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1 Measure Theory

1 Review on Riemann Integral

1.1 Definition of the Riemann Integral

Definition 1.1

A finite ordered set σ = {x0, . . . , xn} is called a partition of the interval [a, b] if

a = x0 < . . . < xn = b. The interval [xj, xj+1] is called the jth subinterval of σ.

Definition 1.2

Let f : [a, b] −→ R be a bounded function. Define

Mj = Sup
x∈[xj ,xj+1]

f(x), mj = inf
x∈[xj ,xj+1]

f(x),

S(f, σ) =
n−1
∑

j=0

Mj(xj+1 − xj) (1.1)

and

s(f, σ) =
n−1
∑

j=0

mj(xj+1 − xj). (1.2)

S(f, σ) and s(f, σ) are called respectively the upper sum and the lower sum of f on
the partition σ. Note that s(f, σ) ≤ S(f, σ).

Definition 1.3

We say that a partition σ1 is finer than the partition σ2 if as sets σ2 ⊂ σ1.

Proposition 1.4

If σ1 is finer than σ2 and f : [a, b] −→ R is a bounded function, then

s(f, σ2) ≤ s(f, σ1) ≤ S(f, σ1) ≤ S(f, σ2) (1.3)

Proof .
By induction, it suffices to prove the equation 1.3 for σ1 = σ2∪{α}, with α ∈]xj, xj+1[.
We remark that :
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4 CHAPTER 1. MEASURE THEORY

M ′
j = Sup

x∈[xj ,α]

f(x) ≤ Mj, M
′′

j = Sup
x∈[α,xj+1]

f(x) ≤ Mj,

Mj ≥ M
′

j = Sup
x∈[xj ,α]

f(x), Mj ≥ M
′′

j = Sup
x∈[α,xj+1]

f(x).

mj ≤ m
′

j = inf
x∈[xj ,α]

f(x) and mj ≤ m
′′

j = inf
x∈[α,xj+1]

f(x).

Then

S(f, σ1) =

j−1
∑

k=1

Mk(xk+1 − xk)) + M
′

j(α − xj) + M
′′

j (xj+1 − α) +
n−1
∑

k=j+1

Mk(xk+1 − xk))

≤ S(f, σ2).

and

s(f, σ1) =

j−1
∑

k=1

mk(xk+1 − xk)) + m
′

j(α − xj) + m
′′

j (xj+1 − α) +
n−1
∑

k=j+1

mk(xk+1 − xk))

≥ s(f, σ2).

Proposition 1.5

If f : [a, b] −→ R is a bounded function and σ1, σ2 are two partitions of the interval
[a, b], then s(f, σ1) ≤ S(f, σ2).

Proof .
s(f, σ1) ≤ s(f, σ1 ∪ σ2) ≤ S(f, σ2).

Definition 1.6

Let f : [a, b] −→ R be a bounded function. If we denote K([a, b]) the set of partitions
of [a, b], then we define the upper integral of f on the interval [a, b] by:

S(f) = inf
σ∈K([a,b])

S(f, σ)

and the lower integral of f on the interval [a, b] by:

s(f) = Sup
σ∈K([a,b])

s(f, σ)

Definition 1.7

Let f : [a, b] −→ R be a bounded function. We say that f is Riemann integrable on the
interval [a, b] if S(f) = s(f).

If f is Riemann integrable on the interval [a, b], we denote

∫ b

a

f(x)dx = S(f) = s(f)

which called the integral of f on the interval [a, b].
The set of Riemann integrable functions on the interval [a, b] is denoted by

�
([a, b]).
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Examples .

1. If σ = {x0 = a, . . . , xn = b} is a partition of the interval [a, b] and f : [a, b] −→ R

the function defined by f(x) = cj on the interval [xj, xj+1[ for j = 0, . . . , n− 1

and f(b) = 0, then f is Riemann integrable on [a, b] and

∫ b

a

f(x)dx =
n−1
∑

j=0

(xj+1−

xj)cj.

2. Let f = χQ∩[0,1] defined on [0, 1] and let σ = {x0 = 0, . . . , xn = 1} any partition
of the interval [0, 1]. Then S(f, σ) = 1 and s(f, σ) = 0. Hence f is not Riemann
integrable on [0, 1].

1.2 Criterions of Integrability

Theorem 1.8 (Riemann’s criterion)
Let f : [a, b] −→ R be a bounded function. The following statements are equivalent

i) f is Riemann-integrable.
ii) ∀ε > 0; there exists a partition σ such that S(f, σ) − s(f, σ) ≤ ε.

Proof .
NC: If S(f) = s(f), then ∀ ε > 0, there exists a partition σ such that 0 ≤ s(f) −
s(f, σ) ≤ ε

2
and there exists a partition σ′ such that 0 ≤ S(f, σ′) − S(f) ≤ ε

2
. Then

0 ≤ S(f, σ∪σ′)−S(f) ≤ S(f, σ′)−S(f) ≤ ε
2
. In the same way 0 ≤ s(f)−s(f, σ∪σ′) ≤

s(f) − s(f, σ) ≤ ε
2
. It follows that S(f, σ ∪ σ′) − s(f, σ ∪ σ′) ≤ ε.

SC: s(f, σ) ≤ s(f) ≤ S(f, σ) and s(f, σ) ≤ S(f) ≤ S(f, σ), then 0 ≤ S(f) − s(f) ≤
S(f, σ) − s(f, σ) ≤ ε, for all ε > 0. It follows that S(f) = s(f).

Definition 1.9

If σ = {x0, . . . , xn} is a partition of the interval [a, b], we define the norm of σ by:

||σ|| = Sup
0≤j≤n−1

xj+1 − xj.

Theorem 1.10 (Darboux’s criterion)
Let f : [a, b] −→ R be a bounded function. The following statements are equivalent

i) f is Riemann-integrable.
ii) For all ε > 0; there exists δ > 0 such that for all partition of the interval

[a, b] such that if ||σ|| ≤ δ then S(f, σ) − s(f, σ) ≤ ε.

Proof .
From the theorem (1.8) the sufficient condition is obvious.
NC: assume that f is not constant. We know that there exists a partition σ =
{x0, . . . , xn} such that S(f, σ)−s(f, σ) ≤ ε. We denote M = O(f,A) = Supx∈[a,b] f(x)−
infx∈[a,b] f(x) called the oscilation of f on the interval [a, b]. Let α1 =

ε

nM
, α2 =

inf
0≤j≤n−1

(xj+1 − xj) and α = min(α1, α2).
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Let σ′ = (y0 = a, . . . , ym = b) a partition of [a, b] of norm ||σ′|| < α. There exists at
most n intervals ]yj−1, yj[ which contain some points xj. The others are contained in
the intervals ]xk−1, xk[. We denote

M ′
j = Sup

x∈]yj ,yj+1[

f(x), Mj = Sup
x∈]xj ,xj+1[

f(x),

m′
j = inf

x∈]yj ,yj+1[
f(x) and mj = inf

x∈]xj ,xj+1[
f(x).

D(f, σ′) − d(f, σ′) =
∑

]yj ,yj+1[⊂]xi,xi+1[

(yj+1 − yj)(M
′
j − m′

j)

+
∑

xi∈]yj ,yj+1[

(yj+1 − yj)(M
′
j − m′

j)

It follows that

D(f, σ′) − d(f, σ′) ≤
n−1
∑

i=0

(xi+1 − xi)(Mi − mi) + nαM

= D(f, σ) − d(f, σ) + nαM ≤ 2ε.

Definition 1.11

Let σ = {x0, . . . , xn} be a partition of the interval [a, b]. We say that α = {α0, . . . , αn−1}
is a mark of σ if ∀0 ≤ j ≤ n − 1, αj ∈ [xj, xj+1].
We define

S(f, σ, α) =
n−1
∑

j=0

f(αj)(xj+1 − xj)

called the Riemann sum of f on σ with respect to the mark α.
As particular case, if f is Riemann integrable on the interval [a, b], the sequence

Sn defined by:

Sn =
b − a

n

n
∑

k=1

f(a + k
b − a

n
)

converges to

∫ b

a

f(x)dx. (Sn is called a Riemann sum of f on the interval [a, b]).
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1.3 Properties of the Riemann Integrals

Properties .

i) Linearity :

∫ b

a

α(f + βg)(x)dx = α

∫ b

a

f(x)dx + β

∫ b

a

g(x)dx.

ii) If f ≥ 0, then

∫ b

a

f(x)dx ≥ 0.

iii) If f ≤ g, then

∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx.

iv)
∣

∣

∣

∫ b

a

f(x)dx
∣

∣

∣
≤

∫ b

a

|f(x)|dx.

v) If m ≤ f(x) ≤ M , for all x ∈ [a, b], then

m(b − a) ≤
∫ b

a

f(x)dx ≤ M(b − a).

vi) ∀c ∈]a, b[; f is Riemann integrable on [a, b] if and only if f is Riemann
integrable on [a, c] and f Riemann integrable on [c, b] and

∫ b

a

f(x)dx =

∫ c

a

f(x)dx +

∫ b

c

f(x)dx.

(This identity is called the Chasles identity)

Proof .
We prove only the property vi), the others the other properties are left to the reader.
Assume that f is Riemann integrable on the interval [a, b], then ∀ ε > 0, there
exists a partition σ of [a, b] such that S(f, σ) − s(f, σ) ≤ ε. Let σ′ = σ ∪ {c}; then
S(f, σ′)− s(f, σ′) ≤ S(f, σ)− s(f, σ) ≤ ε. We write σ′ = σ1 ∪ σ2, with σ1 a partition
of [a, c] with points of σ′ contained in [a, c] and σ2 a partition of [c, b] with points of
σ′ [c, b]. It follows that S(f, σ1) − s(f, σ1) ≤ ε and S(f, σ2) − s(f, σ2) ≤ ε. Then f is
Riemann integrable on [a, c] and on [c, b].
If f is Riemann integrable on [a, c] and on [c, b], then ∀ ε > 0, there exists a partition
σ1 of [a, c] and a partition σ2 of [c, b] such that S(f, σ1)− s(f, σ1) ≤ ε and S(f, σ2)−
s(f, σ2) ≤ ε. We put σ = σ1 ∪ σ2. σ is a partition of the interval [a, b] and S(f, σ) −
s(f, σ) ≤ 2ε, which proves that f is Riemann integrable on the interval [a, b].
We prove now that

∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx.

