,, and liminf, A, contains those elements that
occur in all except finitely many of the sets A,.

Remarks

1. If the sequence (f, )nen converges to the function f; then lim, o f, = lim, | tookn =

1.

2. lim, 400 A, is the set of the elements of X which are in an infinite sets of A,,.
Thus

lim,_y0d, = {2 € X: ZXAn(x) = +oo}.

3. lim, . A, is the set of elements of X which are in all the A,, except a finite
number and thus

lim, , A, ={r e X: ZXAC r) < 4o0}.
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4. lim, ., A, C lim,, 400 Anp.
5. Xm A = limn_>+oox,4n.
6. X]'i_mnﬂvLooAn - h_mn_>+OOXAn '

Example .

Let X = R and let a sequence (A,), of subsets of R be defined by Ay,,; = [0, Tlﬂ],
and Ay, = [0,2n]. Then

lim, ., A, = {z € X; z € A,for all but finitely many n € N} = {0}

and

lim,, 4004, = {7 € X; x € A,for infinitely many n € N} = [0, oo.

2.2 General Properties of o0—Algebra

Definition 2.4
Let o be a collection of subsets of X. < is called an algebra or a field if:

1. Xed;
2. (Closure under complement) if A € of , then A° € o;

3. (Closure under finite intersection) if Ay, ..., A, € o, then (\;_, A; € .
o is called a o—algebra or a o—field if in addition

4. (Closure under countable intersection) if (A;)jen are in o, then ﬂ;r:o‘f Aje A

If o/ is a o—algebra, the pair (X, <) is called a measurable space, and the subsets
in &/ are called the measurable sets.

Remarks .
By complementarity

1. If & is an algebra, then () € o7

2. (Closure under finite union) If &/ is an algebra and Ay, ..., A, € &, then
U4 e

J=1

3. (Closure under countable union) If &7 is a o—algebra and (A;);en in <7, then
+oo

A e

Jj=1
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2.3 Examples

Example 1 :

o/ = {0, X} is an algebra and a o—algebra. This is the smallest oc—algebra in
Z(X).
Example 2 :
o/ = P(X) is an algebra and a oc—algebra. This is the largest oc—algebra in Z(X).
Example 3 :

Let = {A, B,C} be a partition of X. The set

o ={0,X,A,B,C;,AUB=C°AUC =B°,BUC = A°}.
is a o—algebra.

Example 4 :

1. Let X =R and & the collection of subsets A of X such that either A or A°is
countable or (). o7 is a o—algebra. In fact let (A4;);en be a sequence of elements
of &7.

If there exists p such that A, is countable, then N;%{A; C A, is countable and
+

If every A; is not countable, then all Aj, are countable, and then U;;O‘fAj is a

countable subset of R and then N A; € 7.

2. Let X be an infinite set and let & the collection of subsets A of X such that
either A or A€ is finite, then .7 is an algebra but it is not a o-algebra.

2.4 o0—Algebra Generated by a Subset P C Z(X)

Definition 2.5
Let X be a non empty set and oy, ot two o—algebras on X. We say that <, is finer
then <f5 if any element of o/, is an element of of5. In this case we write <) C 5.

Remark .
Any intersection of algebras (resp o— algebra) is an algebra (resp o— algebra).

Definition 2.6

Let X be a non empty set and B C P(X). There exists a smallest algebra (resp
o—algebra) denoted by A ( B), (resp o(B)) that contain B. This algebra (resp
o—algebra) is called the algebra (resp o—algebra) generated by B.

A(B) (resp o(B)) is the intersection of all the algebras on X (resp o—algebra) con-
taining B. So this is the smallest algebra (resp o—algebra) which contains B.

Example 1 :
Let A be a subset of X with A # () and A # X. The o—algebra generated by {A} is
{0, X, A, A}.
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Example 2 :
Let X be a non empty set and (P;);c is a finite partition of X. The algebra generated
by (F;) is constituted by the subsets of the form (J;.; Pj, where I € (), and the

mapping

I— | JP
jeI
is an isomorphism of Z(J) in the algebra.
We remark that if J contains n elements, then the algebra contains 2" elements.

Exercise .

Let X be an arbitrary nonempty set, and let </ be the family of all subsets A C X
such that either A or X \ A is countable. Show that o7 is the o-algebra generated by
the singleton sets S = {{z};z € X}.

Exercise .

Let X be a non empty set and C C Z(X). We define successively the sets:
C={0}U{X}U{A, A% A e},
Cy constituted by the finite intersections of elements of Cy,
Cs constituted by the finite union of elements of Cy that are disjoints.
Prove that Cs is the algebra generated by % .

2.5 Borelian c—Algebra in R

If X =R and £ is the o—algebra generated by the family {[a, b[; (a,b) € R*}. This
o—algebra is denoted by g and called the o—algebra of Borel subsets on R. (%g
contains all open and closed subsets of R.) Every element of %y is called a Borel
subset of R.

We can prove easily that

B is generated by {[a,b[; (a,b) € R?*},

Py is generated by the family of open subsets in R,

HBr is generated by the family of closed subsets in R,

Py is generated by {]a, +oo[; a € R},

Pr is generated by {| — 00, al; a € R},

2.6 Borelian 0—Algebra in a Topological Space

Let X be a topological space and A be the family of the open subsets of X. Let
A be the o—algebra generated by the family A. Then 4 is called the o—algebra of
Borel subsets on X and denoted by Zx. All open and closed subsets of X are Borel
subsets.

The family of the closed subsets of X generates Xx.

2.7 Product of c—Algebras
Definition 2.7
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Let (X1, 9) and (X, %) be two measurable spaces. We denote by X the cartesian
product X1 X Xo. A subset R = Ay X Ay of X1 X X5 s called a rectangle with A; € o/
and Ay € 5. We denote by R the set of all rectangles in X. The product c—algebra
of oy and oty on X is the o—algebra generated by R and will be denoted by o/ & ots.

Remarks .
In the same way if (X;, %), j = 1, ... ,n are n measurable spaces, we define the

o—algebra ®7_,<7; on the space X = H X, and for the remainder of this course, we
j=1
provide the product space X with this c—algebra.

