Contents

1 Measure Theory 3
1 Review on Riemann Integral 3
1.1 Definition of the Riemann Integral 3
1.2 Criterions of Integrability 5
1.3 Properties of the Riemann Integrals 7
2 Algebra and σ-Algebra 9
2.1 Elementarily Operations on Sets 9
2.2 General Properties of σ-Algebra 12
2.3 Examples 13
2.4 $\quad \sigma$-Algebra Generated by a Subset $P \subset \mathscr{P}(X)$ 13
2.5 Borelian σ-Algebra in \mathbb{R} 14
2.6 Borelian σ-Algebra in a Topological Space 14
2.7 Product of σ-Algebras 14
2.8 Pull back of a σ-Algebra 15
3 Measures 16
3.1 Generalities on Measures 16
3.2 Properties of Measures 19
4 Complete Measure Spaces 19
5 Outer Measure 21
5.1 Monotone Class and σ-Algebra 24
$6 \quad$ Lebesgue Measure on \mathbb{R} 26
7 Measurable Functions 29

1 Measure Theory

1 Review on Riemann Integral

1.1 Definition of the Riemann Integral

Definition 1.1

A finite ordered set $\sigma=\left\{x_{0}, \ldots, x_{n}\right\}$ is called a partition of the interval $[a, b]$ if $a=x_{0}<\ldots<x_{n}=b$. The interval $\left[x_{j}, x_{j+1}\right]$ is called the j th subinterval of σ.

Definition 1.2

Let $f:[a, b] \longrightarrow \mathbb{R}$ be a bounded function. Define

$$
\begin{gather*}
M_{j}=\operatorname{Sup}_{x \in\left[x_{j}, x_{j+1}\right]} f(x), \quad m_{j}=\inf _{x \in\left[x_{j}, x_{j+1}\right]} f(x), \\
S(f, \sigma)=\sum_{j=0}^{n-1} M_{j}\left(x_{j+1}-x_{j}\right) \tag{1.1}
\end{gather*}
$$

and

$$
\begin{equation*}
s(f, \sigma)=\sum_{j=0}^{n-1} m_{j}\left(x_{j+1}-x_{j}\right) . \tag{1.2}
\end{equation*}
$$

$S(f, \sigma)$ and $s(f, \sigma)$ are called respectively the upper sum and the lower sum of f on the partition σ. Note that $s(f, \sigma) \leq S(f, \sigma)$.

Definition 1.3

We say that a partition σ_{1} is finer than the partition σ_{2} if as sets $\sigma_{2} \subset \sigma_{1}$.

Proposition 1.4

If σ_{1} is finer than σ_{2} and $f:[a, b] \longrightarrow \mathbb{R}$ is a bounded function, then

$$
\begin{equation*}
s\left(f, \sigma_{2}\right) \leq s\left(f, \sigma_{1}\right) \leq S\left(f, \sigma_{1}\right) \leq S\left(f, \sigma_{2}\right) \tag{1.3}
\end{equation*}
$$

Proof .

By induction, it suffices to prove the equation 1.3 for $\sigma_{1}=\sigma_{2} \cup\{\alpha\}$, with $\left.\alpha \in\right] x_{j}, x_{j+1}[$. We remark that:

$$
\begin{gathered}
M_{j}^{\prime}=\operatorname{Sup}_{x \in\left[x_{j}, \alpha\right]} f(x) \leq M_{j}, \quad M_{j}^{\prime \prime}=\operatorname{Sup}_{x \in\left[\alpha, x_{j+1}\right]} f(x) \leq M_{j}, \\
M_{j} \geq M_{j}^{\prime}=\operatorname{Sup}_{x \in\left[x_{j}, \alpha\right]} f(x), \quad M_{j} \geq M_{j}^{\prime \prime}=\operatorname{Sup}_{x \in\left[\alpha, x_{j+1}\right]} f(x) . \\
m_{j} \leq m_{j}^{\prime}=\inf _{x \in\left[x_{j}, \alpha\right]} f(x) \quad \text { and } \quad m_{j} \leq m_{j}^{\prime \prime}=\inf _{x \in\left[\alpha, x_{j+1}\right]} f(x) .
\end{gathered}
$$

Then

$$
\begin{aligned}
S\left(f, \sigma_{1}\right) & \left.\left.=\sum_{k=1}^{j-1} M_{k}\left(x_{k+1}-x_{k}\right)\right)+M_{j}^{\prime}\left(\alpha-x_{j}\right)+M_{j}^{\prime \prime}\left(x_{j+1}-\alpha\right)+\sum_{k=j+1}^{n-1} M_{k}\left(x_{k+1}-x_{k}\right)\right) \\
& \leq S\left(f, \sigma_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
s\left(f, \sigma_{1}\right) & \left.\left.=\sum_{k=1}^{j-1} m_{k}\left(x_{k+1}-x_{k}\right)\right)+m_{j}^{\prime}\left(\alpha-x_{j}\right)+m_{j}^{\prime \prime}\left(x_{j+1}-\alpha\right)+\sum_{k=j+1}^{n-1} m_{k}\left(x_{k+1}-x_{k}\right)\right) \\
& \geq s\left(f, \sigma_{2}\right)
\end{aligned}
$$

Proposition 1.5

If $f:[a, b] \longrightarrow \mathbb{R}$ is a bounded function and σ_{1}, σ_{2} are two partitions of the interval $[a, b]$, then $s\left(f, \sigma_{1}\right) \leq S\left(f, \sigma_{2}\right)$.

Proof .
$s\left(f, \sigma_{1}\right) \leq s\left(f, \sigma_{1} \cup \sigma_{2}\right) \leq S\left(f, \sigma_{2}\right)$.

Definition 1.6

Let $f:[a, b] \longrightarrow \mathbb{R}$ be a bounded function. If we denote $K([a, b])$ the set of partitions of $[a, b]$, then we define the upper integral of f on the interval $[a, b]$ by:

$$
S(f)=\inf _{\sigma \in K([a, b])} S(f, \sigma)
$$

and the lower integral of f on the interval $[a, b]$ by:

$$
s(f)=\operatorname{Sup}_{\sigma \in K([a, b])} s(f, \sigma)
$$

Definition 1.7

Let $f:[a, b] \longrightarrow \mathbb{R}$ be a bounded function. We say that f is Riemann integrable on the interval $[a, b]$ if $S(f)=s(f)$.
If f is Riemann integrable on the interval $[a, b]$, we denote $\int_{a}^{b} f(x) d x=S(f)=s(f)$ which called the integral of f on the interval $[a, b]$.
The set of Riemann integrable functions on the interval $[a, b]$ is denoted by $\mathscr{R}([a, b])$.

Examples .

1. If $\sigma=\left\{x_{0}=a, \ldots, x_{n}=b\right\}$ is a partition of the interval $[a, b]$ and $f:[a, b] \longrightarrow \mathbb{R}$ the function defined by $f(x)=c_{j}$ on the interval $\left[x_{j}, x_{j+1}[\right.$ for $j=0, \ldots, n-1$ and $f(b)=0$, then f is Riemann integrable on $[a, b]$ and $\int_{a}^{b} f(x) d x=\sum_{j=0}^{n-1}\left(x_{j+1}-\right.$ $\left.x_{j}\right) c_{j}$.
2. Let $f=\chi_{\mathbb{Q} n[0,1]}$ defined on $[0,1]$ and let $\sigma=\left\{x_{0}=0, \ldots, x_{n}=1\right\}$ any partition of the interval $[0,1]$. Then $S(f, \sigma)=1$ and $s(f, \sigma)=0$. Hence f is not Riemann integrable on $[0,1]$.

1.2 Criterions of Integrability

Theorem 1.8 (Riemann's criterion)
Let $f:[a, b] \longrightarrow \mathbb{R}$ be a bounded function. The following statements are equivalent
i) f is Riemann-integrable.
ii) $\forall \varepsilon>0$; there exists a partition σ such that $S(f, \sigma)-s(f, \sigma) \leq \varepsilon$.

Proof .

NC: If $S(f)=s(f)$, then $\forall \varepsilon>0$, there exists a partition σ such that $0 \leq s(f)-$ $s(f, \sigma) \leq \frac{\varepsilon}{2}$ and there exists a partition σ^{\prime} such that $0 \leq S\left(f, \sigma^{\prime}\right)-S(f) \leq \frac{\varepsilon}{2}$. Then $0 \leq S\left(f, \sigma \cup \sigma^{\prime}\right)-S(f) \leq S\left(f, \sigma^{\prime}\right)-S(f) \leq \frac{\varepsilon}{2}$. In the same way $0 \leq s(f)-s\left(f, \sigma \cup \sigma^{\prime}\right) \leq$ $s(f)-s(f, \sigma) \leq \frac{\varepsilon}{2}$. It follows that $S\left(f, \sigma \cup \sigma^{\prime}\right)-s\left(f, \sigma \cup \sigma^{\prime}\right) \leq \varepsilon$.
SC: $s(f, \sigma) \leq s(f) \leq S(f, \sigma)$ and $s(f, \sigma) \leq S(f) \leq S(f, \sigma)$, then $0 \leq S(f)-s(f) \leq$ $S(f, \sigma)-s(f, \sigma) \leq \varepsilon$, for all $\varepsilon>0$. It follows that $S(f)=s(f)$.

Definition 1.9

If $\sigma=\left\{x_{0}, \ldots, x_{n}\right\}$ is a partition of the interval $[a, b]$, we define the norm of σ by:

$$
\|\sigma\|=\operatorname{Sup}_{0 \leq j \leq n-1} x_{j+1}-x_{j} .
$$

Theorem 1.10 (Darboux's criterion)
Let $f:[a, b] \longrightarrow \mathbb{R}$ be a bounded function. The following statements are equivalent
i) f is Riemann-integrable.
ii) For all $\varepsilon>0$; there exists $\delta>0$ such that for all partition of the interval $[a, b]$ such that if $\|\sigma\| \leq \delta$ then $S(f, \sigma)-s(f, \sigma) \leq \varepsilon$.

Proof .

From the theorem (1.8) the sufficient condition is obvious.
NC: assume that f is not constant. We know that there exists a partition $\sigma=$ $\left\{x_{0}, \ldots, x_{n}\right\}$ such that $S(f, \sigma)-s(f, \sigma) \leq \varepsilon$. We denote $M=O(f, A)=\operatorname{Sup}_{x \in[a, b]} f(x)-$ $\inf _{x \in[a, b]} f(x)$ called the oscilation of f on the interval $[a, b]$. Let $\alpha_{1}=\frac{\varepsilon}{n M}, \alpha_{2}=$ $\inf _{0 \leq j \leq n-1}\left(x_{j+1}-x_{j}\right)$ and $\alpha=\min \left(\alpha_{1}, \alpha_{2}\right)$.