We put I =

∫ b

a

f(x) dx, I1 =

∫ c

a

f(x) dx and I2 =

∫ b

c

f(x) dx.

∀ ε > 0, there exists α >0 such that for all partitions σ of [a, b], σ1 of [a, c] and σ2 of
[c, b], with (|σ| < α, |σ1| < α and |σ2| < α we have:

|S(f, σ) − I| ≤ ε, |S(f, σ1) − I1| ≤ ε
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and
|S(f, σ2) − I2| ≤ ε.

We take the partition σ′ = σ1 ∪σ2, then |σ′| < α and |S(f, σ′)− I| ≤ ε. in the
same way |S(f, σ′)− I1− I2| ≤ |S(f, σ1)− I1|+ |S(f, σ2)− I2| ≤ 2ε. Then I = I1 + I2.

Remark .

If b < a, we denote

∫ a

b

f(x) dx = −
∫ b

a

f(x) dx.

Theorem 1.12

Let f : [a, b] −→ [c, d] be a Riemann integrable function and let ϕ: [c, d] −→ R be a
continuous function. Then ϕ ◦ f is Riemann integrable.

Proof .
Let ε > 0, we which construct a partition σ = (x0 = a, x1, . . . , xn = b) of the interval
[a, b] such that : S(ϕ ◦ f, σ) − s(ϕ ◦ f, σ) < ε.
the function ϕ is uniformly continuous on [c, d] and bounded, then there exists M > 0

such that |ϕ(x)| ≤ M , ∀x ∈ [c, d] and if ε′ =
ε

2M + (b − a)
, there exists 0 < α < ε′

such that for |x − y| < α, |ϕ(x) − ϕ(y)| ≤ ε′, for x, y ∈ [c, d].
As f is Riemann integrable on the interval [a, b], there exists a partition σ = (x0 =
a, x1, . . . , xn = b) of [a, b] such that :

S(f, σ) − s(f, σ) < α2. (1.4)

Let Mj = Sup{f(x); x ∈ [xj, xj+1]}, mj = inf{f(x); x ∈ [xj, xj+1]}, M̃j = Sup{ϕ ◦
f(x); x ∈ [xj, xj+1]}, m̃j = inf{ϕ ◦ f(x); x ∈ [xj, xj+1]}.
we denote J1 = {0 ≤ j ≤ n−1; Mj −mj < α and J2 = {0 ≤ j ≤ n−1; Mj −mj ≥ α.
If j ∈ J1, then from the uniform continuity of ϕ ◦ f , we have |ϕ ◦ f(x)−ϕ ◦ f(y)| < ε′

for all x, y ∈ [xj, xj+1], which gieves that M̃j − m̃j ≤ ε′, then

∑

j∈J1

(M̃j − m̃j)(xj+1 − xj) ≤ ε′(b − a). (1.5)

It follows from the equation 1.4,

α2 >
∑

j∈J2

(Mj − mj)(xj+1 − xj) ≥ α
∑

j∈J2

(xj+1 − xj).

Then
∑

j∈J2

(xj+1 − xj) < α < ε′ and as M̃j − m̃j ≤ 2M , we have:

∑

j∈J2

(M̃j − m̃j)(xj+1 − xj) ≤ 2M
∑

j∈J2

(xj+1 − xj) < 2Mε′. (1.6)

It follows from (1.5) and (1.6) that

D(ϕ ◦ f, σ) − d(ϕ ◦ f, σ) =
n−1
∑

j=0

(M̃j − m̃j)(xj+1 − xj) ≤ ε′((b − a) + 2M) = ε.
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Theorem 1.13

Let f : [a, b] −→ [c, d] be a Riemann integrable function, then the function F defined
by

F (x) =

∫ x

a

f(t)dt

is continuous.
If f is continuous in the point c, then F is differentiable in c and F ′(c) = f(c).

Theorem 1.14 (The fundamental theorem of calculus)
Let f : [a, b] −→ R be a differentiable function and f ′ is Riemann integrable, then

∫ b

a

f ′(x)dx = f(b) − f(a).

Proof .
Let σ = {x0, . . . , xn} be any partition of [a, b], By the Mean-Value Theorem applied
to f on [xj−l, xj], there is cj ∈ [xj−l, xj] such that f(xj)−f(xj−1) = f ′(cj)(xj −xj−1).
Thus

n
∑

j=1

f ′(cj)(xj − xj−1) =
n

∑

j=1

f(xj) − f(xj−1) = f(b) − f(a).

The sum
n

∑

j=1

f ′(cj)(xj −xj−1) = S(f, σ, w), with w = (c1, . . . , cn) the mark on

the partition σ given by the Mean-Value Theorem. Let new a sequence of partition
σm of [a, b], each marked in this fashion and such that ||σn|| converges to zero. As f ′

is Riemann integrable, the sequence S(f, σm, wm) converges to

∫ b

a

f ′(x)dx, then

∫ b

a

f ′(x)dx = f(b) − f(a).

2 Algebra and σ−Algebra

2.1 Elementarily Operations on Sets

In all that follow, X will denote a nonempty set. We denote by P(X) the collection
of subsets of X. If A and B are in P(X), we put : A \ B := {x ∈ A and x /∈ B} =
A ∩ Bc. A∆B = (A \ B)

⋃

(B \ A) called symmetric difference of B from A, and if
A = X, X \ B = Bc

We show easily prove that
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A \ B = A \ (A ∩ B) = (A ∪ B) \ B, A∆B = (A ∪ B) \ (A ∩ B).

(A \ B) ∩ (C \ D) = (A ∩ C) \ (B ∪ D), (A ∩ B)∆(A ∩ C) = A ∩ (B∆C)

Definition 2.1 Characteristic functions of sets —
For any subset A ∈ P(X); we denote χA the characteristic function (or the indicator
function) of A defined by χA(x) = 1; ∀ x ∈ A and χA(x) = 0; ∀ x /∈ A.

Properties .
All the operations on sets can be translated easily in term of characteristic functions
of sets by the correspondence: A −→ χA when A ∈ P(X). We have the following
relations :

1. A ⊂ B ⇐⇒ χA ≤ χB.

2. C = A ∩ B ⇐⇒ χC = χA.χB.

3. B = Ac ⇐⇒ χB = 1 − χA.

4. C = A ∪ B ⇐⇒ χC = χA + χB − χA.χB.

5. C = A \ B ⇐⇒ χC = χA(1 − χB).

6. C = A∆B ⇐⇒ χC =| χA − χB | .

7. If (An)n∈N is a sequence of subsets of X, then

χT

n An
= inf

n
χ

{
T

p≤n Ap}
= lim

n→+∞

n
∏

k=1

χAk
.

χS

n An
= Sup

n

χ
{

S

p≤n Ap}
= lim

n→+∞
χ

{
S

p≤n Ap}
.

8. If (An)n∈N and (Bn)n∈N are two sequences of subsets of X, then

(
+∞
⋃

n=1

An)∆(
+∞
⋃

n=1

Bn) ⊂
+∞
⋃

n=1

(An∆Bn).

Definition 2.2

A family of subsets of X indexed by the set of indexes I, is a mapping j 7−→ X(j)
from I in P(X). We denote X(j) = Xj and the family is denoted by (Xj)j∈I .

1. The family (Xj)j∈I is called finite (resp countable) if I is finite (resp countable).

2. A family (Xj)j, is called pairwise disjoint (or simply disjoints) if Xj ∩ Xk = ∅,
∀j 6= k.

Definition 2.3
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1. Let (fn)n∈N be a sequence of real functions on X. We define

(lim Sup)n→+∞ fn = limn→+∞fn = inf
n

Sup {fm; m ≥ n}
and

(lim inf)n→+∞ fn = limn→+∞fn = Sup
n

inf {fm; m ≥ n}.

These two limits are always exist and can take the values ±∞.

2. Let (An)n∈N be a sequence of subsets of X. We define

limn→+∞An =
+∞
⋂

n=1

+∞
⋃

m=n

Am and limn→+∞An =
+∞
⋃

n=1

+∞
⋂

m=n

Am.

limn→+∞An (or lim sup
n→+∞

An) is called the limit superior and limn→+∞An (or

lim inf
n→+∞

An) is called the limit inferior.

Note that (
+∞
⋃

m=n

Am)n is a decreasing sequence of subsets of X and t follows

that lim
n→+∞

+∞
⋃

m=n

Am =
+∞
⋂

n=1

+∞
⋃

m=n

Am exists. Similarly (
+∞
⋂

m=n

Am)n is an increasing

sequence of subsets of X and this implies that lim
n→+∞

+∞
⋂

m=n

Am =
+∞
⋃

n=1

+∞
⋂

m=n

Am exists.

The interpretation is that lim supn An contains those elements of X that occur
”infinitely often” in the sets An, and lim infn An contains those elements that
occur in all except finitely many of the sets An.

Remarks .

1. If the sequence (fn)n∈N converges to the function f ; then limn→+∞fn = limn→+∞fn =
f .

2. limn→+∞An is the set of the elements of X which are in an infinite sets of An.
Thus

limn→+∞An = {x ∈ X :
∞

∑

n=1

χAn
(x) = +∞}.

3. limn→+∞An is the set of elements of X which are in all the An except a finite
number and thus

limn→+∞An = {x ∈ X :
∞

∑

n=1

χAc
n
(x) < +∞}.
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4. limn→+∞An ⊂ limn→+∞An.