2.8 Pull back of a 0—Algebra

Let X and X' two non empty sets, and let f: X — X’ a mapping. Let £ be a
family of subsets of X’. We define

[7HU(#)={f(A); Ae #}

Proposition 2.8
If B is a o—algebra on X', then f~Y(%) is a o—algebra on X called the pull back of
B by f.

Proof .
We have f~1(X') = X and U, f~'(4;) = f~1(U; 4;) and (f~1(A))° = f~1(4°). O

If X is a subset of X’ and f is an injection of X into X’, then the pull back of a
o—algebra on X’ is called the trace of this c—algebra on X.

Proposition 2.9

Let X and X' be two non empty sets and f: X — X' a mapping. Let B be a family
of subsets of X' and P the o—algebra generated by B. Then f~Y(AB) is the o—algebra
generated by f~Y(B).

Proof .

If we denote by o(A) the o—algebra generated by an arbitrary subset A of Z(X),
then we must prove that f~!(c(B)) = o(f~1(B)).

As f7H(B) C f}(o(B)), then o(f71(B)) C f7}(0(B)) = f1(£).

We shall prove the inverse inclusion in the particular case when f is surjective (onto).
Let &/ be a o—algebra on X such that f~(B) C &« C f~Y(AB). Let B, = () =
{f(A); A € o/}. The family 4, is closed under countable union and as f is surjective
(onto) and 7 contains X then X' € 4.

Let proving now that 4 is closed under complementarity.

For K € %, there exists H € & such that K = f(H). As H € f~(%), there
exists L € % such that H = f~'(L). Thus K = f(f~'(L)) with L € 2. We deduce
that K¢ = f(f~Y(L°)) and as f~'(L¢) = (f~(L)) = H® € &, we conclude that
K¢ = f(Z), with Z = H° € o .
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It results that %, is a o—algebra. So B C #; C A, and as A is the o—algebra
generated by B, we deduce that #, = Z#.

(Let Y € % then Y € %, there exists thus Z € & such that Z = f~1(Y) =
f7UY) e o, for any Y € B where f~H(B) C &)

Assume now that f is injective.

We can identify X as a subset of X’ and f is the canonical injection of X — X'

Let &/ be a o—algebra such that f~}(B) C & C f~1(%). We put

={CeZX);,CNnXedd}

%, is a o—algebra which contain B. So %; D B. Thus f~1(%) D fH#). The
result is deduced easily.

In the general case: we put Y = f(X). Let fi: X — Y be the mapping defined by
f. Let f; be the canonical injection of Y into X’. f = fyo f; with f; surjective (onto)
and f, injective. Let A = f~1(B) and o/ = f~1(%). Thus & = f; ' (f; ' (B)).

From the previous result, o(f~1(B)) = f; *(#) is a c—algebra generated by f, ' (B)
and fi ' (o(f~1(B))) is generated by fi'(f; ' (B)). O

3 Measures

We wish define a non-negative set function called a measure p on &?(R) which satisfies
the following conditions:

i) p is defined on Z(R)

ii) For any interval I, pu(I) = ¢(I)

iii) If (E,)nen is a disjoint sequence of Z(R), (E; N Ey = 0, Vj # k), then

+o0 +o0
,u(U E;) = Z p(E;) (countable additivity)

iv) p is invariant under translation, in the sens that u(E +z) = p(F), Ve € R
and VE C R.

So we can not find this function defined on all #(R), but we can define this
function on special subsets of Z(R). (See Halmos [?])

3.1 Generalities on Measures

Definition 3.1
Let (X, 47) be a measurable space. A measure (or a positive measure) on X is a
function u: o/ — |0, 00| such that:

1. p(0) = 0;
2. (Countable additivity:) For any disjoint sequence (A;); € <,

(U5 A)) Z (A (3.7)
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(We mention that the term countably additive set function p indicates that u
satisfies (3.7). We shall also use the term o-additive set function.)

The set (X, .o, 1) will be called a measure space.

Examples .

1. Let X be any non empty set and let & = Z(X). For A € o/, we define u(A)
the number of elements in A if A is finite and equal to +o0 if not. p is then a
measure on /. This measure is called the counting measure.

2. §,(A) = 1if z € A and 0 otherwise. The measure J, is called the point mass at
2 or the Dirac measure on x.

3. Let u defined on Z(R) by:

0 if A is finite

00 otherwise

)= {

w is finite additive but not countably additive since N = U;OT{ j}, but p(N) =
+o0o
+o00 # Zu({j}) = 0. Then p is not a measure.

Jj=1

Theorem 3.2
Let p be a measure on the measurable space (X, /). It has the following basic prop-
erties:

1. p s finitely additive: For any finite subsets Ay, ..., A, € o/ of disjoints
elements of o, p(Uj_, A;) = Z,u(Aj).
j=1

2. pis monotone: If A, B € & with A C B, then u(A) < u(B).

3. is countably subadditive: If (A;)jen € & and A = Uj:o‘fAj, then

+o0o
HA) < 3 (4.

4. (Continuity from below:) If (A;); is an increasing sequence in o, and A =
UZTA;), then p(A) = Tim p(Ay).

5. w is subtractive: If A,B € o/ and A C B and u(B) < +oo, then u(B\ A) =
u(B) — n(A). (u(A) < oo suffices).

6. (Continuity from above:) If (A;); is a decreasing sequence in o/ with p(A;) <
0o, then p(A) = lim p(A,), with A= N7 A;.
n—-+00



18 CHAPTER 1. MEASURE THEORY

Proof .
1. This property is obvious.
2. B=AU(B\ A), then u(B) = u(A) + n(B\ A) > pu(A). We use property
property 2) of the measure definition.

n—1
3. Let By = A, and B, = A, \ U B;, for n > 2. The sequence (B,),en are

j=1

+00 o0 ~+o00
disjoints and U B, = U An. So pu(A) = Z,u(Bn) < Zu(A
n=1 n=1 n=1 n=1

4. Define (B,,)nen as in 3). Since U A= U B;, then

Jj=1 Jj=1

+o0 +o0o
=u(JA) = wl Bn) Zu )= lim > u(B)
= Ju U By = fim (U 4
5. B\ A) + p(A) = u(B). If p(A) < oo then u(B\ A) = pu(B) — p(A).
6. Apply 3) to the sequence (A; \ 4;),.