Let $\sigma^{\prime}=\left(y_{0}=a, \ldots, y_{m}=b\right)$ a partition of $[a, b]$ of norm $\left\|\sigma^{\prime}\right\|<\alpha$. There exists at most n intervals $] y_{j-1}, y_{j}\left[\right.$ which contain some points x_{j}. The others are contained in the intervals $] x_{k-1}, x_{k}[$. We denote

$$
\begin{gathered}
M_{j}^{\prime}=\operatorname{Sup}_{x \in] y_{j}, y_{j+1}[} f(x), \quad M_{j}=\operatorname{Sup}_{x \in] x_{j}, x_{j+1} \mid} f(x), \\
m_{j}^{\prime}=\inf _{x \in] y_{j}, y_{j+1}[} f(x) \quad \text { and } m_{j}=\inf _{x \in] x_{j}, x_{j+1}[} f(x) . \\
D\left(f, \sigma^{\prime}\right)-d\left(f, \sigma^{\prime}\right)=\sum_{\mid y_{j}, y_{j+1}[\subset] x_{i}, x_{i+1}[}\left(y_{j+1}-y_{j}\right)\left(M_{j}^{\prime}-m_{j}^{\prime}\right) \\
\quad+\sum_{\left.x_{i} \in\right] y_{j}, y_{j+1}[}\left(y_{j+1}-y_{j}\right)\left(M_{j}^{\prime}-m_{j}^{\prime}\right)
\end{gathered}
$$

It follows that

$$
\begin{aligned}
D\left(f, \sigma^{\prime}\right)-d\left(f, \sigma^{\prime}\right) & \leq \sum_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right)\left(M_{i}-m_{i}\right)+n \alpha M \\
& =D(f, \sigma)-d(f, \sigma)+n \alpha M \leq 2 \varepsilon
\end{aligned}
$$

Definition 1.11

Let $\sigma=\left\{x_{0}, \ldots, x_{n}\right\}$ be a partition of the interval $[a, b]$. We say that $\alpha=\left\{\alpha_{0}, \ldots, \alpha_{n-1}\right\}$ is a mark of σ if $\forall 0 \leq j \leq n-1, \alpha_{j} \in\left[x_{j}, x_{j+1}\right]$.
We define

$$
S(f, \sigma, \alpha)=\sum_{j=0}^{n-1} f\left(\alpha_{j}\right)\left(x_{j+1}-x_{j}\right)
$$

called the Riemann sum of f on σ with respect to the mark α.
As particular case, if f is Riemann integrable on the interval $[a, b]$, the sequence S_{n} defined by:

$$
S_{n}=\frac{b-a}{n} \sum_{k=1}^{n} f\left(a+k \frac{b-a}{n}\right)
$$

converges to $\int_{a}^{b} f(x) d x$. (S_{n} is called a Riemann sum of f on the interval $[a, b]$).

1.3 Properties of the Riemann Integrals

Properties .

i) Linearity: $\int_{a}^{b} \alpha(f+\beta g)(x) d x=\alpha \int_{a}^{b} f(x) d x+\beta \int_{a}^{b} g(x) d x$.
ii) If $f \geq 0$, then $\int_{a}^{b} f(x) d x \geq 0$.
iii) If $f \leq g$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$.
iv) $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$.
v) If $m \leq f(x) \leq M$, for all $x \in[a, b]$, then

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
$$

vi) $\forall c \in] a, b[; f$ is Riemann integrable on $[a, b]$ if and only if f is Riemann integrable on $[a, c]$ and f Riemann integrable on $[c, b]$ and

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

(This identity is called the Chasles identity)
Proof .
We prove only the property vi), the others the other properties are left to the reader. Assume that f is Riemann integrable on the interval $[a, b]$, then $\forall \varepsilon>0$, there exists a partition σ of $[a, b]$ such that $S(f, \sigma)-s(f, \sigma) \leq \varepsilon$. Let $\sigma^{\prime}=\sigma \cup\{c\}$; then $S\left(f, \sigma^{\prime}\right)-s\left(f, \sigma^{\prime}\right) \leq S(f, \sigma)-s(f, \sigma) \leq \varepsilon$. We write $\sigma^{\prime}=\sigma_{1} \cup \sigma_{2}$, with σ_{1} a partition of $[a, c]$ with points of σ^{\prime} contained in $[a, c]$ and σ_{2} a partition of $[c, b]$ with points of $\sigma^{\prime}[c, b]$. It follows that $S\left(f, \sigma_{1}\right)-s\left(f, \sigma_{1}\right) \leq \varepsilon$ and $S\left(f, \sigma_{2}\right)-s\left(f, \sigma_{2}\right) \leq \varepsilon$. Then f is Riemann integrable on $[a, c]$ and on $[c, b]$.
If f is Riemann integrable on $[a, c]$ and on $[c, b]$, then $\forall \varepsilon>0$, there exists a partition σ_{1} of $[a, c]$ and a partition σ_{2} of $[c, b]$ such that $S\left(f, \sigma_{1}\right)-s\left(f, \sigma_{1}\right) \leq \varepsilon$ and $S\left(f, \sigma_{2}\right)-$ $s\left(f, \sigma_{2}\right) \leq \varepsilon$. We put $\sigma=\sigma_{1} \cup \sigma_{2} . \sigma$ is a partition of the interval $[a, b]$ and $S(f, \sigma)-$ $s(f, \sigma) \leq 2 \varepsilon$, which proves that f is Riemann integrable on the interval $[a, b]$.
We prove now that

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

We put $I=\int_{a}^{b} f(x) d x, I_{1}=\int_{a}^{c} f(x) d x$ and $I_{2}=\int_{c}^{b} f(x) d x$.
$\forall \varepsilon>0$, there exists $\alpha>0$ such that for all partitions σ of $[a, b], \sigma_{1}$ of $[a, c]$ and σ_{2} of $[c, b]$, with $\left(|\sigma|<\alpha,\left|\sigma_{1}\right|<\alpha\right.$ and $\left|\sigma_{2}\right|<\alpha$ we have:

$$
|S(f, \sigma)-I| \leq \varepsilon, \quad\left|S\left(f, \sigma_{1}\right)-I_{1}\right| \leq \varepsilon
$$

and

$$
\left|S\left(f, \sigma_{2}\right)-I_{2}\right| \leq \varepsilon .
$$

We take the partition $\sigma^{\prime}=\sigma_{1} \cup \sigma_{2}$, then $\left|\sigma^{\prime}\right|<\alpha$ and $\left|S\left(f, \sigma^{\prime}\right)-I\right| \leq \varepsilon$. in the same way $\left|S\left(f, \sigma^{\prime}\right)-I_{1}-I_{2}\right| \leq\left|S\left(f, \sigma_{1}\right)-I_{1}\right|+\left|S\left(f, \sigma_{2}\right)-I_{2}\right| \leq 2 \varepsilon$. Then $I=I_{1}+I_{2}$.

Remark .

If $b<a$, we denote $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$.

Theorem 1.12

Let $f:[a, b] \longrightarrow[c, d]$ be a Riemann integrable function and let $\varphi:[c, d] \longrightarrow \mathbb{R}$ be a continuous function. Then $\varphi \circ f$ is Riemann integrable.

Proof .

Let $\varepsilon>0$, we which construct a partition $\sigma=\left(x_{0}=a, x_{1}, \ldots, x_{n}=b\right)$ of the interval $[a, b]$ such that: $S(\varphi \circ f, \sigma)-s(\varphi \circ f, \sigma)<\varepsilon$.
the function φ is uniformly continuous on $[c, d]$ and bounded, then there exists $M>0$ such that $|\varphi(x)| \leq M, \forall x \in[c, d]$ and if $\varepsilon^{\prime}=\frac{\varepsilon}{2 M+(b-a)}$, there exists $0<\alpha<\varepsilon^{\prime}$ such that for $|x-y|<\alpha,|\varphi(x)-\varphi(y)| \leq \varepsilon^{\prime}$, for $x, y \in[c, d]$.
As f is Riemann integrable on the interval $[a, b]$, there exists a partition $\sigma=\left(x_{0}=\right.$ $\left.a, x_{1}, \ldots, x_{n}=b\right)$ of $[a, b]$ such that:

$$
\begin{equation*}
S(f, \sigma)-s(f, \sigma)<\alpha^{2} \tag{1.4}
\end{equation*}
$$

Let $M_{j}=\operatorname{Sup}\left\{f(x) ; x \in\left[x_{j}, x_{j+1}\right]\right\}, m_{j}=\inf \left\{f(x) ; x \in\left[x_{j}, x_{j+1}\right]\right\}, \tilde{M}_{j}=\operatorname{Sup}\{\varphi \circ$ $\left.f(x) ; x \in\left[x_{j}, x_{j+1}\right]\right\}, \tilde{m}_{j}=\inf \left\{\varphi \circ f(x) ; x \in\left[x_{j}, x_{j+1}\right]\right\}$.
we denote $J_{1}=\left\{0 \leq j \leq n-1 ; M_{j}-m_{j}<\alpha\right.$ and $J_{2}=\left\{0 \leq j \leq n-1 ; M_{j}-m_{j} \geq \alpha\right.$. If $j \in J_{1}$, then from the uniform continuity of $\varphi \circ f$, we have $|\varphi \circ f(x)-\varphi \circ f(y)|<\varepsilon^{\prime}$ for all $x, y \in\left[x_{j}, x_{j+1}\right]$, which gieves that $\tilde{M}_{j}-\tilde{m}_{j} \leq \varepsilon^{\prime}$, then

$$
\begin{equation*}
\sum_{j \in J_{1}}\left(\tilde{M}_{j}-\tilde{m}_{j}\right)\left(x_{j+1}-x_{j}\right) \leq \varepsilon^{\prime}(b-a) . \tag{1.5}
\end{equation*}
$$

It follows from the equation 1.4,

$$
\alpha^{2}>\sum_{j \in J_{2}}\left(M_{j}-m_{j}\right)\left(x_{j+1}-x_{j}\right) \geq \alpha \sum_{j \in J_{2}}\left(x_{j+1}-x_{j}\right) .
$$

Then $\sum_{j \in J_{2}}\left(x_{j+1}-x_{j}\right)<\alpha<\varepsilon^{\prime}$ and as $\tilde{M}_{j}-\tilde{m}_{j} \leq 2 M$, we have:

$$
\begin{equation*}
\sum_{j \in J_{2}}\left(\tilde{M}_{j}-\tilde{m}_{j}\right)\left(x_{j+1}-x_{j}\right) \leq 2 M \sum_{j \in J_{2}}\left(x_{j+1}-x_{j}\right)<2 M \varepsilon^{\prime} . \tag{1.6}
\end{equation*}
$$

It follows from (1.5) and (1.6) that

$$
D(\varphi \circ f, \sigma)-d(\varphi \circ f, \sigma)=\sum_{j=0}^{n-1}\left(\tilde{M}_{j}-\tilde{m}_{j}\right)\left(x_{j+1}-x_{j}\right) \leq \varepsilon^{\prime}((b-a)+2 M)=\varepsilon
$$

Theorem 1.13

Let $f:[a, b] \longrightarrow[c, d]$ be a Riemann integrable function, then the function F defined by

$$
F(x)=\int_{a}^{x} f(t) d t
$$

is continuous.
If f is continuous in the point c, then F is differentiable in c and $F^{\prime}(c)=f(c)$.
Theorem 1.14 (The fundamental theorem of calculus)
Let $f:[a, b] \longrightarrow \mathbb{R}$ be a differentiable function and f^{\prime} is Riemann integrable, then

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

Proof .