5. χ
limn→+∞An

= limn→+∞χAn
.

6. χlim
n→+∞An

= limn→+∞χAn
.

Example .
Let X = R and let a sequence (An)n of subsets of R be defined by A2n+1 = [0, 1

2n+1
],

and A2n = [0, 2n]. Then

limn→+∞An = {x ∈ X; x ∈ Anfor all but finitely many n ∈ N} = {0}

and

limn→+∞An = {x ∈ X; x ∈ Anfor infinitely many n ∈ N} = [0,∞[.

2.2 General Properties of σ−Algebra

Definition 2.4

Let A be a collection of subsets of X. A is called an algebra or a field if :

1. X ∈ A ;

2. (Closure under complement) if A ∈ A , then Ac ∈ A ;

3. (Closure under finite intersection) if A1, . . . , An ∈ A , then
⋂n

j=1 Aj ∈ A .

A is called a σ−algebra or a σ−field if in addition

4. (Closure under countable intersection) if (Aj)j∈N are in A , then
⋂+∞

j=1 Aj ∈ A.

If A is a σ−algebra, the pair (X,A ) is called a measurable space, and the subsets
in A are called the measurable sets.

Remarks .
By complementarity

1. If A is an algebra, then ∅ ∈ A .

2. (Closure under finite union) If A is an algebra and A1, . . . , An ∈ A ,, then
n

⋃

j=1

Aj ∈ A .

3. (Closure under countable union) If A is a σ−algebra and (Aj)j∈N in A , then
+∞
⋃

j=1

Aj ∈ A .
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2.3 Examples

Example 1 :

A = {∅, X} is an algebra and a σ−algebra. This is the smallest σ−algebra in
P(X).

Example 2 :

A = P(X) is an algebra and a σ−algebra. This is the largest σ−algebra in P(X).

Example 3 :

Let � = {A,B,C} be a partition of X. The set

A = {∅, X,A,B,C,A ∪ B = Cc, A ∪ C = Bc, B ∪ C = Ac}.
is a σ−algebra.

Example 4 :

1. Let X = R and A the collection of subsets A of X such that either A or Ac is
countable or ∅. A is a σ−algebra. In fact let (Aj)j∈N be a sequence of elements
of A .

If there exists p such that Ap is countable, then ∩+∞
j=1Aj ⊂ Ap is countable and

∩+∞
j=1Aj ∈ A .

If every Aj is not countable, then all Ac
k are countable, and then ∪+∞

j=1A
c
j is a

countable subset of R and then ∩+∞
j=1Aj ∈ A .

2. Let X be an infinite set and let A the collection of subsets A of X such that
either A or Ac is finite, then A is an algebra but it is not a σ-algebra.

2.4 σ−Algebra Generated by a Subset P ⊂ P(X)

Definition 2.5

Let X be a non empty set and A1, A2 two σ−algebras on X. We say that A1 is finer
then A2 if any element of A1 is an element of A2. In this case we write A1 ⊂ A2.

Remark .
Any intersection of algebras (resp σ− algebra) is an algebra (resp σ− algebra).

Definition 2.6

Let X be a non empty set and B ⊂ P(X). There exists a smallest algebra (resp
σ−algebra) denoted by A ( B), (resp σ(B)) that contain B. This algebra (resp
σ−algebra) is called the algebra (resp σ−algebra) generated by B.
A(B) (resp σ(B)) is the intersection of all the algebras on X (resp σ−algebra) con-
taining B. So this is the smallest algebra (resp σ−algebra) which contains B.

Example 1 :

Let A be a subset of X with A 6= ∅ and A 6= X. The σ−algebra generated by {A} is
{∅, X,A,Ac}.
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Example 2 :

Let X be a non empty set and (Pj)j∈J is a finite partition of X. The algebra generated
by (Pj) is constituted by the subsets of the form

⋃

j∈I Pj, where I ∈ P(J), and the
mapping

I 7−→
⋃

j∈I

Pj

is an isomorphism of P(J) in the algebra.
We remark that if J contains n elements, then the algebra contains 2n elements.

Exercise .
Let X be an arbitrary nonempty set, and let A be the family of all subsets A ⊂ X
such that either A or X \A is countable. Show that A is the σ-algebra generated by
the singleton sets S = {{x}; x ∈ X}.
Exercise .

Let X be a non empty set and C ⊂ P(X). We define successively the sets :
C1 = {∅} ∪ {X} ∪ {A,Ac; A ∈ C},
C2 constituted by the finite intersections of elements of C1,
C3 constituted by the finite union of elements of C2 that are disjoints.
Prove that C3 is the algebra generated by C .

2.5 Borelian σ−Algebra in R

If X = R and B is the σ−algebra generated by the family {[a, b[; (a, b) ∈ R
2}. This

σ−algebra is denoted by BR and called the σ−algebra of Borel subsets on R. (BR

contains all open and closed subsets of R.) Every element of BR is called a Borel
subset of R.
We can prove easily that
BR is generated by {[a, b[; (a, b) ∈ R

2},
BR is generated by the family of open subsets in R,
BR is generated by the family of closed subsets in R,
BR is generated by {]a, +∞[; a ∈ R},
BR is generated by {] −∞, a]; a ∈ R},

2.6 Borelian σ−Algebra in a Topological Space

Let X be a topological space and A be the family of the open subsets of X. Let
B be the σ−algebra generated by the family A. Then B is called the σ−algebra of
Borel subsets on X and denoted by BX . All open and closed subsets of X are Borel
subsets.
The family of the closed subsets of X generates BX .

2.7 Product of σ−Algebras

Definition 2.7
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Let (X1,A1) and (X2,A2) be two measurable spaces. We denote by X the cartesian
product X1×X2. A subset R = A1×A2 of X1×X2 is called a rectangle with A1 ∈ A1

and A2 ∈ A2. We denote by R the set of all rectangles in X. The product σ−algebra
of A1 and A2 on X is the σ−algebra generated by R and will be denoted by A1 ⊗A2.

Remarks .
In the same way if (Xj,Aj), j = 1, . . . , n are n measurable spaces, we define the

σ−algebra ⊗n
j=1Aj on the space X =

n
∏

j=1

Xj, and for the remainder of this course, we

provide the product space X with this σ−algebra.

2.8 Pull back of a σ−Algebra

Let X and X ′ two non empty sets, and let f : X −→ X ′ a mapping. Let B be a
family of subsets of X ′. We define

f−1(B) = {f−1(A); A ∈ B}

Proposition 2.8

If B is a σ−algebra on X ′, then f−1(B) is a σ−algebra on X called the pull back of
B by f .

Proof .
We have f−1(X ′) = X and

⋃

j f−1(Aj) = f−1(
⋃

j Aj) and (f−1(A))c = f−1(A′c).

If X is a subset of X ′ and f is an injection of X into X ′, then the pull back of a
σ−algebra on X ′ is called the trace of this σ−algebra on X.

Proposition 2.9

Let X and X ′ be two non empty sets and f : X −→ X ′ a mapping. Let B be a family
of subsets of X ′ and B the σ−algebra generated by B. Then f−1(B) is the σ−algebra
generated by f−1(B).

Proof .
If we denote by σ(A) the σ−algebra generated by an arbitrary subset A of P(X),
then we must prove that f−1(σ(B)) = σ(f−1(B)).
As f−1(B) ⊂ f−1(σ(B)), then σ(f−1(B)) ⊂ f−1(σ(B)) = f−1(B).
We shall prove the inverse inclusion in the particular case when f is surjective (onto).
Let A be a σ−algebra on X such that f−1(B) ⊂ A ⊂ f−1(B). Let B1 = f(A ) =
{f(A); A ∈ A }. The family B1 is closed under countable union and as f is surjective
(onto) and A contains X then X ′ ∈ B1.
Let proving now that B1 is closed under complementarity.
For K ∈ B1, there exists H ∈ A such that K = f(H). As H ∈ f−1(B), there
exists L ∈ B such that H = f−1(L). Thus K = f(f−1(L)) with L ∈ B. We deduce
that Kc = f(f−1(Lc)) and as f−1(Lc) = (f−1(L))c = Hc ∈ A , we conclude that
Kc = f(Z), with Z = Hc ∈ A .
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It results that B1 is a σ−algebra. So B ⊂ B1 ⊂ B, and as B is the σ−algebra
generated by B, we deduce that B1 = B.
(Let Y ∈ B then Y ∈ B1, there exists thus Z ∈ A such that Z = f−1(Y ) ⇒
f−1(Y ) ∈ A , for any Y ∈ B where f−1(B) ⊂ A .)
Assume now that f is injective.
We can identify X as a subset of X ′ and f is the canonical injection of X −→ X ′.
Let A be a σ−algebra such that f−1(B) ⊂ A ⊂ f−1(B). We put

B1 = {C ∈ P(X ′); C ∩ X ∈ A }.
B1 is a σ−algebra which contain B. So B1 ⊃ B. Thus f−1(B1) ⊃ f−1(B). The
result is deduced easily.
In the general case : we put Y = f(X). Let f1: X −→ Y be the mapping defined by
f . Let f2 be the canonical injection of Y into X ′. f = f2 ◦f1 with f1 surjective (onto)
and f2 injective. Let A = f−1(B) and A = f−1(B). Thus A = f−1

1 (f−1
2 (B)).

From the previous result, σ(f−1(B)) = f−1
2 (B) is a σ−algebra generated by f−1

2 (B)
and f−1

1 (σ(f−1(B))) is generated by f−1
1 (f−1

2 (B)).