Remark . (Exercise)
It is easy to prove that u is a measure on the measurable space (X, %) if and only

if:
i) (@) =
i) p(AU ) w(A) 4+ u(B), it AnB = 0.
iii) If (A,)nen is an increasing sequence of the o-algebra %, then

“+00

p(lJ An) = Sup (4.

n=1
Definition 3.3
1. We say that the measure p is finite if u(X) < 4o0.

2. We say that the measure u is o-finite if there exists an increasing sequence
(A;); of measurable subsets of finite measure and U725 A; = X

3. A probability measure is a measure on (X, o) is a measure such that p(X) = 1.
In this case the o—algebra <7 is called the space of events.
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3.2 Properties of Measures

Let (X, %) be a measurable space. We denote by .# (X, %) or .4 (X) the set of
measures on the measurable space (X, ). We have the following properties:

1. The set .#(X) is a convex cone. If yy and py are in #(X) and A € RT, then
p1 + p2, Ajiy are measures.

We order the set .#(X) by the relationship

p < po = i(A) < po(A); VA € 2.

2. If (ptn)nen is an increasing sequence of measures, then the mapping pu: 8 —

[0,4+00] defined by u(A) = lir+n tn(A) = Sup p,(A) for any A € A is a
measure on X. !

It is clear that (@) = 0 = lim wu,(0), and if A, B are two disjoints elements

n—-+o0o
of A, we have

pw(AUB) = lim p,(A)+ lim p,(B) = u(A) + u(B).

n—-4o0o n—-4o0o

Let now (A,) be an increasing sequence of # and A = |J, A,. We have

pi(A) = lim p;(Ay) < lim p(Ap) < p(A)

n—-+o0o n—-+o0o

and

j—+oo n—-+00

p(A) = lim p;(A) < lm p(Ay) < p(A).

Then pu(A) = lim u(A,).

n—-+o0o

4 Complete Measure Spaces

Definition 4.1
Let (X, A, 1) be a measure space. A subset A of X is called a null set or a negligible
set if A is contained in a measurable subset of measure zero.

Example .
Let (X, %) be a measurable space such that Vo € X; {z} € A. If we take u = d,,
with a € X; then every subset A C Z such that a ¢ A, is a null set.

Remarks .
We denote by .4 the set of null sets. We have:

1. 0 e .
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2. Any subset of a null set is a null set. If A C B and B € .4, then there is an
C € # such that uC =0and B C C; now A C C.

3. A countable union of null sets is a null set. If (A,), is any sequence in .4 .
For each n € N choose an B,, € # such that A, C B, and u(B,) = 0. Now
B = U,en Bn € # and |J,,cn An C U,y Br, and pu(U,en Br) < > o #Bn, s0
M(UneN Bn) =0.

Definition 4.2
If P(x) is some assertion applicable to numbers x of the set X, we say that

P(x) for almost every x € X or P(x) a.e. (2)

or
P(z) for pn — almost every x, P(x)pu — a.e.(x),

to mean that

{z € X; P(x) is false}

1s a null set.

Definition 4.3
A measure space (X, B, u) is said to be complete if any null set is measurable (N C
A ), we say that the measure p is complete.

Theorem 4.4

Let (X, %, 1) be a measure space, and let AN be the set of the null sets of X. Let
B ={AUB; Aec B and B e N} HA is aoc-algebra on X and there exists a
unique measure | which extends the measure y on the o-algebra 9B'. The measure
space (X, %', 1) is complete.

Proof .

Let prove now that %’ is a o-algebra.

A’ is evidently closed under countable union. It suffices to prove that it is closed
under complementarity. Let A” = AU N be an element of #’. As N is a null set

there exists a subset B of ZN A4 and N C B. We have

A®=(AUN)*=(AUB)°U(B\ (AUN)).

It follows then that A’° is an element of %'

If the measure y exists it is unique. In fact we must have p/(N) = 0 for any N € A,
thus if A= AU N is an element of %’ we shall have p/(A") = u(A).

To show that y’ is a mapping on %', we must show that if A; U N; = Ay U Ny with
Ay, Ay € B and Ni, Ny € A then pu(A;) = u(As). So we have Ay \ Ay € Ny, then
it is a null set. If B = A1 N Ay, then Ay = BU (A4, \ As) and pu(B) = u(A;). In the
same way we shall have p(B) = p1(Asg), then u(A;) = p(As).
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Let we prove now that p’ defines a measure on the o-algebra %’. If (A]),en be a
sequence of disjoint elements of %', with A/ = A, UN,, A, € $ and N, € N;
Vn € N. We have

(U4 =i (A v U M) = e An) = D mlAa) = 3w (4)),

Finally the measure space (X, %', it') is complete because the p/-null sets are elements
of A . It is evident that u' is the smallest complete extention of the measure p. O

5 Outer Measure

Definition 5.1
Let X be a nonempty set. An outer measure p* on X is a mapping p*: 2(X) —
[0, 0] which fulfills the following axioms:

i) p(0) = 0.

i) If (Ap)nen 1S a sequence of subsets of X, then

,U*(U Ap) < ZM*(An)-

iii) p* is increasing (i.e. p*(A) < p*(B) if AC B).

Example
Any measure on &(X) is an outer measure.

Definition 5.2
Let X be a set and p* be an outer measure on X. A subset A of X is called
w*—measurable if

VBC X; p'(B)=p(BNA)+u(BNA°
Now we introduce the most important method of constructing measures.

Theorem 5.3 (Caratheodory’s construction)

Let X be a non empty set and p* be an outer measure on X. Then the set B’ of the
W -measurable subsets is a o-algebra on X and the restriction of u* on %' denoted
Wz is a complete measure.