Let $\sigma=\left\{x_{0}, \ldots, x_{n}\right\}$ be any partition of $[a, b]$, By the Mean-Value Theorem applied to f on $\left[x_{j-l}, x_{j}\right]$, there is $c_{j} \in\left[x_{j-l}, x_{j}\right]$ such that $f\left(x_{j}\right)-f\left(x_{j-1}\right)=f^{\prime}\left(c_{j}\right)\left(x_{j}-x_{j-1}\right)$. Thus

$$
\sum_{j=1}^{n} f^{\prime}\left(c_{j}\right)\left(x_{j}-x_{j-1}\right)=\sum_{j=1}^{n} f\left(x_{j}\right)-f\left(x_{j-1}\right)=f(b)-f(a) .
$$

The sum $\sum_{j=1}^{n} f^{\prime}\left(c_{j}\right)\left(x_{j}-x_{j-1}\right)=S(f, \sigma, w)$, with $w=\left(c_{1}, \ldots, c_{n}\right)$ the mark on the partition σ given by the Mean-Value Theorem. Let new a sequence of partition σ_{m} of $[\mathrm{a}, \mathrm{b}]$, each marked in this fashion and such that $\left\|\sigma_{n}\right\|$ converges to zero. As f^{\prime} is Riemann integrable, the sequence $S\left(f, \sigma_{m}, w_{m}\right)$ converges to $\int_{a}^{b} f^{\prime}(x) d x$, then

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

2 Algebra and σ-Algebra

2.1 Elementarily Operations on Sets

In all that follow, X will denote a nonempty set. We denote by $\mathscr{P}(X)$ the collection of subsets of X. If A and B are in $\mathscr{P}(X)$, we put: $A \backslash B:=\{x \in A$ and $x \notin B\}=$ $A \cap B^{c} . A \Delta B=(A \backslash B) \bigcup(B \backslash A)$ called symmetric difference of B from A, and if $A=X, X \backslash B=B^{c}$

We show easily prove that

$$
\begin{array}{cl}
A \backslash B=A \backslash(A \cap B)=(A \cup B) \backslash B, & A \Delta B=(A \cup B) \backslash(A \cap B) . \\
(A \backslash B) \cap(C \backslash D)=(A \cap C) \backslash(B \cup D), & (A \cap B) \Delta(A \cap C)=A \cap(B \Delta C)
\end{array}
$$

Definition 2.1 Characteristic functions of sets -
For any subset $A \in \mathscr{P}(X)$; we denote χ_{A} the characteristic function (or the indicator function) of A defined by $\chi_{A}(x)=1 ; \forall x \in A$ and $\chi_{A}(x)=0 ; \forall x \notin A$.

Properties

All the operations on sets can be translated easily in term of characteristic functions of sets by the correspondence: $A \longrightarrow \chi_{A}$ when $A \in \mathscr{P}(X)$. We have the following relations:

1. $A \subset B \Longleftrightarrow \chi_{A} \leq \chi_{B}$.
2. $C=A \cap B \quad \Longleftrightarrow \chi_{C}=\chi_{A} \cdot \chi_{B}$.
3. $B=A^{c} \Longleftrightarrow \chi_{B}=1-\chi_{A}$.
4. $C=A \cup B \Longleftrightarrow \chi_{C}=\chi_{A}+\chi_{B}-\chi_{A} \cdot \chi_{B}$.
5. $C=A \backslash B \Longleftrightarrow \chi_{C}=\chi_{A}\left(1-\chi_{B}\right)$.
6. $C=A \Delta B \Longleftrightarrow \chi_{C}=\left|\chi_{A}-\chi_{B}\right|$.
7. If $\left(A_{n}\right)_{n \in \mathbb{N}}$ is a sequence of subsets of X, then

$$
\begin{gathered}
\chi_{\cap_{n} A_{n}}=\inf _{n} \chi_{\left\{\cap_{p \leq n} A_{p}\right\}}=\lim _{n \rightarrow+\infty} \prod_{k=1}^{n} \chi_{A_{k}} . \\
\chi_{\cup_{n} A_{n}}=\operatorname{Sup}_{n} \chi_{\left\{\cup_{p \leq n} A_{p}\right\}}=\lim _{n \rightarrow+\infty} \chi_{\left\{\cup_{p \leq n} A_{p}\right\}} .
\end{gathered}
$$

8. If $\left(A_{n}\right)_{n \in \mathbb{N}}$ and $\left(B_{n}\right)_{n \in \mathbb{N}}$ are two sequences of subsets of X, then

$$
\left(\bigcup_{n=1}^{+\infty} A_{n}\right) \Delta\left(\bigcup_{n=1}^{+\infty} B_{n}\right) \subset \bigcup_{n=1}^{+\infty}\left(A_{n} \Delta B_{n}\right) .
$$

Definition 2.2

A family of subsets of X indexed by the set of indexes I, is a mapping $j \longmapsto X(j)$ from I in $\mathscr{P}(X)$. We denote $X(j)=X_{j}$ and the family is denoted by $\left(X_{j}\right)_{j \in I}$.

1. The family $\left(X_{j}\right)_{j \in I}$ is called finite (resp countable) if I is finite (resp countable).
2. A family $\left(X_{j}\right)_{j}$, is called pairwise disjoint (or simply disjoints) if $X_{j} \cap X_{k}=\emptyset$, $\forall j \neq k$.

Definition 2.3

1. Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real functions on X. We define

$$
(\lim \operatorname{Sup})_{n \rightarrow+\infty} f_{n}=\varlimsup_{n \rightarrow+\infty} f_{n}=\inf _{n} \operatorname{Sup}\left\{f_{m} ; m \geq n\right\}
$$

and

$$
(\lim \inf)_{n \rightarrow+\infty} f_{n}=\underline{\lim }_{n \rightarrow+\infty} f_{n}=\operatorname{Sup}_{n} \inf \left\{f_{m} ; m \geq n\right\} .
$$

These two limits are always exist and can take the values $\pm \infty$.
2. Let $\left(A_{n}\right)_{n \in \mathbb{N}}$ be a sequence of subsets of X. We define

$$
\varlimsup_{n \rightarrow+\infty} A_{n}=\bigcap_{n=1}^{+\infty} \bigcup_{m=n}^{+\infty} A_{m} \text { and } \underline{\lim }_{n \rightarrow+\infty} A_{n}=\bigcup_{n=1}^{+\infty} \bigcap_{m=n}^{+\infty} A_{m}
$$

$\varlimsup_{n \rightarrow+\infty} A_{n}\left(\right.$ or $\limsup _{n \rightarrow+\infty} A_{n}$) is called the limit superior and $\underline{\lim }_{n \rightarrow+\infty} A_{n}$ (or $\liminf _{n \rightarrow+\infty} A_{n}$) is called the limit inferior.
Note that $\left(\bigcup_{\substack{m=n \\+\infty}}^{+\infty} A_{m}\right)_{n}$ is a decreasing sequence of subsets of X and t follows that $\lim _{n \rightarrow+\infty} \bigcup_{m=n}^{+\infty} A_{m}=\bigcap_{n=1}^{+\infty} \bigcup_{m=n}^{+\infty} A_{m}$ exists. Similarly $\left(\bigcap_{m=n}^{+\infty} A_{m}\right)_{n}$ is an increasing sequence of subsets of X and this implies that $\lim _{n \rightarrow+\infty} \bigcap_{m=n}^{+\infty} A_{m}=\bigcup_{n=1}^{+\infty} \bigcap_{m=n}^{+\infty} A_{m}$ exists.
The interpretation is that $\limsup _{n} A_{n}$ contains those elements of X that occur "infinitely often" in the sets A_{n}, and $\liminf _{n} A_{n}$ contains those elements that occur in all except finitely many of the sets A_{n}.

Remarks .

1. If the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges to the function f; then $\overline{\lim }_{n \rightarrow+\infty} f_{n}=\underline{\lim }_{n \rightarrow+\infty} f_{n}=$ f.
2. $\overline{\lim }_{n \rightarrow+\infty} A_{n}$ is the set of the elements of X which are in an infinite sets of A_{n}. Thus

$$
\varlimsup_{n \rightarrow+\infty} A_{n}=\left\{x \in X: \sum_{n=1}^{\infty} \chi_{A_{n}}(x)=+\infty\right\}
$$

3. $\underline{\lim }_{n \rightarrow+\infty} A_{n}$ is the set of elements of X which are in all the A_{n} except a finite number and thus

$$
\underline{\lim }_{n \rightarrow+\infty} A_{n}=\left\{x \in X: \sum_{n=1}^{\infty} \chi_{A_{n}^{c}}(x)<+\infty\right\} .
$$

4. $\underline{\lim }_{n \rightarrow+\infty} A_{n} \subset \varlimsup_{n \rightarrow+\infty} A_{n}$.
5. $\chi \varlimsup_{\lim _{n \rightarrow+\infty} A_{n}}=\varlimsup_{n \rightarrow+\infty} \chi_{A_{n}}$.
6. $\chi{\underline{\varliminf_{n \rightarrow+\infty}}}^{A_{n}}=\underline{\lim }_{n \rightarrow+\infty} \chi_{A_{n}}$.

Example .

Let $X=\mathbb{R}$ and let a sequence $\left(A_{n}\right)_{n}$ of subsets of \mathbb{R} be defined by $A_{2 n+1}=\left[0, \frac{1}{2 n+1}\right]$, and $A_{2 n}=[0,2 n]$. Then

$$
\varliminf_{n \rightarrow+\infty} A_{n}=\left\{x \in X ; x \in A_{n} \text { for all but finitely many } n \in \mathbb{N}\right\}=\{0\}
$$

and

$$
\varlimsup_{n \rightarrow+\infty} A_{n}=\left\{x \in X ; x \in A_{n} \text { for infinitely many } n \in \mathbb{N}\right\}=[0, \infty[.
$$

2.2 General Properties of σ-Algebra

Definition 2.4

Let \mathscr{A} be a collection of subsets of $X . \mathscr{A}$ is called an algebra or a field if:

1. $X \in \mathscr{A}$;
2. (Closure under complement) if $A \in \mathscr{A}$, then $A^{c} \in \mathscr{A}$;
3. (Closure under finite intersection) if $A_{1}, \ldots, A_{n} \in \mathscr{A}$, then $\bigcap_{j=1}^{n} A_{j} \in \mathscr{A}$. \mathscr{A} is called a σ-algebra or a σ-field if in addition
4. (Closure under countable intersection) if $\left(A_{j}\right)_{j \in \mathbb{N}}$ are in \mathscr{A}, then $\bigcap_{j=1}^{+\infty} A_{j} \in \mathcal{A}$.

If \mathscr{A} is a σ-algebra, the pair (X, \mathscr{A}) is called a measurable space, and the subsets in \mathscr{A} are called the measurable sets.

Remarks .