3 Measures

We wish define a non-negative set function called a measure µ on P(R) which satisfies
the following conditions :

i) µ is defined on P(R)
ii) For any interval I, µ(I) = `(I)
iii) If (En)n∈N is a disjoint sequence of P(R), (Ej ∩ Ek = ∅, ∀j 6= k), then

µ(
+∞
⋃

j=1

Ej) =
+∞
∑

j=1

µ(Ej) (countable additivity)

iv) µ is invariant under translation, in the sens that µ(E +x) = µ(E), ∀x ∈ R

and ∀E ⊂ R.
So we can not find this function defined on all P(R), but we can define this

function on special subsets of P(R). (See Halmos [?])

3.1 Generalities on Measures

Definition 3.1

Let (X,A ) be a measurable space. A measure (or a positive measure) on X is a
function µ: A → [0,∞] such that :

1. µ(∅) = 0;

2. (Countable additivity:) For any disjoint sequence (Aj)j ∈ A ,

µ(∪+∞
j=1Aj) =

+∞
∑

j=1

µ(Aj). (3.7)
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(We mention that the term countably additive set function µ indicates that µ
satisfies (3.7). We shall also use the term σ-additive set function.)

The set (X,A , µ) will be called a measure space.

Examples .

1. Let X be any non empty set and let A = P(X). For A ∈ A , we define µ(A)
the number of elements in A if A is finite and equal to +∞ if not. µ is then a
measure on A . This measure is called the counting measure.

2. δx(A) = 1 if x ∈ A and 0 otherwise. The measure δx is called the point mass at
x or the Dirac measure on x.

3. Let µ defined on P(R) by:

µ(A) =

{

0 if A is finite
∞ otherwise

µ is finite additive but not countably additive since N =
⋃+∞

j=1{j}, but µ(N) =

+∞ 6=
+∞
∑

j=1

µ({j}) = 0. Then µ is not a measure.

Theorem 3.2

Let µ be a measure on the measurable space (X,A ). It has the following basic prop-
erties :

1. µ is finitely additive : For any finite subsets A1, . . . , An ∈ A of disjoints

elements of A , µ(∪n
j=1Aj) =

n
∑

j=1

µ(Aj).

2. µ is monotone: If A,B ∈ A with A ⊂ B, then µ(A) ≤ µ(B).

3. µ is countably subadditive : If (Aj)j∈N ∈ A and A = ∪+∞
j=1Aj, then

µ(A) ≤
+∞
∑

j=1

µ(Aj).

4. (Continuity from below:) If (Aj)j is an increasing sequence in A , and A =
∪+∞

j=1Aj, then µ(A) = lim
n→+∞

µ(An).

5. µ is subtractive : If A,B ∈ A and A ⊂ B and µ(B) < +∞, then µ(B \ A) =
µ(B) − µ(A). (µ(A) < ∞ suffices).

6. (Continuity from above:) If (Aj)j is a decreasing sequence in A with µ(A1) <
∞, then µ(A) = lim

n→+∞
µ(An), with A = ∩+∞

j=1Aj.
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Proof .

1. This property is obvious.

2. B = A ∪ (B \ A), then µ(B) = µ(A) + µ(B \ A) ≥ µ(A). We use property
property 2) of the measure definition.

3. Let B1 = A1, and Bn = An \
n−1
⋃

j=1

Bj, for n ≥ 2. The sequence (Bn)n∈N are

disjoints and
+∞
⋃

n=1

Bn =
+∞
⋃

n=1

An. So µ(A) =
+∞
∑

n=1

µ(Bn) ≤
+∞
∑

n=1

µ(An).

4. Define (Bn)n∈N as in 3). Since
n

⋃

j=1

Aj =
n

⋃

j=1

Bj, then

µ(A) = µ(
+∞
⋃

n=1

An) = µ(
+∞
⋃

n=1

Bn) =
+∞
∑

n=1

µ(Bn) = lim
n→∞

n
∑

j=1

µ(Bj)

= lim
n→∞

µ(
n

⋃

j=1

Bj) = lim
n→∞

µ(
n

⋃

j=1

Aj).

5. µ(B \ A) + µ(A) = µ(B). If µ(A) < ∞ then µ(B \ A) = µ(B) − µ(A).

6. Apply 3) to the sequence (A1 \ Aj)j.

Remark . (Exercise)
It is easy to prove that µ is a measure on the measurable space (X,B) if and only
if :

i) µ(∅) = 0
ii) µ(A ∪ B) = µ(A) + µ(B), if A ∩ B = ∅.
iii) If (An)n∈N is an increasing sequence of the σ-algebra B, then

µ(
+∞
⋃

n=1

An) = Sup
n

µ(An).

Definition 3.3

1. We say that the measure µ is finite if µ(X) < +∞.

2. We say that the measure µ is σ-finite if there exists an increasing sequence
(Aj)j of measurable subsets of finite measure and ∪+∞

j=1Aj = X.

3. A probability measure is a measure on (X,A ) is a measure such that µ(X) = 1.
In this case the σ−algebra A is called the space of events.
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3.2 Properties of Measures

Let (X,B) be a measurable space. We denote by M (X,B) or M (X) the set of
measures on the measurable space (X,B). We have the following properties :

1. The set M (X) is a convex cone. If µ1 and µ2 are in M (X) and λ ∈ R
+, then

µ1 + µ2, λµ1 are measures.

We order the set M (X) by the relationship

µ1 ≤ µ2 ⇐⇒ µ1(A) ≤ µ2(A); ∀A ∈ B.

2. If (µn)n∈N is an increasing sequence of measures, then the mapping µ: B −→
[0, +∞] defined by µ(A) = lim

n→+∞
µn(A) = Sup

n

µn(A) for any A ∈ B is a

measure on X.

It is clear that µ(∅) = 0 = lim
n→+∞

µn(∅), and if A,B are two disjoints elements

of B, we have

µ(A ∪ B) = lim
n→+∞

µn(A) + lim
n→+∞

µn(B) = µ(A) + µ(B).

Let now (An) be an increasing sequence of B and A =
⋃

n An. We have
µj(An) ≤ µ(An) ≤ µ(A). Then

µj(A) = lim
n→+∞

µj(An) ≤ lim
n→+∞

µ(An) ≤ µ(A)

and

µ(A) = lim
j→+∞

µj(A) ≤ lim
n→+∞

µ(An) ≤ µ(A).

Then µ(A) = lim
n→+∞

µ(An).

4 Complete Measure Spaces

Definition 4.1

Let (X,B, µ) be a measure space. A subset A of X is called a null set or a negligible

set if A is contained in a measurable subset of measure zero.

Example .
Let (X,B) be a measurable space such that ∀x ∈ X; {x} ∈ B. If we take µ = δa,
with a ∈ X; then every subset A ⊂ B such that a 6∈ A, is a null set.

Remarks .
We denote by N the set of null sets. We have:

1. ∅ ∈ N .
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2. Any subset of a null set is a null set. If A ⊂ B and B ∈ N , then there is an
C ∈ B such that µC = 0 and B ⊂ C; now A ⊂ C.

3. A countable union of null sets is a null set. If (An)n is any sequence in N .
For each n ∈ N choose an Bn ∈ B such that An ⊂ Bn and µ(Bn) = 0. Now
B =

⋃

n∈N Bn ∈ B and
⋃

n∈N An ⊂ ⋃

n∈N Bn, and µ(
⋃

n∈N Bn) ≤ ∑∞
n=0 µBn, so

µ(
⋃

n∈N Bn) = 0.

Definition 4.2

If P (x) is some assertion applicable to numbers x of the set X, we say that

P (x) for almost every x ∈ X or P (x) a.e. (x)

or
P (x) for µ − almost every x, P (x) µ − a.e.(x),

to mean that

{x ∈ X; P (x) is false}
is a null set.

Definition 4.3

A measure space (X,B, µ) is said to be complete if any null set is measurable (N ⊂
B), we say that the measure µ is complete.

Theorem 4.4

Let (X,B, µ) be a measure space, and let N be the set of the null sets of X. Let
B′ = {A ∪ B; A ∈ B and B ∈ N }. B′ is a σ-algebra on X and there exists a
unique measure µ′ which extends the measure µ on the σ-algebra B′. The measure
space (X,B′, µ′) is complete.

Proof .
Let prove now that B′ is a σ-algebra.
B′ is evidently closed under countable union. It suffices to prove that it is closed
under complementarity. Let A′ = A ∪ N be an element of B′. As N is a null set
there exists a subset B of B ∩ N and N ⊂ B. We have

A′c = (A ∪ N)c = (A ∪ B)c ∪ (B \ (A ∪ N)).

It follows then that A′c is an element of B′.
If the measure µ′ exists it is unique. In fact we must have µ′(N) = 0 for any N ∈ N ,
thus if A′ = A ∪ N is an element of B′ we shall have µ′(A′) = µ(A).
To show that µ′ is a mapping on B′, we must show that if A1 ∪ N1 = A2 ∪ N2 with
A1, A2 ∈ B and N1, N2 ∈ N , then µ(A1) = µ(A2). So we have A1 \ A2 ∈ N2, then
it is a null set. If B = A1 ∩ A2, then A1 = B ∪ (A1 \ A2) and µ(B) = µ(A1). In the
same way we shall have µ(B) = µ(A2), then µ(A1) = µ(A2).
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Let we prove now that µ′ defines a measure on the σ-algebra B′. If (A′
n)n∈N be a

sequence of disjoint elements of B′, with A′
n = An ∪ Nn, An ∈ B and Nn ∈ N ;

∀n ∈ N. We have

µ′(
+∞
⋃

n=1

A′
n) = µ′

(

(
+∞
⋃

n=1

An) ∪ (
+∞
⋃

n=1

Nn)
)

= µ(
+∞
⋃

n=1

An) =
+∞
∑

n=1

µ(An) =
+∞
∑

n=1

µ′(A′
n).

Finally the measure space (X,B′, µ′) is complete because the µ′-null sets are elements
of N . It is evident that µ′ is the smallest complete extention of the measure µ.