Proof .

i) 0 is p*-measurable. (L (BNO)+ p*(BNO°) = pw*(0) + p*(B) = p*(B)).

ii) Let A be a p*-measurable set and let B a subset of X. It follows from the
definition of the outer measure that p*(B) = p*(B N A) 4+ p*(B N A°), then A° is
w*-measurable.

iii) Let A, B € %' and E a subset of X. As A is a measurable subset, we have
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p(EN(AUB)) = p(EN(AUB)NA)+u (EN(AUB)N A9
= p(ENA)+p (ENBNAY (5.8)

p(EN(AUB))+u*(EN(AUB)Y) = p(ENA)+u*(ENBNAY)+u*(EN AN B°)
= p(ENA)+p(ENA%) =p"(B). (5.9)

Then AU B is in #'.

iv) Let A;, A be two disjoint elements of %', B a subset of X and E =
BN (A1 UAy). As EN(A; U A9)¢ = 0, we use the relationship given in iii) for the
subset F, we will have:

P (EN (AU A)) + p7 (BN (AL U Ap)°) = (BN Ay + p"(E N AY)

=p (BNA;) +p (BN A;).
Then

p (BN (A3 UA)) =p" (BN A+ p (BN A,).

Let (A,)nen be a sequence of disjoint elements of %', then we have

=
o

w(B) = w(BN UA +w (BN

j=1

.
Il
—

3
£

> (BN UA + (BN (

7j=1

> S W (BAA) (BN

<.
Il
—

2
o

Il
—

J

Then

f: (BN A;) 4+ p*(BN UA ) > ( BmUA )+ (BN UA

Jj=1 Jj=1

The other inequality results from the property ii) of the outer measure p*.
To finish the proof we take a sequence (B,)nen of %', and put A = By, A, =

n—1
B\ U B;. We have U A, = U B,,. Thus %' is a o-algebra.
j:l n=1 n=1
It is evident that the restriction of u* on %’ is a measure.
It remains to show that the measure p* is complete. To prove this fact it suffices to
prove that any null set A is measurable. If A is a null set, then there exist an element
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B € #' such that A C B and p*(B) = 0. Let E be a subset of X, then p*(ENA) =0
and

pr(E) 2 p(ENAY) = pr(ENA)+p (BN A°).
The other inequality results from the definition of the outer measure p*. Thus A is

w-measurable.

Exercise .
Let (X, %, 1) be a measure space. We define the mapping p*: Z(X) — [0, +00] by

mf{z,u ; AC U2 Aj and Aj € #Y. (5.10)

Show that p* is an outer measure and any p—measurable set is p*-measurable and
the restriction of p* on Z is equal to the measure .

Solution .
It is easy to prove that p*() = 0 and p* is increasing.
Let (A,)nen be a sequence of subsets of X. We want to prove that p*(U%A4,) <

Z w(Ay). If there exists A, such that u*(A,) = +oo, then the inequality is trivial.

Assume now that Vn € N; p*(A4,,) < +oc.
For every n € N, and for every € > 0, there exists a sequence (4,,;); € %, such that
w (A ) Z] L (Ang) — 50 Then the sequence (A, ;)jnen is a covering of the set

+u>+a)

A= UA andZZu ) Zu ) +e. Then p*(A) < 32,5 i (An) + ¢,
n=1 j=1

for all € > 0 and so u*( Zu . Then p* is an outer measure.

Let now proving that u* = pu on AB.
If Ae A, then p*(A) < u(A), and if p*(A) = 400 then p*(A) = p(A).

Assume now that p*(A) < 400, then for every ¢ > 0, there exists (A, ),en & covering
+oo

of Ain B and p*(A) > ZM(A —e. As pu(A) < Zp(An), then p(A) < p*(A)+e

n=1
for every € > 0. It result that u(A) = p*(A),VA € AB.
Let now proving that any p—measurable set is p*-measurable.
If A€ % and B C X. From the definition of the outer measure p*, we have p*(B) <
w(BNA)+ p (BN A°). Then if u*(B) = +o00 we have the desired equality. Assume
now that p*(B) < +oo. Then for every € > 0, there exists a covering (B, ),en of B in
+o0

A and p*(B) > Z“(B”) —e. As p is a measure u(AN B,) + u(A°N B,) = p(By),

+o0 +o00
then y*(B) = > (B, NA)+ Y u(ByNAY) —e > p(BNA)+ p* (BN A — e

n=1 n=1
Then p*(B) > p*(BNA)+ p* (BN A®). Then pu*(B) = p (BNA)+ p* (BN A°) and
A is p* measurable.
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Theorem 5.4

Let (X, A, 1) be a measure space and p sigma-finite measure. Let pu* the outer measure
defined on P(X) by p*(A) = inf{>_; u (4;); A C U;A; and A; € B}. We denote
by B the complete o-algebra and By the o-algebra of the pu*-measurable sets. Then
e@ = ,%0.

Proof .

According to the previous exercise & C Hy. Let A be a null set, there exists a
measurable set B such that A C B and u(B) = 0. Let E be a subset of X; u*(ENA) <
w(B) = 0 and p*(ENAS) < p*(F) then p*(E) = p*(ENA)+p*(ENA) and B C %,.
Let A € %y, assume that p*(A) < +o0, there exists a sequence (A;,,) of Z such that
A CU;Aj, and 35 pu(Aj,) < p*(A) +1/n. We denote B, = Uj’;l Ajn. B, DA
and pu(B,) < p*(A)+1/n. Let B=(,B,, B€ %, AC B = p*(A) < pu(B), and
we have u(B) < p(Bn) < p(A) +1/n,¥n = p(B) < p*(A) = p(B) = p*(A) =
w (B\ A) =0, because p*(A) < oco. Then A=B\ (B\A)=Bn(B\A)°. (B\A)
is a null set then it is in the o-algebra % and in the same way for B, then A € B.

If u*(A) = +oo. Since u is o-finite, there exists a sequence (E,),eny of measurable
+o0

sets such that u(E,) < +o0o0 and U E, = X. Then any A € %, is written as
n=1
+o0o
A= U A, A, € By, and u*(A,) < +o0.
n=1

Then AnEt@andAegg’.

5.1 Monotone Class and c—Algebra
Definition 5.5
A collection of sets M is called a monotone class if for any monotone sequence
(Ap)nen of M; hrf A, e M.
Examples
1. Any o—algebra is a monotone class.

2. An arbitrary intersection of monotone classes is a monotone class.

3. If A C X, the intersection of all monotone classes that contain A is called the
monotone class generated by A and denoted by .# (A).