By complementarity

1. If \mathscr{A} is an algebra, then $\emptyset \in \mathscr{A}$.
2. (Closure under finite union) If \mathscr{A} is an algebra and $A_{1}, \ldots, A_{n} \in \mathscr{A}$,, then $\bigcup_{j=1}^{n} A_{j} \in \mathscr{A}$.
3. (Closure under countable union) If \mathscr{A} is a σ-algebra and $\left(A_{j}\right)_{j \in \mathbb{N}}$ in \mathscr{A}, then $\bigcup_{j=1}^{+\infty} A_{j} \in \mathscr{A}$.

2.3 Examples

Example 1 :

$\mathscr{A}=\{\emptyset, X\}$ is an algebra and a σ-algebra. This is the smallest σ-algebra in $\mathscr{P}(X)$.

Example 2 :

$\mathscr{A}=\mathscr{P}(X)$ is an algebra and a σ-algebra. This is the largest σ-algebra in $\mathscr{P}(X)$.

Example 3 :

Let $\mathscr{F}=\{A, B, C\}$ be a partition of X. The set

$$
\mathscr{A}=\left\{\emptyset, X, A, B, C, A \cup B=C^{c}, A \cup C=B^{c}, B \cup C=A^{c}\right\} .
$$

is a σ-algebra.

Example 4 :

1. Let $X=\mathbb{R}$ and \mathscr{A} the collection of subsets A of X such that either A or A^{c} is countable or $\emptyset . \mathscr{A}$ is a σ-algebra. In fact let $\left(A_{j}\right)_{j \in \mathbb{N}}$ be a sequence of elements of \mathscr{A}.

If there exists p such that A_{p} is countable, then $\cap_{j=1}^{+\infty} A_{j} \subset A_{p}$ is countable and $\cap_{j=1}^{+\infty} A_{j} \in \mathscr{A}$.
If every A_{j} is not countable, then all A_{k}^{c} are countable, and then $\cup_{j=1}^{+\infty} A_{j}^{c}$ is a countable subset of \mathbb{R} and then $\cap_{j=1}^{+\infty} A_{j} \in \mathscr{A}$.
2. Let X be an infinite set and let \mathscr{A} the collection of subsets A of X such that either A or A^{c} is finite, then \mathscr{A} is an algebra but it is not a σ-algebra.

$2.4 \quad \sigma$-Algebra Generated by a Subset $P \subset \mathscr{P}(X)$

Definition 2.5

Let X be a non empty set and $\mathscr{A}_{1}, \mathscr{A}_{2}$ two σ-algebras on X. We say that \mathscr{A}_{1} is finer then \mathscr{A}_{2} if any element of \mathscr{A}_{1} is an element of \mathscr{A}_{2}. In this case we write $\mathscr{A}_{1} \subset \mathscr{A}_{2}$.

Remark .

Any intersection of algebras (resp σ - algebra) is an algebra (resp $\sigma-$ algebra).

Definition 2.6

Let X be a non empty set and $\mathcal{B} \subset \mathscr{P}(X)$. There exists a smallest algebra (resp σ-algebra) denoted by $\mathcal{A}(\mathcal{B})$, (resp $\sigma(\mathcal{B})$) that contain \mathcal{B}. This algebra (resp σ-algebra) is called the algebra (resp σ-algebra) generated by \mathcal{B}.
$\mathcal{A}(\mathcal{B})(\operatorname{resp} \sigma(\mathcal{B}))$ is the intersection of all the algebras on X (resp σ-algebra) containing \mathcal{B}. So this is the smallest algebra (resp σ-algebra) which contains \mathcal{B}.

Example 1 :

Let A be a subset of X with $A \neq \emptyset$ and $A \neq X$. The σ-algebra generated by $\{A\}$ is $\left\{\emptyset, X, A, A^{c}\right\}$.

Example 2 :

Let X be a non empty set and $\left(P_{j}\right)_{j \in J}$ is a finite partition of X. The algebra generated by $\left(P_{j}\right)$ is constituted by the subsets of the form $\bigcup_{j \in I} P_{j}$, where $I \in \mathscr{P}(J)$, and the mapping

$$
I \longmapsto \bigcup_{j \in I} P_{j}
$$

is an isomorphism of $\mathscr{P}(J)$ in the algebra.
We remark that if J contains n elements, then the algebra contains 2^{n} elements.

Exercise .

Let X be an arbitrary nonempty set, and let \mathscr{A} be the family of all subsets $A \subset X$ such that either A or $X \backslash A$ is countable. Show that \mathscr{A} is the σ-algebra generated by the singleton sets $S=\{\{x\} ; x \in X\}$.

Exercise .

Let X be a non empty set and $\mathcal{C} \subset \mathscr{P}(X)$. We define successively the sets:
$\mathcal{C}_{1}=\{\emptyset\} \cup\{X\} \cup\left\{A, A^{c} ; A \in \mathcal{C}\right\}$,
\mathcal{C}_{2} constituted by the finite intersections of elements of \mathcal{C}_{1},
\mathcal{C}_{3} constituted by the finite union of elements of \mathcal{C}_{2} that are disjoints.
Prove that \mathcal{C}_{3} is the algebra generated by \mathscr{C}.

2.5 Borelian σ-Algebra in \mathbb{R}

If $X=\mathbb{R}$ and \mathscr{B} is the σ-algebra generated by the family $\left\{\left[a, b\left[;(a, b) \in \mathbb{R}^{2}\right\}\right.\right.$. This σ-algebra is denoted by $\mathscr{B}_{\mathbb{R}}$ and called the σ-algebra of Borel subsets on \mathbb{R}. ($\mathscr{B}_{\mathbb{R}}$ contains all open and closed subsets of \mathbb{R}.) Every element of $\mathscr{B}_{\mathbb{R}}$ is called a Borel subset of \mathbb{R}.
We can prove easily that
$\mathscr{B}_{\mathbb{R}}$ is generated by $\left\{\left[a, b\left[;(a, b) \in \mathbb{R}^{2}\right\}\right.\right.$,
$\mathscr{B}_{\mathbb{R}}$ is generated by the family of open subsets in \mathbb{R},
$\mathscr{B}_{\mathbb{R}}$ is generated by the family of closed subsets in \mathbb{R},
$\mathscr{B}_{\mathbb{R}}$ is generated by $] a,+\infty[; a \in \mathbb{R}\}$,
$\mathscr{B}_{\mathbb{R}}$ is generated by $\left.]-\infty, a] ; a \in \mathbb{R}\right\}$,

2.6 Borelian σ-Algebra in a Topological Space

Let X be a topological space and \mathcal{A} be the family of the open subsets of X. Let \mathscr{B} be the σ-algebra generated by the family \mathcal{A}. Then \mathscr{B} is called the σ-algebra of Borel subsets on X and denoted by \mathscr{B}_{X}. All open and closed subsets of X are Borel subsets.
The family of the closed subsets of X generates \mathscr{B}_{X}.

2.7 Product of σ-Algebras

Definition 2.7

Let $\left(X_{1}, \mathscr{A}_{1}\right)$ and $\left(X_{2}, \mathscr{A}_{2}\right)$ be two measurable spaces. We denote by X the cartesian product $X_{1} \times X_{2}$. A subset $R=A_{1} \times A_{2}$ of $X_{1} \times X_{2}$ is called a rectangle with $A_{1} \in \mathscr{A}_{1}$ and $A_{2} \in \mathscr{A}_{2}$. We denote by \mathcal{R} the set of all rectangles in X. The product $\sigma-a l g e b r a$ of \mathscr{A}_{1} and \mathscr{A}_{2} on X is the σ-algebra generated by \mathcal{R} and will be denoted by $\mathscr{A}_{1} \otimes \mathscr{A}_{2}$.

Remarks .

In the same way if $\left(X_{j}, \mathscr{A}_{j}\right), j=1, \ldots, n$ are n measurable spaces, we define the σ-algebra $\otimes_{j=1}^{n} \mathscr{A}_{j}$ on the space $X=\prod_{j=1}^{n} X_{j}$, and for the remainder of this course, we provide the product space X with this σ-algebra.

2.8 Pull back of a σ-Algebra

Let X and X^{\prime} two non empty sets, and let $f: X \longrightarrow X^{\prime}$ a mapping. Let \mathscr{B} be a family of subsets of X^{\prime}. We define

$$
f^{-1}(\mathscr{B})=\left\{f^{-1}(A) ; A \in \mathscr{B}\right\}
$$

Proposition 2.8

If \mathscr{B} is a σ-algebra on X^{\prime}, then $f^{-1}(\mathscr{B})$ is a σ-algebra on X called the pull back of \mathscr{B} by f.

Proof .

We have $f^{-1}\left(X^{\prime}\right)=X$ and $\bigcup_{j} f^{-1}\left(A_{j}\right)=f^{-1}\left(\bigcup_{j} A_{j}\right)$ and $\left(f^{-1}(A)\right)^{c}=f^{-1}\left(A^{\prime c}\right)$.
If X is a subset of X^{\prime} and f is an injection of X into X^{\prime}, then the pull back of a σ-algebra on X^{\prime} is called the trace of this σ-algebra on X.

Proposition 2.9

Let X and X^{\prime} be two non empty sets and $f: X \longrightarrow X^{\prime}$ a mapping. Let \mathcal{B} be a family of subsets of X^{\prime} and \mathscr{B} the σ-algebra generated by \mathcal{B}. Then $f^{-1}(\mathscr{B})$ is the σ-algebra generated by $f^{-1}(\mathcal{B})$.

Proof .

If we denote by $\sigma(\mathcal{A})$ the σ-algebra generated by an arbitrary subset \mathcal{A} of $\mathscr{P}(X)$, then we must prove that $f^{-1}(\sigma(\mathcal{B}))=\sigma\left(f^{-1}(\mathcal{B})\right)$.
As $f^{-1}(\mathcal{B}) \subset f^{-1}(\sigma(\mathcal{B}))$, then $\sigma\left(f^{-1}(\mathcal{B})\right) \subset f^{-1}(\sigma(\mathcal{B}))=f^{-1}(\mathscr{B})$.
We shall prove the inverse inclusion in the particular case when f is surjective (onto). Let \mathscr{A} be a σ-algebra on X such that $f^{-1}(\mathcal{B}) \subset \mathscr{A} \subset f^{-1}(\mathscr{B})$. Let $\mathscr{B}_{1}=f(\mathscr{A})=$ $\{f(A) ; A \in \mathscr{A}\}$. The family \mathscr{B}_{1} is closed under countable union and as f is surjective (onto) and \mathscr{A} contains X then $X^{\prime} \in \mathscr{B}_{1}$.
Let proving now that \mathscr{B}_{1} is closed under complementarity.
For $K \in \mathscr{B}_{1}$, there exists $H \in \mathscr{A}$ such that $K=f(H)$. As $H \in f^{-1}(\mathscr{B})$, there exists $L \in \mathscr{B}$ such that $H=f^{-1}(L)$. Thus $K=f\left(f^{-1}(L)\right)$ with $L \in \mathscr{B}$. We deduce that $K^{c}=f\left(f^{-1}\left(L^{c}\right)\right)$ and as $f^{-1}\left(L^{c}\right)=\left(f^{-1}(L)\right)^{c}=H^{c} \in \mathscr{A}$, we conclude that $K^{c}=f(Z)$, with $Z=H^{c} \in \mathscr{A}$.