5 Outer Measure

Definition 5.1

Let X be a nonempty set. An outer measure µ∗ on X is a mapping µ∗: P(X) −→
[0,∞] which fulfills the following axioms:

i) µ∗(∅) = 0.
ii) If (An)n∈N is a sequence of subsets of X, then

µ∗(
∞
⋃

n=1

An) ≤
∞

∑

n=1

µ∗(An).

iii) µ∗ is increasing (i.e. µ∗(A) ≤ µ∗(B) if A ⊂ B).

Example .
Any measure on P(X) is an outer measure.

Definition 5.2

Let X be a set and µ∗ be an outer measure on X. A subset A of X is called
µ∗−measurable if

∀B ⊂ X; µ∗(B) = µ∗(B ∩ A) + µ∗(B ∩ Ac)

Now we introduce the most important method of constructing measures.

Theorem 5.3 (Caratheodory’s construction)
Let X be a non empty set and µ∗ be an outer measure on X. Then the set B′ of the
µ∗-measurable subsets is a σ-algebra on X and the restriction of µ∗ on B′ denoted
µ∗|B′ is a complete measure.

Proof .
i) ∅ is µ∗-measurable. (µ∗(B ∩ ∅) + µ∗(B ∩ ∅c) = µ∗(∅) + µ∗(B) = µ∗(B)).
ii) Let A be a µ∗-measurable set and let B a subset of X. It follows from the

definition of the outer measure that µ∗(B) = µ∗(B ∩ A) + µ∗(B ∩ Ac), then Ac is
µ∗-measurable.

iii) Let A,B ∈ B′ and E a subset of X. As A is a measurable subset, we have
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µ∗(E ∩ (A ∪ B)) = µ∗(E ∩ (A ∪ B) ∩ A) + µ∗(E ∩ (A ∪ B) ∩ Ac)

= µ∗(E ∩ A) + µ∗(E ∩ B ∩ Ac) (5.8)

µ∗(E ∩ (A ∪ B))+µ∗(E ∩ (A ∪ B)c) = µ∗(E ∩ A)+µ∗(E ∩ B ∩ Ac)+µ∗(E ∩ Ac ∩ Bc)

= µ∗(E ∩ A) + µ∗(E ∩ Ac) = µ∗(E). (5.9)

Then A ∪ B is in B′.
iv) Let A1, A2 be two disjoint elements of B′, B a subset of X and E =

B ∩ (A1 ∪ A2). As E ∩ (A1 ∪ A2)
c = ∅, we use the relationship given in iii) for the

subset E, we will have:

µ∗(E ∩ (A1 ∪ A2)) + µ∗(E ∩ (A1 ∪ A2)
c) = µ∗(E ∩ A1) + µ∗(E ∩ Ac

1)

= µ∗(B ∩ A1) + µ∗(B ∩ A2).

Then

µ∗(B ∩ (A1 ∪ A2)) = µ∗(B ∩ A1) + µ∗(B ∩ A2).

Let (An)n∈N be a sequence of disjoint elements of B′, then we have

µ∗(B) = µ∗(B ∩
n

⋃

j=1

Aj) + µ∗(B ∩ (
n

⋃

j=1

Aj)
c)

≥ µ∗(B ∩
n

⋃

j=1

Aj) + µ∗(B ∩ (
∞
⋃

j=1

Aj)
c)

≥
n

∑

j=1

µ∗(B ∩ Aj) + µ∗(B ∩ (
∞
⋃

j=1

Aj)
c).

Then

µ∗(B) ≥
∞

∑

j=1

µ∗(B ∩ Aj) + µ∗(B ∩ (
∞
⋃

j=1

Aj)
c) ≥ µ∗(B ∩

∞
⋃

j=1

Aj) + µ∗(B ∩ (
∞
⋃

j=1

Aj)
c).

The other inequality results from the property ii) of the outer measure µ∗.
To finish the proof we take a sequence (Bn)n∈N of B′, and put A1 = B1, An =

Bn \
n−1
⋃

j=1

Bj. We have
∞
⋃

n=1

An =
∞
⋃

n=1

Bn. Thus B′ is a σ-algebra.

It is evident that the restriction of µ∗ on B′ is a measure.
It remains to show that the measure µ∗ is complete. To prove this fact it suffices to
prove that any null set A is measurable. If A is a null set, then there exist an element
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B ∈ B′ such that A ⊂ B and µ∗(B) = 0. Let E be a subset of X, then µ∗(E∩A) = 0
and

µ∗(E) ≥ µ∗(E ∩ Ac) = µ∗(E ∩ A) + µ∗(E ∩ Ac).

The other inequality results from the definition of the outer measure µ∗. Thus A is
µ∗-measurable.

Exercise .
Let (X,B, µ) be a measure space. We define the mapping µ∗: P(X) −→ [0, +∞] by

µ∗(A) = inf{
∞

∑

j=1

µ (Aj); A ⊂ ∪∞
j=1Aj and Aj ∈ B}. (5.10)

Show that µ∗ is an outer measure and any µ−measurable set is µ∗-measurable and
the restriction of µ∗ on B is equal to the measure µ.

Solution .
It is easy to prove that µ∗(∅) = 0 and µ∗ is increasing.
Let (An)n∈N be a sequence of subsets of X. We want to prove that µ∗(∪+∞

n=1An) ≤
+∞
∑

n=1

µ∗(An). If there exists An such that µ∗(An) = +∞, then the inequality is trivial.

Assume now that ∀n ∈ N; µ∗(An) < +∞.
For every n ∈ N, and for every ε > 0, there exists a sequence (An,j)j ∈ B, such that
µ∗(An) ≥ ∑+∞

j=1 µ(An,j) − ε
2n . Then the sequence (An,j)j,n∈N is a covering of the set

A =
+∞
⋃

j=1

An and
+∞
∑

n=1

+∞
∑

j=1

µ(An,j) ≤
+∞
∑

n=1

µ∗(An) + ε. Then µ∗(A) ≤ ∑+∞
n=1 µ∗(An) + ε,

for all ε > 0 and so µ∗(A) ≤
+∞
∑

n=1

µ∗(An). Then µ∗ is an outer measure.

Let now proving that µ∗ = µ on B.
If A ∈ B, then µ∗(A) ≤ µ(A), and if µ∗(A) = +∞ then µ∗(A) = µ(A).
Assume now that µ∗(A) < +∞, then for every ε > 0, there exists (An)n∈N a covering

of A in B and µ∗(A) ≥
+∞
∑

n=1

µ(An)− ε. As µ(A) ≤
+∞
∑

n=1

µ(An), then µ(A) ≤ µ∗(A) + ε

for every ε > 0. It result that µ(A) = µ∗(A),∀A ∈ B.
Let now proving that any µ−measurable set is µ∗-measurable.
If A ∈ B and B ⊂ X. From the definition of the outer measure µ∗, we have µ∗(B) ≤
µ∗(B ∩A) + µ∗(B ∩Ac). Then if µ∗(B) = +∞ we have the desired equality. Assume
now that µ∗(B) < +∞. Then for every ε > 0, there exists a covering (Bn)n∈N of B in

B and µ∗(B) ≥
+∞
∑

n=1

µ(Bn) − ε. As µ is a measure µ(A ∩ Bn) + µ(Ac ∩ Bn) = µ(Bn),

then µ∗(B) ≥
+∞
∑

n=1

µ(Bn ∩ A) +
+∞
∑

n=1

µ(Bn ∩ Ac) − ε ≥ µ∗(B ∩ A) + µ∗(B ∩ Ac) − ε.

Then µ∗(B) ≥ µ∗(B ∩ A) + µ∗(B ∩ Ac). Then µ∗(B) = µ∗(B ∩ A) + µ∗(B ∩ Ac) and
A is µ∗ measurable.
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Theorem 5.4

Let (X,B, µ) be a measure space and µ sigma-finite measure. Let µ∗ the outer measure
defined on P(X) by µ∗(A) = inf{∑j µ (Aj); A ⊂ ∪jAj and Aj ∈ B}. We denote

by B̂ the complete σ-algebra and B0 the σ-algebra of the µ∗-measurable sets. Then
B̂ = B0.

Proof .
According to the previous exercise B ⊂ B0. Let A be a null set, there exists a
measurable set B such that A ⊂ B and µ(B) = 0. Let E be a subset of X; µ∗(E∩A) ≤
µ(B) = 0 and µ∗(E∩Ac) ≤ µ∗(E) then µ∗(E) = µ∗(E∩A)+µ∗(E∩Ac) and B̂ ⊂ B0.
Let A ∈ B0, assume that µ∗(A) < +∞, there exists a sequence (Aj,n) of B such that
A ⊂ ⋃

j Aj,n and
∑

j µ(Aj,n) ≤ µ∗(A) + 1/n. We denote Bn =
⋃∞

j=1 Aj,n. Bn ⊃ A
and µ(Bn) ≤ µ∗(A) + 1/n. Let B =

⋂

n Bn, B ∈ B; A ⊂ B ⇒ µ∗(A) ≤ µ(B), and
we have µ(B) ≤ µ(Bn) ≤ µ∗(A) + 1/n,∀n ⇒ µ(B) ≤ µ∗(A) ⇒ µ(B) = µ∗(A) ⇒
µ∗(B \A) = 0, because µ∗(A) < ∞. Then A = B \ (B \A) = B ∩ (B \A)c . (B \A)

is a null set then it is in the σ-algebra B̂ and in the same way for B, then A ∈ B̂.
If µ∗(A) = +∞. Since µ is σ-finite, there exists a sequence (En)n∈N of measurable

sets such that µ(En) < +∞ and
+∞
⋃

n=1

En = X. Then any A ∈ B0 is written as

A =
+∞
⋃

n=1

An, An ∈ B0, and µ∗(An) < +∞.

Then An ∈ B̂ and A ∈ B̂.

5.1 Monotone Class and σ−Algebra

Definition 5.5

A collection of sets M is called a monotone class if for any monotone sequence
(An)n∈N of M; lim

n→+∞
An ∈ M.