Theorem 5.6
Let A be an algebra of X. We denote by 4 (A ) the monotone class generated by
A, and by o(A) the o—algebra generated by A. Then M (A) = o(A).
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Proof .

It follows from the above remark that o(A) is a monotone class, as o(A)
contains A, then o(.A) contains the smallest monotone class containing .4 thus o(A) D
A(A).

For proving that o(A) C .#(A), we define for every subset S of X the set S by:

S={TecP(X); SUT,S\Tand T\ S € .#(A)}.

This definition is symmetric with respect to S and T, then S € T <= T € S. We
want to prove that S is a monotone class if it exists.

If (A,)nen is an increasing sequence of S: (S U Ap)nen is a increasing sequence of
A (A), the same for the sequence (A, \S)nen, the sequence (S\ A, )nen is a decreasing
sequence of .Z(A). Then the limit of the sequences are in .Z(A).

Let A€ A, thenV B € A, B € A, then A is a monotone class containing A, then
AD #(A). SoV S e #(A),S e Aforany Ae A andso A € S, then A C S;
VS € .#(A). As S is a monotone class then .#(A) C S.

We prove that:

VS8 e (A, S\S, S\S, SUS € #(A). If we take S’ = X, we find that
S¢ € M (A), in this way .#(A) is an algebra. The result can be deduced from the
following lemma.

Lemma 5.7
Let A be an algebra closed under increasing limit, (i.e. if (Ap)nen @S an increasing
sequence of M then the limit of A, is in M ), then A is a o—algebra.

Proof .
Let (A,)nen be a sequence of .#. Consider B, = U A;, the sequence B, is
1<j<n

increasing in .# and U, A, = U,B,, € /.

We end this paragraph with a property of measure that we need in the construction
of Lebesgue measure.

Theorem 5.8
Let iy and ps be two positive measures on a measurable space (X, B). Assume that
there exists a class € of measurable subsets such that:

a) € is closed under finite intersection and that the o-algebra generated by €
1s equal to A.

b) There exists an increasing sequence (Ey,)nen in € such that lim E, = X.

n—-+00
c) 1 (C) = p2(C) < +o00, for any C € €.
Then 1y = pa.

Proof .

We suppose in the first case that p;(X) = u2(X) < +o0.

Let o7 = {A € B; 11(A) = ua(A)}. By hypothesis X € € and € C 7. It is easy to
prove that &7 is a monotone class. (If (A, )nen is an increasing sequence of o7, then
w1 (Ayn) = pa(A,) for all n, and then
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“+o0 —+o00
NI(U An) = NZ(U An) = (lim An) = N2(1im An)'
n=1 n=1

If (A,)nen is a decreasing sequence of o7, then p;(A,) = pa(A,) for all n, as g (X) =
:U/2<X) < +OO? then /111( :g An) - M2( :3 An))

o/ is a o—algebra. (If A,B € o with A C B, then 11(B\ A) = i (B) — 1 (A) =
p2(B) — ua(A) = pa(B\ A) and so B\ A € of. We use the fact that py, us are finite
and 1 (X) = p2(X)). Then 0(¢) = # C o and & = B and g = ps.

In the general case we take i, the restriction of p; on E, for all n € N. From the
first case ft1,, = fl2,,, Which gives p; = o, because p; = nETm Win; J = 1,2.

O

6 Lebesgue Measure on R

Theorem 6.1

There exists only and only one measure X\ on PBr satisfying:
i) A is invariant under translation. (i.e. Vo € R, VA € Bg; Mxz+A) = A(A4)).
ii) M\([0,1]) = 1.

Proof .

Uniqueness: Assume that there exists two measures pu and v on By satisfying (i)
and (ii) then v[0,1/n[< 1/n = v{0} = 0 and then any finite set or countable set is
a null set and all the intervals [a, b], |a, b], [a, b[ and |a, b] have the same measure and
equal to b—a. (We treat the case of a and b are rationals and then we take the limit.)
We denote by & the set of finite union of intervals of R of the form [a,b[; a,b € R.
The set & is closed under finite intersection and R = | J,,[—n,n[. Then we shall have
pw=von&. It follows from the unicity theorem 4.4 that p and v are equal on %x.
Existence: Define for any subset A of R

*(A) =inf Y Z(I).
) = S )
Z describes the whole of finite or countable coverings of A by open intervals,
and Z(I) is the length of I.
We first prove that for any interval I of R, p*(I) = £2(I).
If a and b are the endpoints of I and £ > 0, then I Cla—e, b+¢[and p*(I) < Z(I)+2e.
It follows that p*(I) < Z(I).
Conversely let (1) be an open covering of I, then [a+¢&,b—e] C Upl;. As[a+e,b—¢]
is compact, there exist a finite sub-covering (Ix.)1 <<y such that [a+&,b—¢] C UP_, I;.

n +o00
It results that b —a —2e < ZX(I;C) < Zf([k) Thus b — a — 2e < p* (1) for any
k=1 k=1
e > 0 and then Z(I) = p*(I).
Let © be an open set of R and let (I,,),en be the connected components of €2, then
pH(Q) =30 Z(1,). In fact from the definition of x*
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Q) <) 2(1,). (6.11)
n=1
Conversely let (Ji)x be a covering of 2 by open intervals, we have I,, = U J.NI,. It
k
400 400 +o0 400 +o00
results that Z Z(1,) < Z Z LI, NJy) = Z Z Z(1,N Jg). In the other hand
n=1 n=1 k=1 k=1 n=1

the intervals (1,), are disjoints, then for any m, U (JyN1I,) C Ji and for all m € N;

n=1
m +o00 +o00
> LN 1) < L(J). Tt results that Y L(I,NJx) <> L(J).
n=1 n=1 k=1

Then

+o00
> L(1) < (). (6.12)
n=1

So relations (6.11) and (6.12) gives that p*(2) <> 7, Z(1,).