It results that \mathscr{B}_{1} is a σ-algebra. So $\mathcal{B} \subset \mathscr{B}_{1} \subset \mathscr{B}$, and as \mathscr{B} is the σ-algebra generated by \mathcal{B}, we deduce that $\mathscr{B}_{1}=\mathscr{B}$.
(Let $Y \in \mathscr{B}$ then $Y \in \mathscr{B}_{1}$, there exists thus $Z \in \mathscr{A}$ such that $Z=f^{-1}(Y) \Rightarrow$ $f^{-1}(Y) \in \mathscr{A}$, for any $Y \in \mathscr{B}$ where $f^{-1}(\mathscr{B}) \subset \mathscr{A}$.)
Assume now that f is injective.
We can identify X as a subset of X^{\prime} and f is the canonical injection of $X \longrightarrow X^{\prime}$. Let \mathscr{A} be a σ-algebra such that $f^{-1}(\mathcal{B}) \subset \mathscr{A} \subset f^{-1}(\mathscr{B})$. We put

$$
\mathscr{B}_{1}=\left\{C \in \mathscr{P}\left(X^{\prime}\right) ; C \cap X \in \mathscr{A}\right\} .
$$

\mathscr{B}_{1} is a σ-algebra which contain \mathcal{B}. So $\mathscr{B}_{1} \supset \mathscr{B}$. Thus $f^{-1}\left(\mathscr{B}_{1}\right) \supset f^{-1}(\mathscr{B})$. The result is deduced easily.
In the general case: we put $Y=f(X)$. Let $f_{1}: X \longrightarrow Y$ be the mapping defined by f. Let f_{2} be the canonical injection of Y into $X^{\prime} . f=f_{2} \circ f_{1}$ with f_{1} surjective (onto) and f_{2} injective. Let $A=f^{-1}(\mathcal{B})$ and $\mathscr{A}=f^{-1}(\mathscr{B})$. Thus $\mathscr{A}=f_{1}^{-1}\left(f_{2}^{-1}(\mathscr{B})\right)$.
From the previous result, $\sigma\left(f^{-1}(\mathcal{B})\right)=f_{2}^{-1}(\mathscr{B})$ is a σ-algebra generated by $f_{2}^{-1}(\mathcal{B})$ and $f_{1}^{-1}\left(\sigma\left(f^{-1}(\mathcal{B})\right)\right)$ is generated by $f_{1}^{-1}\left(f_{2}^{-1}(\mathcal{B})\right)$.

3 Measures

We wish define a non-negative set function called a measure μ on $\mathscr{P}(\mathbb{R})$ which satisfies the following conditions:
i) μ is defined on $\mathscr{P}(\mathbb{R})$
ii) For any interval $I, \mu(I)=\ell(I)$
iii) If $\left(E_{n}\right)_{n \in \mathbb{N}}$ is a disjoint sequence of $\mathscr{P}(\mathbb{R}),\left(E_{j} \cap E_{k}=\emptyset, \forall j \neq k\right)$, then $\mu\left(\bigcup_{j=1}^{+\infty} E_{j}\right)=\sum_{j=1}^{+\infty} \mu\left(E_{j}\right)$ (countable additivity)
iv) μ is invariant under translation, in the sens that $\mu(E+x)=\mu(E), \forall x \in \mathbb{R}$ and $\forall E \subset \mathbb{R}$.

So we can not find this function defined on all $\mathscr{P}(\mathbb{R})$, but we can define this function on special subsets of $\mathscr{P}(\mathbb{R})$. (See Halmos [?])

3.1 Generalities on Measures

Definition 3.1

Let (X, \mathscr{A}) be a measurable space. A measure (or a positive measure) on X is a function $\mu: \mathscr{A} \rightarrow[0, \infty]$ such that:

1. $\mu(\emptyset)=0$;
2. (Countable additivity:) For any disjoint sequence $\left(A_{j}\right)_{j} \in \mathscr{A}$,

$$
\begin{equation*}
\mu\left(\cup_{j=1}^{+\infty} A_{j}\right)=\sum_{j=1}^{+\infty} \mu\left(A_{j}\right) \tag{3.7}
\end{equation*}
$$

(We mention that the term countably additive set function μ indicates that μ satisfies (3.7). We shall also use the term σ-additive set function.)

The set (X, \mathscr{A}, μ) will be called a measure space.

Examples .

1. Let X be any non empty set and let $\mathscr{A}=\mathscr{P}(X)$. For $A \in \mathscr{A}$, we define $\mu(A)$ the number of elements in A if A is finite and equal to $+\infty$ if not. μ is then a measure on \mathscr{A}. This measure is called the counting measure.
2. $\delta_{x}(A)=1$ if $x \in A$ and 0 otherwise. The measure δ_{x} is called the point mass at x or the Dirac measure on x.
3. Let μ defined on $\mathscr{P}(\mathbb{R})$ by:

$$
\mu(A)=\left\{\begin{array}{cc}
0 & \text { if } A \text { is finite } \\
\infty & \text { otherwise }
\end{array}\right.
$$

μ is finite additive but not countably additive since $\mathbb{N}=\bigcup_{j=1}^{+\infty}\{j\}$, but $\mu(\mathbb{N})=$ $+\infty \neq \sum_{j=1}^{+\infty} \mu(\{j\})=0$. Then μ is not a measure.

Theorem 3.2

Let μ be a measure on the measurable space (X, \mathscr{A}). It has the following basic properties:

1. μ is finitely additive: For any finite subsets $A_{1}, \ldots, A_{n} \in \mathscr{A}$ of disjoints elements of $\mathscr{A}, \mu\left(\cup_{j=1}^{n} A_{j}\right)=\sum_{j=1}^{n} \mu\left(A_{j}\right)$.
2. μ is monotone: If $A, B \in \mathscr{A}$ with $A \subset B$, then $\mu(A) \leq \mu(B)$.
3. μ is countably subadditive: If $\left(A_{j}\right)_{j \in \mathbb{N}} \in \mathscr{A}$ and $A=\cup_{j=1}^{+\infty} A_{j}$, then

$$
\mu(A) \leq \sum_{j=1}^{+\infty} \mu\left(A_{j}\right)
$$

4. (Continuity from below:) If $\left(A_{j}\right)_{j}$ is an increasing sequence in \mathscr{A}, and $A=$ $\cup_{j=1}^{+\infty} A_{j}$, then $\mu(A)=\lim _{n \rightarrow+\infty} \mu\left(A_{n}\right)$.
5. μ is subtractive: If $A, B \in \mathscr{A}$ and $A \subset B$ and $\mu(B)<+\infty$, then $\mu(B \backslash A)=$ $\mu(B)-\mu(A) . \quad(\mu(A)<\infty$ suffices $)$.
6. (Continuity from above:) If $\left(A_{j}\right)_{j}$ is a decreasing sequence in \mathscr{A} with $\mu\left(A_{1}\right)<$ ∞, then $\mu(A)=\lim _{n \rightarrow+\infty} \mu\left(A_{n}\right)$, with $A=\cap_{j=1}^{+\infty} A_{j}$.

Proof .

1. This property is obvious.
2. $B=A \cup(B \backslash A)$, then $\mu(B)=\mu(A)+\mu(B \backslash A) \geq \mu(A)$. We use property property 2) of the measure definition.
3. Let $B_{1}=A_{1}$, and $B_{n}=A_{n} \backslash \bigcup_{j=1}^{n-1} B_{j}$, for $n \geq 2$. The sequence $\left(B_{n}\right)_{n \in \mathbb{N}}$ are disjoints and $\bigcup_{n=1}^{+\infty} B_{n}=\bigcup_{n=1}^{+\infty} A_{n}$. So $\mu(A)=\sum_{n=1}^{+\infty} \mu\left(B_{n}\right) \leq \sum_{n=1}^{+\infty} \mu\left(A_{n}\right)$.
4. Define $\left(B_{n}\right)_{n \in \mathbb{N}}$ as in 3). Since $\bigcup_{j=1}^{n} A_{j}=\bigcup_{j=1}^{n} B_{j}$, then

$$
\begin{aligned}
\mu(A)=\mu\left(\bigcup_{n=1}^{+\infty} A_{n}\right) & =\mu\left(\bigcup_{n=1}^{+\infty} B_{n}\right)=\sum_{n=1}^{+\infty} \mu\left(B_{n}\right)=\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \mu\left(B_{j}\right) \\
& =\lim _{n \rightarrow \infty} \mu\left(\bigcup_{j=1}^{n} B_{j}\right)=\lim _{n \rightarrow \infty} \mu\left(\bigcup_{j=1}^{n} A_{j}\right) .
\end{aligned}
$$

5. $\mu(B \backslash A)+\mu(A)=\mu(B)$. If $\mu(A)<\infty$ then $\mu(B \backslash A)=\mu(B)-\mu(A)$.
6. Apply 3$)$ to the sequence $\left(A_{1} \backslash A_{j}\right)_{j}$.

Remark . (Exercise)

It is easy to prove that μ is a measure on the measurable space (X, \mathscr{B}) if and only if:
i) $\mu(\emptyset)=0$
ii) $\mu(A \cup B)=\mu(A)+\mu(B)$, if $A \cap B=\emptyset$.
iii) If $\left(A_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence of the σ-algebra \mathscr{B}, then

$$
\mu\left(\bigcup_{n=1}^{+\infty} A_{n}\right)=\operatorname{Sup}_{n} \mu\left(A_{n}\right) .
$$

Definition 3.3

1. We say that the measure μ is finite if $\mu(X)<+\infty$.
2. We say that the measure μ is σ-finite if there exists an increasing sequence $\left(A_{j}\right)_{j}$ of measurable subsets of finite measure and $\cup_{j=1}^{+\infty} A_{j}=X$.
3. A probability measure is a measure on (X, \mathscr{A}) is a measure such that $\mu(X)=1$. In this case the σ-algebra \mathscr{A} is called the space of events.