Examples .

1. Any σ−algebra is a monotone class.

2. An arbitrary intersection of monotone classes is a monotone class.

3. If A ⊂ X, the intersection of all monotone classes that contain A is called the
monotone class generated by A and denoted by M (A).

Theorem 5.6

Let A be an algebra of X. We denote by M (A ) the monotone class generated by
A, and by σ(A) the σ−algebra generated by A. Then M (A) = σ(A).
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Proof .
It follows from the above remark that σ(A) is a monotone class, as σ(A)

contains A, then σ(A) contains the smallest monotone class containing A thus σ(A) ⊃
M (A).
For proving that σ(A) ⊂ M (A), we define for every subset S of X the set S̃ by:

S̃ = {T ∈ P(X); S ∪ T, S \ T and T \ S ∈ M (A)}.
This definition is symmetric with respect to S and T , then S ∈ T̃ ⇐⇒ T ∈ S̃. We
want to prove that S̃ is a monotone class if it exists.
If (An)n∈N is an increasing sequence of S̃; (S ∪ An)n∈N is a increasing sequence of
M (A), the same for the sequence (An\S)n∈N, the sequence (S\An)n∈N is a decreasing
sequence of M (A). Then the limit of the sequences are in M (A).
Let A ∈ A, then ∀ B ∈ A, B ∈ Ã, then Ã is a monotone class containing A, then
Ã ⊃ M (A). So ∀ S ∈ M (A), S ∈ Ã for any A ∈ A, and so A ∈ S̃, then A ⊂ S̃;
∀S ∈ M (A). As S̃ is a monotone class then M (A) ⊂ S̃.
We prove that :
∀ S, S ′ ∈ M (A), S \ S ′, S ′ \ S, S ∪ S ′ ∈ M (A). If we take S ′ = X, we find that
Sc ∈ M (A), in this way M (A) is an algebra. The result can be deduced from the
following lemma.

Lemma 5.7

Let M be an algebra closed under increasing limit, (i.e. if (An)n∈N is an increasing
sequence of M then the limit of An is in M ), then M is a σ−algebra.

Proof .
Let (An)n∈N be a sequence of M . Consider Bn =

⋃

1≤j≤n

Aj, the sequence Bn is

increasing in M and ∪nAn = ∪nBn ∈ M .

We end this paragraph with a property of measure that we need in the construction
of Lebesgue measure.

Theorem 5.8

Let µ1 and µ2 be two positive measures on a measurable space (X,B). Assume that
there exists a class C of measurable subsets such that :

a) C is closed under finite intersection and that the σ-algebra generated by C

is equal to B.
b) There exists an increasing sequence (En)n∈N in C such that lim

n→+∞
En = X.

c) µ1(C) = µ2(C) < +∞, for any C ∈ C .
Then µ1 = µ2.

Proof .
We suppose in the first case that µ1(X) = µ2(X) < +∞.
Let A = {A ∈ B; µ1(A) = µ2(A)}. By hypothesis X ∈ C and C ⊂ A . It is easy to
prove that A is a monotone class. (If (An)n∈N is an increasing sequence of A , then
µ1(An) = µ2(An) for all n, and then
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µ1(
+∞
⋃

n=1

An) = µ2(
+∞
⋃

n=1

An) = µ1(lim An) = µ2(lim An).

If (An)n∈N is a decreasing sequence of A , then µ1(An) = µ2(An) for all n, as µ1(X) =
µ2(X) < +∞, then µ1(

⋂+∞
n=1 An) = µ2(

⋂+∞
n=1 An).)

A is a σ−algebra. (If A,B ∈ A with A ⊂ B, then µ1(B \ A) = µ1(B) − µ1(A) =
µ2(B)− µ2(A) = µ2(B \A) and so B \A ∈ A . We use the fact that µ1, µ2 are finite
and µ1(X) = µ2(X)). Then σ(C ) = B ⊂ A and A = B and µ1 = µ2.
In the general case we take µj,n the restriction of µj on En for all n ∈ N. From the
first case µ1,n = µ2,n, which gives µ1 = µ2, because µj = lim

n→+∞
µj,n; j = 1, 2.

6 Lebesgue Measure on R

Theorem 6.1

There exists only and only one measure λ on BR satisfying:
i) λ is invariant under translation. (i.e. ∀x ∈ R, ∀A ∈ BR; λ(x+A) = λ(A)).
ii) λ([0, 1]) = 1.

Proof .
Uniqueness : Assume that there exists two measures µ and ν on BR satisfying (i)
and (ii) then ν[0, 1/n[≤ 1/n ⇒ ν{0} = 0 and then any finite set or countable set is
a null set and all the intervals [a, b], ]a, b], [a, b[ and ]a, b[ have the same measure and
equal to b−a. (We treat the case of a and b are rationals and then we take the limit.)
We denote by E the set of finite union of intervals of R of the form [a, b[; a, b ∈ R.
The set E is closed under finite intersection and R =

⋃

n[−n, n[. Then we shall have
µ = ν on E . It follows from the unicity theorem 4.4 that µ and ν are equal on BR.
Existence : Define for any subset A of R

µ∗(A) = inf
R

∑

I∈R

L (I).

R describes the whole of finite or countable coverings of A by open intervals,
and L (I) is the length of I.
We first prove that for any interval I of R, µ∗(I) = L (I).
If a and b are the endpoints of I and ε > 0, then I ⊂]a−ε, b+ε[ and µ∗(I) ≤ L (I)+2ε.
It follows that µ∗(I) ≤ L (I).
Conversely let (Ik)k be an open covering of I, then [a+ε, b−ε] ⊂ ∪kIk. As [a+ε, b−ε]
is compact, there exist a finite sub-covering (Ik)1≤k≤n such that [a+ε, b−ε] ⊂ ∪n

k=1Ik.

It results that b− a− 2ε ≤
n

∑

k=1

L (Ik) ≤
+∞
∑

k=1

L (Ik). Thus b− a− 2ε ≤ µ∗(I) for any

ε > 0 and then L (I) = µ∗(I).
Let Ω be an open set of R and let (In)n∈N be the connected components of Ω, then
µ∗(Ω) =

∑∞
n=1 L (In). In fact from the definition of µ∗
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µ∗(Ω) ≤
∞

∑

n=1

L (In). (6.11)

Conversely let (Jk)k be a covering of Ω by open intervals, we have In =
⋃

k

Jk ∩ In. It

results that
+∞
∑

n=1

L (In) ≤
+∞
∑

n=1

+∞
∑

k=1

L (In ∩Jk) =
+∞
∑

k=1

+∞
∑

n=1

L (In ∩Jk). In the other hand

the intervals (In)n are disjoints, then for any m,
m
⋃

n=1

(Jk ∩ In) ⊂ Jk and for all m ∈ N;

m
∑

n=1

L (Jk ∩ In) ≤ L (Jk). It results that
+∞
∑

n=1

L (In ∩ Jk) ≤
+∞
∑

k=1

L (Jk).

Then

+∞
∑

n=1

L (In) ≤ µ∗(Ω). (6.12)

So relations (6.11) and (6.12) gives that µ∗(Ω) ≤ ∑∞
n=1 L (In).

We deduce that if (ωn)n∈N is a sequence of open sets, then µ∗(
⋃

n

ωn) ≤
+∞
∑

n=1

µ∗(ωn).

In fact if (In,k)k are the connected components of ωn, we have: µ∗(ωn) =
+∞
∑

k=1

L (In,k)

and

µ∗(
+∞
⋃

n=1

ωn) = µ∗(
+∞
⋃

n,k=1

In,k) ≤
+∞
∑

n,k=1

L(In,k) =
+∞
∑

n=1

+∞
∑

k=1

L(In,k) =
+∞
∑

n=1

µ∗(ωn).

Let now prove that for any subset A ⊂ R, µ∗(A) = inf
O open⊃A

µ∗(O). If (In) be a

finite or countable covering of A by open intervals. Put ω =
⋃+∞

n=1 In, then µ∗(A) ≤
µ∗(ω) ≤ ∑+∞

n=1 L (In). We deduce that µ∗ is an outer measure on P(R); in fact :
i) µ∗(∅) = 0.
ii) If A ⊂ B, then µ∗(A) = infω(open)⊃A µ∗(ω) ≤ infω(open)⊃B µ∗(ω) = µ∗(B).
iii) If (An)n∈N is a sequence of subsets of R. Our goal is to prove that

µ∗(∪nAn) ≤
∑

n

µ∗(An). (6.13)

If there exists n0 such that µ∗(An0
) = +∞, the inequality (6.13) is trivially fulfilled.

Assume now that µ∗(An) < +∞ for all n ∈ N. Let ε > 0, for any n ∈ N there exists

an open set ωn containing An such that µ∗(ωn) ≤ µ∗(An) +
ε

2n
.

µ∗(∪+∞
n=1An) ≤ µ∗(∪+∞

n=1ωn) ≤
+∞
∑

n=1

µ∗(ωn) ≤
+∞
∑

n=1

µ∗(An) +
+∞
∑

n=1

ε

2n
=

+∞
∑

n=1

µ∗(An) + ε

(6.14)
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for any ε > 0, thus µ∗(∪+∞
n=1An) ≤

+∞
∑

n=1

µ∗(An).

According to the theorem 5.3 the set of the µ∗-measurable subsets is a σ-algebra
L on R and µ∗|L is a complete measure. This σ-algebra is called the Lebesgue

σ-algebra, and the elements of L are called the Lebesgue measurable sets. We
will note B∗

R this σ-algebra.

Proposition 6.2

Any Borelian subset is Lebesgue measurable.