We deduce that if (wy)nen is a sequence of open sets, then ,u*(U wn) < Zu*(wn).

n

In fact if (1,, 1) are the connected components of w,, we have: p*(wy,) = Z L(Lx)

and
400 +o00 400 400 400 +00
M*<U wy) = g ( U L) < Z L(Lyx) = ZZ‘C(In,k) = ZN*(‘UH)'
n=1 n,k=1 n,k=1 n=1 k=1 n=1
Let now prove that for any subset A C R, p*(A) = o inf A,u*(O). If (I,) be a
open>D
finite or countable covering of A by open intervals. Put w = :2 I,,, then p*(A) <
pH(w) < S 2(1,). We deduce that p* is an outer measure on Z(R); in fact:
) (0) = 0.

ii) If A C B, then p*(A) = infyopen)oa 1 (w) < infyopeny>s 1 (W) = w*(B).
iii) If (A,)nen is a sequence of subsets of R. Our goal is to prove that

M*(UnAn) < ZM*(AYL)‘ (6'13)

If there exists ng such that p*(A,,) = 400, the inequality (6.13) is trivially fulfilled.
Assume now that p*(A,) < +oo for all n € N. Let € > 0, for any n € N there exists

5
an open set w, containing A, such that p*(w,) < p*(A,) + o

+o0 +oo
WU AL < i (U5 w,) <Zu wn <Zu +;2%—;u*(14
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for any € > 0, thus pu* (U A,) <Z,u

According to the theorem 5.3 the set of the p*-measurable subsets is a o-algebra
Z on R and p*|¢ is a complete measure. This o-algebra is called the Lebesgue
o-algebra, and the elements of . are called the Lebesgue measurable sets. We
will note #y this o-algebra.

Proposition 6.2
Any Borelian subset is Lebesgue measurable.

Proof .
It suffices to show that VYa € R, Ja, +oo[€ Z. Let E be a subset of R. our goal is to
prove that

W (E) = p*(ENja, +o00[) + p* (EN] — 00, al). (6.15)

The inequality p*(E) < p*(EN]a, 4+o00[) + p*(EN] — 00, a]) results from the fact that
p* is an outer measure. For the other inequality the result is trivial if p*(E) = 4o0.
Assume that p*(F) < +00. Let € > 0 there exists an open set ). D F such that :
1 (Q:) < p*(E) 4 e. Assume in the first time that a ¢ Q..

= 2= > 2O+ Y 2 (6.16)

IeC IeCnla,+oo| IeCn]—oo,a|

with C the set of the connected components of €).. Then it results that

() = p*(Q2eNla, +oof) + p*(Q2N] — 00, a) = p*(ENJa, +oo) + p*(EN] — oo, al).

Then p*(E) > p*(EN]a, +oo]) + p*(EN] — 00, al).

If now a € €, let QL = Q. \ {a}. According to the first remark p*(2L) = p*(2.). O
This which ends the proof of the theorem in taking A = p*. The measure A on %y, is
called the Lebesgue measure on R. O

Proposition 6.3
Let #5 the Lebesgue o-algebra on R, thenV A € A

AMA) = inf Aw)

w openDA

AMA)=  Sup A(K).

K compactCA

We say that the measure A is regular.

Proof .
If A is bounded, there exists n € N such that A C [-n,n|. Let ¢ > 0, the set
[—n,n] \ A is measurable, then there exists an open set w D ([—n,n|\ A) such that

Aw) < A([—n,n] \A) +e = A[-n,n] —A(A) +¢
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because A([—n,n] \ A) = inf,, opens(—nn\a) A(w).
Let K = [—n,n]|Nw. K is a compact in A.

2n = A[—n,n] = A[—n,n] Nw) + A([—n,n] Nw) < A(K) + e+ A[—n,n] — A(A).

Then A(A) < AMK) + ¢ and M(A) = Supx compactca AK).
If A is not bounded, then Vn € N there exists a compact K, C [—n,n] N A such that

MEL) > AM[—n,n]NA)—1/n
then

Sup  A(K) > Sup(A(K,)) > lim (A([-n,n]NA)—1/n) = A(A4)

K compactCA n n—+00

7 Measurable Functions

Let X and Y be two nonempty sets. We showed in the previous section 2.9 that the
pull back of a g-algebra by a mapping f: X — Y is a o-algebra of X.

Definition 7.1
If (X, <) and (Y, %) are two measurable spaces. A mapping f: X — Y is called
measurable if the o-algebra f~(AB) C .

Theorem 7.2

Let (X, o) and (Y, AB) be two measurable spaces, and suppose that B generates the
o-algebra B. A function f: X — Y is measurable if and only if

for every subset V in the generator set B, its pre-image f~*(V') is in <.

Proof .
The sufficient condition is just the definition of measurability.

For the ”if” direction, define

H={Ves fY(V)ed}.
It is easily verified that H is a o-algebra, since the operation of taking the inverse
image commutes with the set operations of union, intersection and complement.

By hypothesis, B C H. Therefore, o(B) C o(H). But &4 = o(B) by the
definition of B, and H = o(H) since H is a o-algebra. This means that f~}(V) € &/
for every V € A. O

Remark .
To show that a mapping f: X — Y is measurable; it suffices to give a set C which
generates % and such that f~!(C) C &.

Proposition 7.3 -
Let (X, o) be a measurable space and let f: X — R (or in R) a mapping. Then f
1s measurable, if one of the following conditions is fulfilled :



30 CHAPTER 1. MEASURE THEORY

1.VaeR {zx € X; f(x)>a} € .
VaeR {xeX; f(x)<a} € .
VaeR {zx e X; f(z)<a} €.
Va,beR {r € X; a< f(x) <b} € .

Va,be R {x € X; a< f(x) <b} € .
The space R (resp R) is equipped with the Borel o-algebra By (resp PBxz).
We take the measurable spaces (R, %g) and (R, Bg).

Proof .

Let taking for example the measurable space (R, %z). As {z € R; f(z) < a} =
f7Y[~o0,al) € &. The first condition of the proposition is still written f~'{C} C &,
where C is the class of the intervals [—oo,a| of R, with @ € R. To show that f is
measurable it suffices to show that the o-algebra generated by C is the Borelian o-
algebra of R. It is easy to show that the open intervals of R are in the o-algebra
generated by C.