3.2 Properties of Measures

Let (X, \mathscr{B}) be a measurable space. We denote by $\mathscr{M}(X, \mathscr{B})$ or $\mathscr{M}(X)$ the set of measures on the measurable space (X, \mathscr{B}). We have the following properties:

1. The set $\mathscr{M}(X)$ is a convex cone. If μ_{1} and μ_{2} are in $\mathscr{M}(X)$ and $\lambda \in \mathbb{R}^{+}$, then $\mu_{1}+\mu_{2}, \lambda \mu_{1}$ are measures.
We order the set $\mathscr{M}(X)$ by the relationship

$$
\mu_{1} \leq \mu_{2} \Longleftrightarrow \mu_{1}(A) \leq \mu_{2}(A) ; \forall A \in \mathscr{B}
$$

2. If $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence of measures, then the mapping $\mu: \mathscr{B} \longrightarrow$ $[0,+\infty]$ defined by $\mu(A)=\lim _{n \rightarrow+\infty} \mu_{n}(A)=\operatorname{Sup}_{n} \mu_{n}(A)$ for any $A \in \mathscr{B}$ is a measure on X.
It is clear that $\mu(\emptyset)=0=\lim _{n \rightarrow+\infty} \mu_{n}(\emptyset)$, and if A, B are two disjoints elements of \mathscr{B}, we have

$$
\mu(A \cup B)=\lim _{n \rightarrow+\infty} \mu_{n}(A)+\lim _{n \rightarrow+\infty} \mu_{n}(B)=\mu(A)+\mu(B)
$$

Let now $\left(A_{n}\right)$ be an increasing sequence of \mathscr{B} and $A=\bigcup_{n} A_{n}$. We have $\mu_{j}\left(A_{n}\right) \leq \mu\left(A_{n}\right) \leq \mu(A)$. Then

$$
\mu_{j}(A)=\lim _{n \rightarrow+\infty} \mu_{j}\left(A_{n}\right) \leq \lim _{n \rightarrow+\infty} \mu\left(A_{n}\right) \leq \mu(A)
$$

and

$$
\mu(A)=\lim _{j \rightarrow+\infty} \mu_{j}(A) \leq \lim _{n \rightarrow+\infty} \mu\left(A_{n}\right) \leq \mu(A) .
$$

Then $\mu(A)=\lim _{n \rightarrow+\infty} \mu\left(A_{n}\right)$.

4 Complete Measure Spaces

Definition 4.1

Let (X, \mathscr{B}, μ) be a measure space. A subset A of X is called a null set or a negligible set if A is contained in a measurable subset of measure zero.

Example .

Let (X, \mathscr{B}) be a measurable space such that $\forall x \in X ;\{x\} \in \mathscr{B}$. If we take $\mu=\delta_{a}$, with $a \in X$; then every subset $A \subset \mathscr{B}$ such that $a \notin A$, is a null set.

Remarks .

We denote by \mathscr{N} the set of null sets. We have:

1. $\emptyset \in \mathscr{N}$.
2. Any subset of a null set is a null set. If $A \subset B$ and $B \in \mathscr{N}$, then there is an $C \in \mathscr{B}$ such that $\mu C=0$ and $B \subset C$; now $A \subset C$.
3. A countable union of null sets is a null set. If $\left(A_{n}\right)_{n}$ is any sequence in \mathscr{N}. For each $n \in \mathbb{N}$ choose an $B_{n} \in \mathscr{B}$ such that $A_{n} \subset B_{n}$ and $\mu\left(B_{n}\right)=0$. Now $B=\bigcup_{n \in \mathbb{N}} B_{n} \in \mathscr{B}$ and $\bigcup_{n \in \mathbb{N}} A_{n} \subset \bigcup_{n \in \mathbb{N}} B_{n}$, and $\mu\left(\bigcup_{n \in \mathbb{N}} B_{n}\right) \leq \sum_{n=0}^{\infty} \mu B_{n}$, so $\mu\left(\bigcup_{n \in \mathbb{N}} B_{n}\right)=0$.

Definition 4.2

If $P(x)$ is some assertion applicable to numbers x of the set X, we say that

$$
P(x) \text { for almost every } x \in X \quad \text { or } P(x) \text { a.e. }(x)
$$

or

$$
P(x) \text { for } \mu \text {-almost every } x, \quad P(x) \mu \text { - a.e. }(x),
$$

to mean that

$$
\{x \in X ; P(x) \text { is false }\}
$$

is a null set.

Definition 4.3

A measure space (X, \mathscr{B}, μ) is said to be complete if any null set is measurable ($\mathscr{N} \subset$ $\mathscr{B})$, we say that the measure μ is complete.

Theorem 4.4

Let (X, \mathscr{B}, μ) be a measure space, and let \mathscr{N} be the set of the null sets of X. Let $\mathscr{B}^{\prime}=\{A \cup B ; A \in \mathscr{B}$ and $B \in \mathscr{N}\} . \mathscr{B}^{\prime}$ is a σ-algebra on X and there exists a unique measure μ^{\prime} which extends the measure μ on the σ-algebra \mathscr{B}^{\prime}. The measure space $\left(X, \mathscr{B}^{\prime}, \mu^{\prime}\right)$ is complete.

Proof .

Let prove now that \mathscr{B}^{\prime} is a σ-algebra.
\mathscr{B}^{\prime} is evidently closed under countable union. It suffices to prove that it is closed under complementarity. Let $A^{\prime}=A \cup N$ be an element of \mathscr{B}^{\prime}. As N is a null set there exists a subset B of $\mathscr{B} \cap \mathscr{N}$ and $N \subset B$. We have

$$
A^{\prime c}=(A \cup N)^{c}=(A \cup B)^{c} \cup(B \backslash(A \cup N)) .
$$

It follows then that $A^{\prime c}$ is an element of \mathscr{B}^{\prime}.
If the measure μ^{\prime} exists it is unique. In fact we must have $\mu^{\prime}(N)=0$ for any $N \in \mathscr{N}$, thus if $A^{\prime}=A \cup N$ is an element of \mathscr{B}^{\prime} we shall have $\mu^{\prime}\left(A^{\prime}\right)=\mu(A)$.
To show that μ^{\prime} is a mapping on \mathscr{B}^{\prime}, we must show that if $A_{1} \cup N_{1}=A_{2} \cup N_{2}$ with $A_{1}, A_{2} \in \mathscr{B}$ and $N_{1}, N_{2} \in \mathscr{N}$, then $\mu\left(A_{1}\right)=\mu\left(A_{2}\right)$. So we have $A_{1} \backslash A_{2} \in N_{2}$, then it is a null set. If $B=A_{1} \cap A_{2}$, then $A_{1}=B \cup\left(A_{1} \backslash A_{2}\right)$ and $\mu(B)=\mu\left(A_{1}\right)$. In the same way we shall have $\mu(B)=\mu\left(A_{2}\right)$, then $\mu\left(A_{1}\right)=\mu\left(A_{2}\right)$.

Let we prove now that μ^{\prime} defines a measure on the σ-algebra \mathscr{B}^{\prime}. If $\left(A_{n}^{\prime}\right)_{n \in \mathbb{N}}$ be a sequence of disjoint elements of \mathscr{B}^{\prime}, with $A_{n}^{\prime}=A_{n} \cup N_{n}, A_{n} \in \mathscr{B}$ and $N_{n} \in \mathcal{N}$; $\forall n \in \mathbb{N}$. We have

$$
\mu^{\prime}\left(\bigcup_{n=1}^{+\infty} A_{n}^{\prime}\right)=\mu^{\prime}\left(\left(\bigcup_{n=1}^{+\infty} A_{n}\right) \cup\left(\bigcup_{n=1}^{+\infty} N_{n}\right)\right)=\mu\left(\bigcup_{n=1}^{+\infty} A_{n}\right)=\sum_{n=1}^{+\infty} \mu\left(A_{n}\right)=\sum_{n=1}^{+\infty} \mu^{\prime}\left(A_{n}^{\prime}\right)
$$

Finally the measure space ($X, \mathscr{B}^{\prime}, \mu^{\prime}$) is complete because the μ^{\prime}-null sets are elements of \mathscr{N}. It is evident that μ^{\prime} is the smallest complete extention of the measure μ.

5 Outer Measure

Definition 5.1

Let X be a nonempty set. An outer measure μ^{*} on X is a mapping $\mu^{*}: \mathscr{P}(X) \longrightarrow$ $[0, \infty]$ which fulfills the following axioms:
i) $\mu^{*}(\emptyset)=0$.
ii) If $\left(A_{n}\right)_{n \in \mathbb{N}}$ is a sequence of subsets of X, then

$$
\mu^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \mu^{*}\left(A_{n}\right) .
$$

iii) μ^{*} is increasing (i.e. $\mu^{*}(A) \leq \mu^{*}(B)$ if $A \subset B$).

Example .

Any measure on $\mathscr{P}(X)$ is an outer measure.

Definition 5.2

Let X be a set and μ^{*} be an outer measure on X. A subset A of X is called μ^{*}-measurable if

$$
\forall B \subset X ; \quad \mu^{*}(B)=\mu^{*}(B \cap A)+\mu^{*}\left(B \cap A^{c}\right)
$$

Now we introduce the most important method of constructing measures.
Theorem 5.3 (Caratheodory's construction)
Let X be a non empty set and μ^{*} be an outer measure on X. Then the set \mathscr{B}^{\prime} of the μ^{*}-measurable subsets is a σ-algebra on X and the restriction of μ^{*} on \mathscr{B}^{\prime} denoted $\left.\mu^{*}\right|_{\mathscr{B}^{\prime}}$ is a complete measure.

Proof .

i) \emptyset is μ^{*}-measurable. $\left(\mu^{*}(B \cap \emptyset)+\mu^{*}\left(B \cap \emptyset^{c}\right)=\mu^{*}(\emptyset)+\mu^{*}(B)=\mu^{*}(B)\right)$.
ii) Let A be a μ^{*}-measurable set and let B a subset of X. It follows from the definition of the outer measure that $\mu^{*}(B)=\mu^{*}(B \cap A)+\mu^{*}\left(B \cap A^{c}\right)$, then A^{c} is μ^{*}-measurable.
iii) Let $A, B \in \mathscr{B}^{\prime}$ and E a subset of X. As A is a measurable subset, we have

$$
\begin{align*}
\mu^{*}(E \cap(A \cup B)) & =\mu^{*}(E \cap(A \cup B) \cap A)+\mu^{*}\left(E \cap(A \cup B) \cap A^{c}\right) \\
& =\mu^{*}(E \cap A)+\mu^{*}\left(E \cap B \cap A^{c}\right) \tag{5.8}
\end{align*}
$$

$$
\begin{align*}
\mu^{*}(E \cap(A \cup B))+\mu^{*}\left(E \cap(A \cup B)^{c}\right) & =\mu^{*}(E \cap A)+\mu^{*}\left(E \cap B \cap A^{c}\right)+\mu^{*}\left(E \cap A^{c} \cap B^{c}\right) \\
& =\mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right)=\mu^{*}(E) . \tag{5.9}
\end{align*}
$$

Then $A \cup B$ is in \mathscr{B}^{\prime}.
iv) Let A_{1}, A_{2} be two disjoint elements of \mathscr{B}^{\prime}, B a subset of X and $E=$ $B \cap\left(A_{1} \cup A_{2}\right)$. As $E \cap\left(A_{1} \cup A_{2}\right)^{c}=\emptyset$, we use the relationship given in iii) for the subset E, we will have:

$$
\begin{gathered}
\mu^{*}\left(E \cap\left(A_{1} \cup A_{2}\right)\right)+\mu^{*}\left(E \cap\left(A_{1} \cup A_{2}\right)^{c}\right)=\mu^{*}\left(E \cap A_{1}\right)+\mu^{*}\left(E \cap A_{1}^{c}\right) \\
=\mu^{*}\left(B \cap A_{1}\right)+\mu^{*}\left(B \cap A_{2}\right) .
\end{gathered}
$$

Then

$$
\mu^{*}\left(B \cap\left(A_{1} \cup A_{2}\right)\right)=\mu^{*}\left(B \cap A_{1}\right)+\mu^{*}\left(B \cap A_{2}\right) .
$$