Proof .
It suffices to show that ∀a ∈ R, ]a, +∞[∈ L . Let E be a subset of R. our goal is to
prove that

µ∗(E) = µ∗(E∩]a, +∞[) + µ∗(E∩] −∞, a]). (6.15)

The inequality µ∗(E) ≤ µ∗(E∩]a, +∞[) + µ∗(E∩] −∞, a]) results from the fact that
µ∗ is an outer measure. For the other inequality the result is trivial if µ∗(E) = +∞.
Assume that µ∗(E) < +∞. Let ε > 0 there exists an open set Ωε ⊃ E such that :
µ∗(Ωε) ≤ µ∗(E) + ε. Assume in the first time that a /∈ Ωε.

µ∗(Ωε) =
∑

I∈C

L (I) =
∑

I∈C∩]a,+∞[

L (I) +
∑

I∈C∩]−∞,a[

L (I) (6.16)

with C the set of the connected components of Ωε. Then it results that

µ∗(Ωε) = µ∗(Ωε∩]a, +∞[) + µ∗(Ωε∩] −∞, a[) ≥ µ∗(E∩]a, +∞[) + µ∗(E∩] −∞, a[).

Then µ∗(E) ≥ µ∗(E∩]a, +∞[) + µ∗(E∩] −∞, a]).
If now a ∈ Ωε, let Ω′

ε = Ωε \ {a}. According to the first remark µ∗(Ω′
ε) = µ∗(Ωε).

This which ends the proof of the theorem in taking λ = µ∗. The measure λ on B∗
R is

called the Lebesgue measure on R.

Proposition 6.3

Let B∗
R the Lebesgue σ-algebra on R, then ∀ A ∈ B∗

R

λ(A) = inf
ω open⊃A

λ(ω)

λ(A) = Sup
K compact⊂A

λ(K).

We say that the measure λ is regular.

Proof .
If A is bounded, there exists n ∈ N such that A ⊂ [−n, n]. Let ε > 0, the set
[−n, n] \ A is measurable, then there exists an open set ω ⊃ ([−n, n] \ A) such that

λ(ω) ≤ λ([−n, n] \ A) + ε = λ[−n, n] − λ(A) + ε
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because λ([−n, n] \ A) = infω open⊃([−n,n]\A) λ(ω).
Let K = [−n, n] ∩ ωc. K is a compact in A.

2n = λ[−n, n] = λ([−n, n] ∩ ωc) + λ([−n, n] ∩ ω) ≤ λ(K) + ε + λ[−n, n] − λ(A).

Then λ(A) ≤ λ(K) + ε and λ(A) = SupK compact⊂A λ(K).
If A is not bounded, then ∀n ∈ N there exists a compact Kn ⊂ [−n, n]∩A such that

λ(Kn) ≥ λ([−n, n] ∩ A) − 1/n

then

Sup
K compact⊂A

λ(K) ≥ Sup
n

(λ(Kn)) ≥ lim
n→+∞

(λ([−n, n] ∩ A) − 1/n) = λ(A)

7 Measurable Functions

Let X and Y be two nonempty sets. We showed in the previous section 2.9 that the
pull back of a σ-algebra by a mapping f : X −→ Y is a σ-algebra of X.

Definition 7.1

If (X,A ) and (Y,B) are two measurable spaces. A mapping f : X −→ Y is called
measurable if the σ-algebra f−1(B) ⊂ A .

Theorem 7.2

Let (X,A ) and (Y,B) be two measurable spaces, and suppose that B generates the
σ-algebra B. A function f : X → Y is measurable if and only if
for every subset V in the generator set B, its pre-image f−1(V ) is in A .

Proof .
The sufficient condition is just the definition of measurability.

For the ”if” direction, define
H = {V ∈ B: f−1(V ) ∈ A } .

It is easily verified that H is a σ-algebra, since the operation of taking the inverse
image commutes with the set operations of union, intersection and complement.

By hypothesis, B ⊆ H. Therefore, σ(B) ⊆ σ(H). But B = σ(B) by the
definition of B, and H = σ(H) since H is a σ-algebra. This means that f−1(V ) ∈ A

for every V ∈ B.

Remark .
To show that a mapping f : X −→ Y is measurable; it suffices to give a set C which
generates B and such that f−1(C) ⊂ A .

Proposition 7.3

Let (X,A ) be a measurable space and let f : X −→ R (or in R) a mapping. Then f
is measurable, if one of the following conditions is fulfilled :
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1. ∀a ∈ R {x ∈ X; f(x) ≥ a} ∈ A .

2. ∀a ∈ R {x ∈ X; f(x) < a} ∈ A .

3. ∀a ∈ R {x ∈ X; f(x) ≤ a} ∈ A .

4. ∀a, b ∈ R {x ∈ X; a < f(x) < b} ∈ A .

5. ∀a, b ∈ R {x ∈ X; a ≤ f(x) < b} ∈ A .

The space R (resp R) is equipped with the Borel σ-algebra BR (resp BR).

We take the measurable spaces (R,BR) and (R,BR).

Proof .
Let taking for example the measurable space (R,BR). As {x ∈ R; f(x) < a} =
f−1([−∞, a[) ∈ A . The first condition of the proposition is still written f−1{C} ⊂ A ,
where C is the class of the intervals [−∞, a[ of R, with a ∈ R. To show that f is
measurable it suffices to show that the σ-algebra generated by C is the Borelian σ-
algebra of R. It is easy to show that the open intervals of R are in the σ-algebra
generated by C.
Let T the σ−algebra generated by C. By complementarity [a, +∞] ∈ T , and [a, b[∈

T , ∀a, b ∈ R, because [a, b[= [a, +∞] ∩ [−∞, b[. And ]a, b[=
+∞
⋃

n=1

[a +
1

n
, b[∈ T . And

for the same way ]a, +∞] =
+∞
⋃

n=1

[a +
1

n
, +∞]. Then T contains all the open sets of X

and then T = BR.

Particular Case .
Let X and Y two topological spaces and let BX and BY the Borelian σ−algebras on
X and Y respectively. Then every continuous function is measurable.
X and Y two topological spaces and let BX and BY the Borelian σ−algebras on X
and Y respectively. Then every measurable function f : X −→ Y is called a Borelian
function.

Proposition 7.4

Let (X0,B0), (X1,B1) and (X2,B2) three measurable spaces. Let f1: X0 −→ X1 and
f2: X1 −→ X2 two measurable mappings, then the mapping f2 ◦ f1 is measurable.

The proposition results from the fact that

(f2 ◦ f1)
−1(B2) = f−1

1 (f−1
2 (B2)) ⊂ f−1

1 (B1) ⊂ B0.

Proposition 7.5

Let (X,B) and (Xj,Bj), j = 1, . . . , n (n + 1) measurable spaces, and let f : X −→
n

∏

j=1

Xj, a mapping f = (f1, . . . , fn). Then f is measurable if and only if each partial

mapping fj: X −→ Xj is measurable.
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Proof .
We remark that if pj is the natural projection pj:

∏n

k=1 Xk −→ Xj, p−1
j (Aj) = X1 ×

X2...×Aj×. . .×Xn, which is measurable if Aj is measurable. Then pj is a measurable
mapping.
The partial mappings fj = pj ◦ f are measurable if f is measurable. Let now suppose
that fj, j = 1, . . . , n are measurable. Let A1 × ... × An be a rectangle in

∏n

k=1 Xk,
then

f−1(A1 × ... × An) = f−1(
n

⋂

j=1

p−1
j (Aj)) =

n
⋂

j=1

f−1(p−1
j (Aj)) =

n
⋂

j=1

f−1
j (Aj).

Then f is measurable.

Corollary 7.6

Let (X,B) be a measurable space, f and g are two measurable functions on X with
values in R or R. Let F : R2 −→ R be a continuous function. Then the function
h = F (f, g) is a measurable function.

Proof .
The mapping (f, g) is measurable on X with values in R

2 and F is measurable thus
h is measurable on X.

Corollary 7.7

Let (X,B), (Y,B′) and (Z,T ) three measurable spaces and let f : X × Y −→ Z a
mapping. Then for any a ∈ X (resp b ∈ Y ), the partial mapping f(a, .) (resp f(., b)
) is measurable.

Proof .
Let us fix an element a ∈ X. The mapping g: Y −→ X ×Y , defined by g(y) = (a, y)
is measurable from the previous proposition. f(a, .) = f ◦ g this which shows the
corollary.

Corollary 7.8

Let (X1,B1), . . . , (XnBn), n measurable spaces, fj: Xj −→ R, j = 1, . . . , n and
f :

∏n

j=1 Xj −→ R defined by f(x1, . . . , xn) = f1(x1) . . . fn(xn). Assume that fj 6≡ 0.
Then f is measurable if and only if the functions f1, . . . , fn are measurable.

Proof .
As the mapping (y1, . . . , yn) 7−→ y1.y2 . . . yn from R

n to R is measurable, then it
is clear that f is measurable if the mappings fj are measurable. For proving the
measurability of f1 for example knowing that f is measurable, we choose a2, . . . , an

such that fj(aj) 6= 0 for any j = 2, . . . , n. For x ∈ X1 we have:

f1(x) =
f(x, a2, . . . , an)
∏n

j=2(fj(aj))

This proves that f1 is measurable.
In particular a non empty rectangle

∏n

j=1 Aj is measurable if and only if each Aj is.
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Proposition 7.9

Let (X,B) be a measurable space.
a) If f is measurable of (X,B) with values in R or R, then |f | is measurable.
b) If (fn)n∈N is a sequence of measurable functions of (X,B) with values in R

or in R, then the functions g,h,k defined by g(x) = Sup
n∈N

fn(x), h(x) = limn→+∞fn(x)

and k(x) = limn→+∞fn(x) are measurable.

Proof .
a) If a < 0; {x ∈ X; |f(x)| > a} = X.