Let 7 the o—algebra generated by C. By complementarity [a,+o00] € 7, and [a, b€
+oo

1
T, Va,b € R, because [a,b[= [a,+00] N [—00,b]. And |a,b[= U[a + E’b[e 7. And

n=1
+oo

1
for the same way ]a, +oo] = U [a + —, +00]. Then 7 contains all the open sets of X

n

n=1
and then 7 = %y. ad
Particular Case .

Let X and Y two topological spaces and let Zx and %y the Borelian o—algebras on
X and Y respectively. Then every continuous function is measurable.
X and Y two topological spaces and let 8y and %y the Borelian o—algebras on X
and Y respectively. Then every measurable function f: X — Y is called a Borelian
function.

Proposition 7.4
Let (Xo, Bo), (X1, %) and (Xa, Bs) three measurable spaces. Let f1: Xo — X7 and
fa: X1 — X5 two measurable mappings, then the mapping fs o fi is measurable.

The proposition results from the fact that

(fao f1) (%) = [T (31 (%)) C f7' (%) C Sy
Proposition 7.5
Let (X, %) and (X;,%;), j =1, ... ,n (n+ 1) measurable spaces, and let f: X —

HXj, a mapping f = (f1,..., fn). Then f is measurable if and only if each partial
j=1
mapping fj: X — X, is measurable.
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Proof .
We remark that if p; is the natural projection p;: [[;_, Xi — Xj, pjfl(Aj) = X; X
Xo...x Ajx...xX,, which is measurable if A; is measurable. Then p; is a measurable
mapping.
The partial mappings f; = p; o f are measurable if f is measurable. Let now suppose

that f;, 7 =1, ... ,n are measurable. Let A; x ... x A, be a rectangle in [[;_, X,
then
FH A o A) = ) AD) = () 5 (A)) = () £ (A))
j=1 j=1 j=1
Then f is measurable. O

Corollary 7.6

Let (X, %) be a measurable space, f and g are two measurable functions on X with
values in R or R. Let F:R?> — R be a continuous function. Then the function
h = F(f,g) is a measurable function.

Proof .
The mapping (f, g) is measurable on X with values in R? and F' is measurable thus
h is measurable on X. O

Corollary 7.7
Let (X, %), (Y,%#') and (Z,.T) three measurable spaces and let f: X xY — Z a
mapping. Then for any a € X (resp b € Y), the partial mapping f(a,.) (resp f(.,b)
) is measurable.

Proof .

Let us fix an element a € X. The mapping ¢: Y — X x Y | defined by ¢(y) = (a,y)
is measurable from the previous proposition. f(a,.) = f o g this which shows the
corollary. U

Corollary 7.8 o
Let (X1,%), ... ,(Xu%Bn), n measurable spaces, f;: X; — R, j =1,...,n and
1152 Xj — R defined by f(z1, ... ,2,) = fi(x1) ... fulzs). Assume that f; # 0.

Then f is measurable if and only if the functions fy, ..., f, are measurable.

Proof .

As the mapping (y1, ... ,¥n) +— Y1.¥2...Y, from R™ to R is measurable, then it
is clear that f is measurable if the mappings f; are measurable. For proving the
measurability of f; for example knowing that f is measurable, we choose ao, ... ,a,
such that f;(a;) # 0 for any j =2, ... ,n. For z € X; we have:

f<x7a27 7an)
fl (.13) = n
szz(fj (aj))
This proves that f; is measurable.
In particular a non empty rectangle H;LZI A; is measurable if and only if each A; is.
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Proposition 7.9
Let (X, A) be a measurable space.
a) If f is measurable of (X, %) with values in R or R, then |f| is measurable.
b) If (fn)nen is a sequence of measurable functions of (X, B) with values in R
or in R, then the functions g,h,k defined by g(x) = Sup fu(z), h(z) = lim,_ oo fn(T)
neN

and k(x) =lim, . fo(x) are measurable.

Proof .
a) lfa <0;{z e X; |f(x)] >a} =X.
Ifa>0;{zeX; |f(x)] >a} ={reX; flz) >a}U{zr € X; f(x) < —a} =
fﬁl(]a’ +OO]) U fﬁl([_ooa _aD €A
b) {z € X; g(z) > a} = U,eniz € X fulz) > a} € B.
h(z) = infneN(Suijn fi(x))

{r € X; h(z)>a} = ﬂ U{xEX; fi(x) >a} € B.
k() = Sup,en(infj>n f5(2))
{r e X; k(z) >a} = U n{xeX; fi(z) >a} € B.

Remark .

It results from the previous proposition that if f is measurable then the functions
ST = Sup(f,0) and f~ = inf(f,0) are measurable, and if (f,)nen is a sequence of
measurable functions which converges point wise toward a function f on X, then f
is measurable. O

Corollary 7.10
For any sequence (fn)nen of measurable functions with real values on a measurable
space X, if C = {x € X; liril fn(z) exists in R}. Then C is measurable.

Proof . o
We put D = C¢ D = {r € X; lim,_ fo(z) < lim, .y fu(x)}. If we put g =
lim, fn, and h = lim,_. . f,. For each rational r, let
D, ={zxe X; glx) <r<h(z)} ={g(x) <r}n{h(z) >r}
which is measurable. D = J,.q D, which proves the measurability of D. O

Theorem 7.11
Let A C R™ and f: A — R™ a mapping. Assume that for any point a € A, there
exists a neighborhood V (a) such that

pa(f(ANV(a)) =0
Then p;,(f(A)) = 0.
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Proof .

For any a € A, there exists a ball B C R™ of center of rational coordinates such that
a € B and i (f(AN B)) = 0. The family B of these balls is at least countable and
cover A. Tt follows that f(A) is covered by the sequence f(AN B), B € B, and every
one is of measure zero. It follows that p}(f(A)) = 0.

Theorem 7.12
Let A CR™ and f:R™ — R™ a mapping such that, there exists s > m/n and

|f(z) — fly)] < M®|lx —y|*, Va,ye A
Then
1. If s>m/n=u:(f(A) =0.

2. If s=m/n = p;(f(A) < 2"(My/m)"pu;, (A).

Proof .