Let $\left(A_{n}\right)_{n \in \mathbb{N}}$ be a sequence of disjoint elements of \mathscr{B}^{\prime}, then we have

$$
\begin{aligned}
\mu^{*}(B) & =\mu^{*}\left(B \cap \bigcup_{j=1}^{n} A_{j}\right)+\mu^{*}\left(B \cap\left(\bigcup_{j=1}^{n} A_{j}\right)^{c}\right) \\
& \geq \mu^{*}\left(B \cap \bigcup_{j=1}^{n} A_{j}\right)+\mu^{*}\left(B \cap\left(\bigcup_{j=1}^{\infty} A_{j}\right)^{c}\right) \\
& \geq \sum_{j=1}^{n} \mu^{*}\left(B \cap A_{j}\right)+\mu^{*}\left(B \cap\left(\bigcup_{j=1}^{\infty} A_{j}\right)^{c}\right) .
\end{aligned}
$$

Then

$$
\mu^{*}(B) \geq \sum_{j=1}^{\infty} \mu^{*}\left(B \cap A_{j}\right)+\mu^{*}\left(B \cap\left(\bigcup_{j=1}^{\infty} A_{j}\right)^{c}\right) \geq \mu^{*}\left(B \cap \bigcup_{j=1}^{\infty} A_{j}\right)+\mu^{*}\left(B \cap\left(\bigcup_{j=1}^{\infty} A_{j}\right)^{c}\right)
$$

The other inequality results from the property ii) of the outer measure μ^{*}.
To finish the proof we take a sequence $\left(B_{n}\right)_{n \in \mathbb{N}}$ of \mathscr{B}^{\prime}, and put $A_{1}=B_{1}, A_{n}=$ $B_{n} \backslash \bigcup_{j=1}^{n-1} B_{j}$. We have $\bigcup_{n=1}^{\infty} A_{n}=\bigcup_{n=1}^{\infty} B_{n}$. Thus \mathscr{B}^{\prime} is a σ-algebra.
It is evident that the restriction of μ^{*} on \mathscr{B}^{\prime} is a measure.
It remains to show that the measure μ^{*} is complete. To prove this fact it suffices to prove that any null set A is measurable. If A is a null set, then there exist an element
$B \in \mathscr{B}^{\prime}$ such that $A \subset B$ and $\mu^{*}(B)=0$. Let E be a subset of X, then $\mu^{*}(E \cap A)=0$ and

$$
\mu^{*}(E) \geq \mu^{*}\left(E \cap A^{c}\right)=\mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right) .
$$

The other inequality results from the definition of the outer measure μ^{*}. Thus A is μ^{*}-measurable.

Exercise .

Let (X, \mathscr{B}, μ) be a measure space. We define the mapping $\mu^{*}: \mathscr{P}(X) \longrightarrow[0,+\infty]$ by

$$
\begin{equation*}
\mu^{*}(A)=\inf \left\{\sum_{j=1}^{\infty} \mu\left(A_{j}\right) ; A \subset \cup_{j=1}^{\infty} A_{j} \text { and } A_{j} \in \mathscr{B}\right\} \tag{5.10}
\end{equation*}
$$

Show that μ^{*} is an outer measure and any $\mu-$ measurable set is μ^{*}-measurable and the restriction of μ^{*} on \mathscr{B} is equal to the measure μ.

Solution .

It is easy to prove that $\mu^{*}(\emptyset)=0$ and μ^{*} is increasing.
Let $\left(A_{n}\right)_{n \in \mathbb{N}}$ be a sequence of subsets of X. We want to prove that $\mu^{*}\left(\cup_{n=1}^{+\infty} A_{n}\right) \leq$ $\sum_{n=1}^{+\infty} \mu^{*}\left(A_{n}\right)$. If there exists A_{n} such that $\mu^{*}\left(A_{n}\right)=+\infty$, then the inequality is trivial.
Assume now that $\forall n \in \mathbb{N} ; \mu^{*}\left(A_{n}\right)<+\infty$.
For every $n \in \mathbb{N}$, and for every $\varepsilon>0$, there exists a sequence $\left(A_{n, j}\right)_{j} \in \mathscr{B}$, such that $\mu^{*}\left(A_{n}\right) \geq \sum_{j=1}^{+\infty} \mu\left(A_{n, j}\right)-\frac{\varepsilon}{2^{n}}$. Then the sequence $\left(A_{n, j}\right)_{j, n \in \mathbb{N}}$ is a covering of the set $A=\bigcup_{j=1}^{+\infty} A_{n}$ and $\sum_{n=1}^{+\infty} \sum_{j=1}^{+\infty} \mu\left(A_{n, j}\right) \leq \sum_{n=1}^{+\infty} \mu^{*}\left(A_{n}\right)+\varepsilon$. Then $\mu^{*}(A) \leq \sum_{n=1}^{+\infty} \mu^{*}\left(A_{n}\right)+\varepsilon$, for all $\varepsilon>0$ and so $\mu^{*}(A) \leq \sum_{n=1}^{+\infty} \mu^{*}\left(A_{n}\right)$. Then μ^{*} is an outer measure.
Let now proving that $\mu^{*}=\mu$ on \mathscr{B}.
If $A \in \mathscr{B}$, then $\mu^{*}(A) \leq \mu(A)$, and if $\mu^{*}(A)=+\infty$ then $\mu^{*}(A)=\mu(A)$.
Assume now that $\mu^{*}(A)<+\infty$, then for every $\varepsilon>0$, there exists $\left(A_{n}\right)_{n \in \mathbb{N}}$ a covering of A in \mathscr{B} and $\mu^{*}(A) \geq \sum_{n=1}^{+\infty} \mu\left(A_{n}\right)-\varepsilon$. As $\mu(A) \leq \sum_{n=1}^{+\infty} \mu\left(A_{n}\right)$, then $\mu(A) \leq \mu^{*}(A)+\varepsilon$ for every $\varepsilon>0$. It result that $\mu(A)=\mu^{*}(A), \forall A \in \mathscr{B}$.
Let now proving that any μ-measurable set is μ^{*}-measurable.
If $A \in \mathscr{B}$ and $B \subset X$. From the definition of the outer measure μ^{*}, we have $\mu^{*}(B) \leq$ $\mu^{*}(B \cap A)+\mu^{*}\left(B \cap A^{c}\right)$. Then if $\mu^{*}(B)=+\infty$ we have the desired equality. Assume now that $\mu^{*}(B)<+\infty$. Then for every $\varepsilon>0$, there exists a covering $\left(B_{n}\right)_{n \in \mathbb{N}}$ of B in \mathscr{B} and $\mu^{*}(B) \geq \sum_{n=1}^{+\infty} \mu\left(B_{n}\right)-\varepsilon$. As μ is a measure $\mu\left(A \cap B_{n}\right)+\mu\left(A^{c} \cap B_{n}\right)=\mu\left(B_{n}\right)$, then $\mu^{*}(B) \geq \sum_{n=1}^{+\infty} \mu\left(B_{n} \cap A\right)+\sum_{n=1}^{+\infty} \mu\left(B_{n} \cap A^{c}\right)-\varepsilon \geq \mu^{*}(B \cap A)+\mu^{*}\left(B \cap A^{c}\right)-\varepsilon$. Then $\mu^{*}(B) \geq \mu^{*}(B \cap A)+\mu^{*}\left(B \cap A^{c}\right)$. Then $\mu^{*}(B)=\mu^{*}(B \cap A)+\mu^{*}\left(B \cap A^{c}\right)$ and A is μ^{*} measurable.

Theorem 5.4

Let (X, \mathscr{B}, μ) be a measure space and μ sigma-finite measure. Let μ^{*} the outer measure defined on $\mathscr{P}(X)$ by $\mu^{*}(A)=\inf \left\{\sum_{j} \mu\left(A_{j}\right) ; A \subset \cup_{j} A_{j}\right.$ and $\left.A_{j} \in \mathscr{B}\right\}$. We denote by $\hat{\mathscr{B}}$ the complete σ-algebra and \mathscr{B}_{0} the σ-algebra of the μ^{*}-measurable sets. Then $\mathscr{B}=\mathscr{B}_{0}$.

Proof .

According to the previous exercise $\mathscr{B} \subset \mathscr{B}_{0}$. Let A be a null set, there exists a measurable set B such that $A \subset B$ and $\mu(B)=0$. Let E be a subset of $X ; \mu^{*}(E \cap A) \leq$ $\mu(B)=0$ and $\mu^{*}\left(E \cap A^{c}\right) \leq \mu^{*}(E)$ then $\mu^{*}(E)=\mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right)$ and $\hat{\mathscr{B}} \subset \mathscr{B}_{0}$. Let $A \in \mathscr{B}_{0}$, assume that $\mu^{*}(A)<+\infty$, there exists a sequence $\left(A_{j, n}\right)$ of \mathscr{B} such that $A \subset \bigcup_{j} A_{j, n}$ and $\sum_{j} \mu\left(A_{j, n}\right) \leq \mu^{*}(A)+1 / n$. We denote $B_{n}=\bigcup_{j=1}^{\infty} A_{j, n} . B_{n} \supset A$ and $\mu\left(B_{n}\right) \leq \mu^{*}(A)+1 / n$. Let $B=\bigcap_{n} B_{n}, B \in \mathscr{B} ; A \subset B \Rightarrow \mu^{*}(A) \leq \mu(B)$, and we have $\mu(B) \leq \mu\left(B_{n}\right) \leq \mu^{*}(A)+1 / n, \forall n \Rightarrow \mu(B) \leq \mu^{*}(A) \Rightarrow \mu(B)=\mu^{*}(A) \Rightarrow$ $\mu^{*}(B \backslash A)=0$, because $\mu^{*}(A)<\infty$. Then $A=B \backslash(B \backslash A)=B \cap(B \backslash A)^{c} .(B \backslash A)$ is a null set then it is in the σ-algebra \hat{B} and in the same way for B, then $A \in \hat{\mathscr{B}}$. If $\mu^{*}(A)=+\infty$. Since μ is σ-finite, there exists a sequence $\left(E_{n}\right)_{n \in \mathbb{N}}$ of measurable sets such that $\mu\left(E_{n}\right)<+\infty$ and $\bigcup_{n=1}^{+\infty} E_{n}=X$. Then any $A \in \mathscr{B}_{0}$ is written as

$$
A=\bigcup_{n=1}^{+\infty} A_{n}, \quad A_{n} \in \mathscr{B}_{0}, \text { and } \mu^{*}\left(A_{n}\right)<+\infty
$$

Then $A_{n} \in \hat{\mathscr{B}}$ and $A \in \hat{\mathscr{B}}$.

5.1 Monotone Class and σ-Algebra

Definition 5.5

A collection of sets \mathcal{M} is called a monotone class if for any monotone sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ of $\mathcal{M} ; \lim _{n \rightarrow+\infty} A_{n} \in \mathcal{M}$.

Examples

1. Any σ-algebra is a monotone class.
2. An arbitrary intersection of monotone classes is a monotone class.
3. If $A \subset X$, the intersection of all monotone classes that contain A is called the monotone class generated by A and denoted by $\mathscr{M}(A)$.