If a ≥ 0; {x ∈ X; |f(x)| > a} = {x ∈ X; f(x) > a} ∪ {x ∈ X; f(x) < −a} =
f−1(]a, +∞]) ∪ f−1([−∞,−a[) ∈ B.

b) {x ∈ X; g(x) > a} =
⋃

n∈N{x ∈ X; fn(x) > a} ∈ B.
h(x) = infn∈N(Supj≥n fj(x))

{x ∈ X; h(x) > a} =
+∞
⋂

n=1

∞
⋃

j=n

{x ∈ X; fj(x) > a} ∈ B.

k(x) = Supn∈N(infj≥n fj(x))

{x ∈ X; k(x) > a} =
+∞
⋃

n=1

∞
⋂

j=n

{x ∈ X; fj(x) > a} ∈ B.

Remark .
It results from the previous proposition that if f is measurable then the functions
f+ = Sup(f, 0) and f− = inf(f, 0) are measurable, and if (fn)n∈N is a sequence of
measurable functions which converges point wise toward a function f on X, then f
is measurable.

Corollary 7.10

For any sequence (fn)n∈N of measurable functions with real values on a measurable
space X, if C = {x ∈ X; lim

n→+∞
fn(x) exists in R}. Then C is measurable.

Proof .
We put D = Cc, D = {x ∈ X; limn→+∞fn(x) < limn→+∞fn(x)}. If we put g =
limn→+∞fn and h = limn→+∞fn. For each rational r, let

Dr = {x ∈ X; g(x) < r < h(x)} = {g(x) < r} ∩ {h(x) > r}
which is measurable. D =

⋃

r∈Q Dr which proves the measurability of D.

Theorem 7.11

Let A ⊂ R
m and f : A −→ R

n a mapping. Assume that for any point a ∈ A, there
exists a neighborhood V (a) such that

µ∗
n(f(A ∩ V (a))) = 0

Then µ∗
n(f(A)) = 0.
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Proof .
For any a ∈ A, there exists a ball B ⊂ R

m of center of rational coordinates such that
a ∈ B and µ∗

n(f(A ∩ B)) = 0. The family B of these balls is at least countable and
cover A. It follows that f(A) is covered by the sequence f(A∩B), B ∈ B, and every
one is of measure zero. It follows that µ∗

n(f(A)) = 0.

Theorem 7.12

Let A ⊂ R
m and f : Rm −→ R

n a mapping such that, there exists s ≥ m/n and

|f(x) − f(y)| ≤ M s|x − y|s, ∀x, y ∈ A.

Then

1. If s > m/n ⇒ µ∗
n(f(A)) = 0.

2. If s = m/n ⇒ µ∗
n(f(A)) ≤ 2n(M

√
m)mµ∗

n(A).

Proof .
We can suppose that µ∗

m(A) < ∞, if not we take the sequence A∩ [−p, p]; p ∈ N. We
denote ||x||∞ = Sup1≤j≤k |xj| if x ∈ R

k. We have ||x||∞ ≤ |x| ≤ √
n||x||∞ on R

n and
||x||∞ ≤ |x| ≤ √

m||x||∞ on R
m. Thus

||f(x) − f(y)||∞ ≤ (M
√

m)s||x − y||s∞, ∀ x, y ∈ A

Let 0 < ε < 1 and P = P (b, r) a rectangle with r < ε < 1. Assume that P ∩ A 6= ∅.
Let a, b ∈ A ∩ P ⇒ ||x − b||∞ ≤ r/2, ||a − b||∞ ≤ r/2 and ||x − a||∞ ≤ r. Then it
follows that ||f(x) − f(a)||∞ ≤ (M

√
m)srs and

f(A ∩ P ) ⊂ P (f(a)), 2(M
√

m)srs ⇒ µ∗
n(f(A ∩ P )) ≤ 2n(M

√
m)nsrmrns−m

If (Pk)k is a covering of A by of the rectangles of thisôtés ≤ ε, then

µ∗
n(f(A)) ≤ 2n(M

√
m)nsεns−m

∑

k

V ol(Pk)

Thus µ∗
n(f(A)) ≤ 2n(M

√
m)nsεns−mµ∗

m(A).

Corollary 7.13

1. Every null set in R
n is of measure zero in any system of coordinate in R

n.

2. Every subspace of dimension m < n is a null set in R
n.

zero.

Proof .

1. Every linear mapping f : Rn −→ R
n fulfills ‖f(x)‖ ≤ M‖x‖. The result follows

from the previous theorem with m ≤ n and s = 1.
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2. If V is a subspace of dimension m < n, V = f(Rm) and we applied the first
result of this corollary.

Corollary 7.14

Let f : Rm −→ R
n be a mapping of class C1 in any point a of A ⊂ R

m. If m < n then
µ∗

n(f(A)) = 0.

Proof .
For any a ∈ A there exists an open ball B(a, r) such that

‖f(x) − f(y)‖ ≤ (1 + ||df(a)||)‖x − y‖

for any x, y ∈ B(a, r), df(a) is the differential of f in the point a. It follows that

µ∗
n(f(A ∩ B(a, r))) = 0 ⇒ µ∗

n(f(A)) = 0

Corollary 7.15

Let f : Rn −→ R
n be a mapping of class C1 in any point a of A ⊂ R

n. If µ∗
n(A) = 0

then µ∗
n(f(A)) = 0.

Exercise .
Let f : Rm −→ R

n be a mapping of class Cp and let A a subset of R
m. Assume that

p > m/n, Djf = 0 on A for any 0 ≤ j ≤ p − 1. Show that µ∗
n(f(A)) = 0. (ind: we

can prove that ‖f(x) − f(y)‖ ≤ M‖x − y‖p locally on A)

Exercise .
Let f : Rn −→ R

n be a linear mapping such that f(ej) = λjej, e1, . . . , en is a base of
R

n. Show that if A is a subset of R
n

µ∗
n(f(A)) ≤ |λ1. . . . .λn|µ∗

n(A)

(ind: if P is a rectangle of center a and of sides of lengths s1, , . . . , sn, then f(P ) is
a rectangle of center f(a) and of sides of lengths |λ1|s1, . . . , |λn|sn. If any |λj| = 0
the result is trivial and if not we can applied the result to f−1.

Theorem 7.16 (Egoroff)
Let (X,B), µ) be a measure space. Assume that the measure µ is bounded. Let
(fn)n∈N be a sequence of real or complex measurable functions on X which converges
point wise on X to a function f . For any ε > 0 there exists a set Aε ∈ B, such
that µ(Aε) ≤ ε and the restriction of the sequence (fn) on the complementary of Aε

is uniformly convergent.
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Proof .
The function f is measurable. For any integers (n, k), k > 0, let

E(k)
n =

+∞
⋂

p=n

{x; |fp(x) − f(x)| ≤ 1

k
.}

This set is measurable. For a given k, the sequence (E
(k)
n )n∈N is increasing and

lim
n→+∞

E(k)
n = X. (Because the sequence (fn)n∈N converges to f on X). As µ is

bounded, lim
n→+∞

µ(E(k)
n )c = 0. Then there exists an integer n(k) such that µ(E

(k)
n(k))

c ≤
ε/2k. The set Aε =

⋃+∞
k=1(E

(k)
n(k))

c is appropriate. In fact µ(Aε) ≤ ε, and on the

complementary of Aε the sequence (fn)n∈N converges uniformly to f .

Remark .
The requirement that µ is bounded is essential. For constructing a counterexample
it suffices of take µ the Lebesgue measure on R and fn the characteristic function of
the range [n, +∞[. (Assume the existence of an invariant measure by translation on
R, called Lebesgue measure.)

The classical Cantor ternary set .
Let a < b two real numbers. We call ”tiers median” of the interval I ⊂ [a, b], the

open interval of length b−a
3

and of the same center that [a, b]. (I =] b−a
3

, 2(b−a)
3

[).
Let E0 = [0, 1]. We remove the tiers-median of E0, and we recall E1 this which
remains. E1 = [0, 1

3
] ∪ [2

3
, 1]. We remove the tiers-median of these two intervals and

we recall E2 this which remains

E2 = [0,
1

9
] ∪ [

2

9
,
3

9
] ∪ [

6

9
,
7

9
] ∪ [

8

9
, 1].

By repeating this operation successively, we construct a sequence of decreasing sets
(En)n∈N such that each En is union of 2n intervals each one is of length 1

3n . We denote
In,k (k = 1, . . . , 2n) the intervals of En. We call triadic Cantor’s set the set

P =
∞
⋂

n=1

En

P 6= ∅ because it is clear that 0 and 1 are in P . P is compact because P is closed
and bounded. P does not contain any non empty open interval. In fact En can not
contain intervals of length greater than 1

3n . If I is an interval in P , I ⊂ P ⊂ En,
thus the length of I is small that 1

3n , this for any n, then I is of length zero, and thus
P is of interior empty. From the construction if x is an endpoint of an interval In,k,
then x remains an endpoint of an interval In+p,k(p) for any p ∈ N. Thus x ∈ P . It
results that P is a perfect set; in fact for any x ∈ P and for any n ∈ N, there exists
an and bn in P such that an ≤ x ≤ bn and lim

n→+∞
(bn − an) = 0. It suffices to take

an and bn the endpoints of the intervals Im,k. The sequences (an)n∈N and (bn)n∈N are
bounded, then we can extract a convergent sub-sequence. And as bn − an > 0 and
lim

n→+∞
(bn − an) = 0, x = lim

n→+∞
bn = lim

n→+∞
an and it is an accumulation point.
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It is easy to verify that the left endpoints of the intervals In,k are of the form
n

∑

p=1

αp

3p

where αp = 0 or 2. There result that any point x of P is limit of a sequence of points

of P which are of the endpoints space of intervals of the form In,k. Thus x =
+∞
∑

p=1

αp

3p
,

with αp = 0 or 2. It result that P is in bijection with the sets of the mapping of
N −→ {0, 2} which is not countable. We have P is in bijection with [0, 1]. Thus P is
a compact of measure zero and in bijection with [0, 1].