We can suppose that p (A) < oo, if not we take the sequence AN[—p,p|; p € N. We
denote [|z|[oo = Sup, <y |7;] if 2 € R*. We have ||2||o < |z| < v/n]|2||o on R™ and
l|17]|oo < |2] < v/m|2||oo on R™. Thus

1f (@) = fW)llee < (MVm)*llz = yll,, Va,yeA

Let 0 <e < 1and P = P(b,r) arectangle with r < & < 1. Assume that P N A # 0.
Let a,b € ANP = ||z —blloo <7/2, ||la = b||o < 7/2 and ||z — a||oc < r. Then it
follows that || f(z) — f(a)||ee < (M+y/m)r® and

F(ANP) C P(f(a)), 2Mmyr = i (f(AN P)) < 2°(My/m) s

If (Py)y is a covering of A by of the rectangles of thisotés < e, then

1R (f(A)) < 28 (My/m)™e™™™ Y Vol(P)

Thus 11,(f(A)) < 2"(My/m)"*e™ " iy, (A). O
Corollary 7.13

1. Fvery null set in R™ is of measure zero in any system of coordinate in R™.

2. Fvery subspace of dimension m < n is a null set in R™.

ZET0.

Proof .

1. Every linear mapping f:R" — R” fulfills || f(z)|| < M||z||. The result follows
from the previous theorem with m <n and s = 1.
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2. If V is a subspace of dimension m < n, V' = f(R™) and we applied the first
result of this corollary.

O

Corollary 7.14
Let f:R™ — R" be a mapping of class C* in any point a of A C R™. If m < n then
1, (f(A)) = 0.

Proof .
For any a € A there exists an open ball B(a,r) such that

1/ () = F)I < L+ [[df (@)Dl =y

for any =,y € B(a,r), df(a) is the differential of f in the point a. It follows that

pn(f(AN B(a, 7)) = 0= p,(f(A)) = 0

Corollary 7.15
Let f:R™ — R" be a mapping of class C' in any point a of A C R™. If ui(A) =0
then i, (f(A)) = 0.

Exercise .

Let f:R™ — R" be a mapping of class C? and let A a subset of R™. Assume that
p>m/n, D;f =0 on A for any 0 < j < p— 1. Show that p(f(A)) = 0. (ind: we
can prove that || f(z) — f(y)|| < M|z — y||? locally on A)

Exercise .
Let f:R™ — R" be a linear mapping such that f(e;) = \je;, e1, ... , e, is a base of
R". Show that if A is a subset of R"

pn (F(A)) < Ao s, (A)

(ind: if P is a rectangle of center a and of sides of lengths sy, ,...,s,, then f(P) is
a rectangle of center f(a) and of sides of lengths |A\i|sy, ..., [Au|s,. If any |A;] =0
the result is trivial and if not we can applied the result to f~1.

Theorem 7.16 (Egoroff)

Let (X, %),n) be a measure space. Assume that the measure p is bounded. Let
(fn)nen be a sequence of real or complex measurable functions on X which converges
point wise on X to a function f. For any ¢ > 0 there exists a set A. € AB, such
that u(A:) < e and the restriction of the sequence (f,) on the complementary of A.
is uniformly convergent.
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Proof .
The function f is measurable. For any integers (n, k), k > 0, let

}

| =

EF = (a1 fo(2) — f(2)] <

This set is measurable. For a given k, the sequence (Efzk))neN is increasing and
lim E® = X. (Because the sequence (f,)nen converges to f on X). As p is

n
n—-+00

bounded, liril p(E®))e = 0. Then there exists an integer n(k) such that u(ET(LIEL))C <

g/2%. The set A. = ;:O?(Egzi))c is appropriate. In fact u(A.) < ¢, and on the

complementary of A, the sequence (f,)nen converges uniformly to f.

Remark

The requirement that p is bounded is essential. For constructing a counterexample
it suffices of take p the Lebesgue measure on R and f,, the characteristic function of
the range [n, +oo[. (Assume the existence of an invariant measure by translation on
R, called Lebesgue measure.)

The classical Cantor ternary set .

Let a < b two real numbers. We call ”tiers median” of the interval I C [a,b], the
open interval of length %% and of the same center that [a,b]. (I =]%52, 2“’3_ Ay,

Let Ey = [0,1]. We remove the tiers-median of E,, and we recall E; this which

remains. E; = [0,3] U [2,1]. We remove the tiers-median of these two intervals and
we recall Fy this which remains

1 23 6 7 8
Ey=10,-]U|=, =]U|z, =] U|=, 1]
By repeating this operation successively, we construct a sequence of decreasing sets
(En)nen such that each E,, is union of 2" intervals each one is of length %n We denote

I, (k=1,...,2") the intervals of E,. We call triadic Cantor’s set the set

r (e
n=1

P # () because it is clear that 0 and 1 are in P. P is compact because P is closed
and bounded. P does not contain any non empty open interval. In fact E, can not
contain intervals of length greater than 3% If I is an interval in P, I C P C E,,
thus the length of I is small that 3%, this for any n, then I is of length zero, and thus
P is of interior empty. From the construction if  is an endpoint of an interval I, ,
then x remains an endpoint of an interval I, 4,y for any p € N. Thus 2 € P. It
results that P is a perfect set; in fact for any x € P and for any n € N, there exists

a, and b, in P such that a, < z < b, and lim (b, — a,) = 0. It suffices to take

n—-+o00

a, and b, the endpoints of the intervals I,, x. The sequences (a,)neny and (b, )nen are
bounded, then we can extract a convergent sub-sequence. And as b, — a,, > 0 and

lim (b, —a,) =0,z = lim b, = lim a, and it is an accumulation point.
n—-+o0o n—-+o0o n—-+o0o
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"«
It is easy to verify that the left endpoints of the intervals I,, ; are of the form Z 3—;;
p=1

where o, = 0 or 2. There result that any point x of P is limit of a sequence of points
+o0
A
3’
p=1
with o, = 0 or 2. It result that P is in bijection with the sets of the mapping of
N — {0, 2} which is not countable. We have P is in bijection with [0, 1]. Thus P is

a compact of measure zero and in bijection with [0, 1].

of P which are of the endpoints space of intervals of the form 1, ;. Thus z =