Theorem 5.6

Let \mathcal{A} be an algebra of X. We denote by $\mathscr{M}(\mathcal{A})$ the monotone class generated by \mathcal{A}, and by $\sigma(\mathcal{A})$ the σ-algebra generated by \mathcal{A}. Then $\mathscr{M}(\mathcal{A})=\sigma(\mathcal{A})$.

Proof .

It follows from the above remark that $\sigma(\mathcal{A})$ is a monotone class, as $\sigma(\mathcal{A})$ contains \mathcal{A}, then $\sigma(\mathcal{A})$ contains the smallest monotone class containing \mathcal{A} thus $\sigma(\mathcal{A}) \supset$ $\mathscr{M}(\mathcal{A})$.
For proving that $\sigma(\mathcal{A}) \subset \mathscr{M}(\mathcal{A})$, we define for every subset S of X the set \tilde{S} by:

$$
\tilde{S}=\{T \in \mathscr{P}(X) ; S \cup T, S \backslash T \text { and } T \backslash S \in \mathscr{M}(\mathcal{A})\} .
$$

This definition is symmetric with respect to S and T, then $S \in \tilde{T} \Longleftrightarrow T \in \tilde{S}$. We want to prove that \tilde{S} is a monotone class if it exists.
If $\left(A_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence of $\tilde{S} ;\left(S \cup A_{n}\right)_{n \in \mathbb{N}}$ is a increasing sequence of $\mathscr{M}(\mathcal{A})$, the same for the sequence $\left(A_{n} \backslash S\right)_{n \in \mathbb{N}}$, the sequence $\left(S \backslash A_{n}\right)_{n \in \mathbb{N}}$ is a decreasing sequence of $\mathscr{M}(\mathcal{A})$. Then the limit of the sequences are in $\mathscr{M}(\mathcal{A})$.
Let $A \in \mathcal{A}$, then $\forall B \in \mathcal{A}, B \in \tilde{A}$, then \tilde{A} is a monotone class containing \mathcal{A}, then $\tilde{A} \supset \mathscr{M}(\mathcal{A})$. So $\forall S \in \mathscr{M}(\mathcal{A}), S \in \tilde{A}$ for any $A \in \mathcal{A}$, and so $A \in \tilde{S}$, then $\mathcal{A} \subset \tilde{S}$; $\forall S \in \mathscr{M}(\mathcal{A})$. As \tilde{S} is a monotone class then $\mathscr{M}(\mathcal{A}) \subset \tilde{S}$.
We prove that:
$\forall S, S^{\prime} \in \mathscr{M}(\mathcal{A}), S \backslash S^{\prime}, S^{\prime} \backslash S, S \cup S^{\prime} \in \mathscr{M}(\mathcal{A})$. If we take $S^{\prime}=X$, we find that $S^{c} \in \mathscr{M}(\mathcal{A})$, in this way $\mathscr{M}(\mathcal{A})$ is an algebra. The result can be deduced from the following lemma.

Lemma 5.7

Let \mathscr{M} be an algebra closed under increasing limit, (i.e. if $\left(A_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence of \mathscr{M} then the limit of A_{n} is in $\left.\mathscr{M}\right)$, then \mathscr{M} is a σ-algebra.

Proof .

Let $\left(A_{n}\right)_{n \in \mathbb{N}}$ be a sequence of \mathscr{M}. Consider $B_{n}=\bigcup_{1 \leq j \leq n} A_{j}$, the sequence B_{n} is increasing in \mathscr{M} and $\cup_{n} A_{n}=\cup_{n} B_{n} \in \mathscr{M}$.
We end this paragraph with a property of measure that we need in the construction of Lebesgue measure.

Theorem 5.8

Let μ_{1} and μ_{2} be two positive measures on a measurable space (X, \mathscr{B}). Assume that there exists a class \mathscr{C} of measurable subsets such that:
a) \mathscr{C} is closed under finite intersection and that the σ-algebra generated by \mathscr{C} is equal to \mathscr{B}.
b) There exists an increasing sequence $\left(E_{n}\right)_{n \in \mathbb{N}}$ in \mathscr{C} such that $\lim _{n \rightarrow+\infty} E_{n}=X$.
c) $\mu_{1}(C)=\mu_{2}(C)<+\infty$, for any $C \in \mathscr{C}$.

Then $\mu_{1}=\mu_{2}$.

Proof .

We suppose in the first case that $\mu_{1}(X)=\mu_{2}(X)<+\infty$.
Let $\mathscr{A}=\left\{A \in \mathscr{B} ; \mu_{1}(A)=\mu_{2}(A)\right\}$. By hypothesis $X \in \mathscr{C}$ and $\mathscr{C} \subset \mathscr{A}$. It is easy to prove that \mathscr{A} is a monotone class. (If $\left(A_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence of \mathscr{A}, then $\mu_{1}\left(A_{n}\right)=\mu_{2}\left(A_{n}\right)$ for all n, and then

$$
\mu_{1}\left(\bigcup_{n=1}^{+\infty} A_{n}\right)=\mu_{2}\left(\bigcup_{n=1}^{+\infty} A_{n}\right)=\mu_{1}\left(\lim A_{n}\right)=\mu_{2}\left(\lim A_{n}\right)
$$

If $\left(A_{n}\right)_{n \in \mathbb{N}}$ is a decreasing sequence of \mathscr{A}, then $\mu_{1}\left(A_{n}\right)=\mu_{2}\left(A_{n}\right)$ for all n, as $\mu_{1}(X)=$ $\mu_{2}(X)<+\infty$, then $\mu_{1}\left(\bigcap_{n=1}^{+\infty} A_{n}\right)=\mu_{2}\left(\bigcap_{n=1}^{+\infty} A_{n}\right)$.)
\mathscr{A} is a σ-algebra. (If $A, B \in \mathscr{A}$ with $A \subset B$, then $\mu_{1}(B \backslash A)=\mu_{1}(B)-\mu_{1}(A)=$ $\mu_{2}(B)-\mu_{2}(A)=\mu_{2}(B \backslash A)$ and so $B \backslash A \in \mathscr{A}$. We use the fact that μ_{1}, μ_{2} are finite and $\left.\mu_{1}(X)=\mu_{2}(X)\right)$. Then $\sigma(\mathscr{C})=\mathscr{B} \subset \mathscr{A}$ and $\mathscr{A}=\mathscr{B}$ and $\mu_{1}=\mu_{2}$.
In the general case we take $\mu_{j, n}$ the restriction of μ_{j} on E_{n} for all $n \in \mathbb{N}$. From the first case $\mu_{1, n}=\mu_{2, n}$, which gives $\mu_{1}=\mu_{2}$, because $\mu_{j}=\lim _{n \rightarrow+\infty} \mu_{j, n} ; j=1,2$.

6 Lebesgue Measure on \mathbb{R}

Theorem 6.1

There exists only and only one measure λ on $\mathscr{B}_{\mathbb{R}}$ satisfying:
i) λ is invariant under translation. (i.e. $\left.\forall x \in \mathbb{R}, \forall A \in \mathscr{B}_{\mathbb{R}} ; \lambda(x+A)=\lambda(A)\right)$. ii) $\lambda([0,1])=1$.

Proof .

Uniqueness: Assume that there exists two measures μ and ν on $\mathscr{B}_{\mathbb{R}}$ satisfying (i) and (ii) then $\nu[0,1 / n[\leq 1 / n \Rightarrow \nu\{0\}=0$ and then any finite set or countable set is a null set and all the intervals $[a, b],] a, b],[a, b[$ and $] a, b[$ have the same measure and equal to $b-a$. (We treat the case of a and b are rationals and then we take the limit.) We denote by \mathscr{E} the set of finite union of intervals of \mathbb{R} of the form $[a, b[; a, b \in \mathbb{R}$. The set \mathscr{E} is closed under finite intersection and $\mathbb{R}=\bigcup_{n}[-n, n[$. Then we shall have $\mu=\nu$ on \mathscr{E}. It follows from the unicity theorem 4.4 that μ and ν are equal on $\mathscr{B}_{\mathbb{R}}$.
Existence: Define for any subset A of \mathbb{R}

$$
\mu^{*}(A)=\inf _{\mathscr{R}} \sum_{I \in \mathscr{R}} \mathscr{L}(I) .
$$

\mathscr{R} describes the whole of finite or countable coverings of A by open intervals, and $\mathscr{L}(I)$ is the length of I.
We first prove that for any interval I of $\mathbb{R}, \mu^{*}(I)=\mathscr{L}(I)$.
If a and b are the endpoints of I and $\varepsilon>0$, then $I \subset] a-\varepsilon, b+\varepsilon\left[\right.$ and $\mu^{*}(I) \leq \mathscr{L}(I)+2 \varepsilon$. It follows that $\mu^{*}(I) \leq \mathscr{L}(I)$.
Conversely let $\left(I_{k}\right)_{k}$ be an open covering of I, then $[a+\varepsilon, b-\varepsilon] \subset \cup_{k} I_{k}$. As $[a+\varepsilon, b-\varepsilon]$ is compact, there exist a finite sub-covering $\left(I_{k}\right)_{1 \leq k \leq n}$ such that $[a+\varepsilon, b-\varepsilon] \subset \cup_{k=1}^{n} I_{k}$. It results that $b-a-2 \varepsilon \leq \sum_{k=1}^{n} \mathscr{L}\left(I_{k}\right) \leq \sum_{k=1}^{+\infty} \mathscr{L}\left(I_{k}\right)$. Thus $b-a-2 \varepsilon \leq \mu^{*}(I)$ for any $\varepsilon>0$ and then $\mathscr{L}(I)=\mu^{*}(I)$.
Let Ω be an open set of \mathbb{R} and let $\left(I_{n}\right)_{n \in \mathbb{N}}$ be the connected components of Ω, then $\mu^{*}(\Omega)=\sum_{n=1}^{\infty} \mathscr{L}\left(I_{n}\right)$. In fact from the definition of μ^{*}

$$
\begin{equation*}
\mu^{*}(\Omega) \leq \sum_{n=1}^{\infty} \mathscr{L}\left(I_{n}\right) \tag{6.11}
\end{equation*}
$$

Conversely let $\left(J_{k}\right)_{k}$ be a covering of Ω by open intervals, we have $I_{n}=\bigcup_{k} J_{k} \cap I_{n}$. It results that $\sum_{n=1}^{+\infty} \mathscr{L}\left(I_{n}\right) \leq \sum_{n=1}^{+\infty} \sum_{k=1}^{+\infty} \mathscr{L}\left(I_{n} \cap J_{k}\right)=\sum_{k=1}^{+\infty} \sum_{m=1}^{+\infty} \mathscr{L}\left(I_{n} \cap J_{k}\right)$. In the other hand the intervals $\left(I_{n}\right)_{n}$ are disjoints, then for any $m, \bigcup_{n=1}^{m}\left(J_{k} \cap I_{n}\right) \subset J_{k}$ and for all $m \in \mathbb{N}$; $\sum_{n=1}^{m} \mathscr{L}\left(J_{k} \cap I_{n}\right) \leq \mathscr{L}\left(J_{k}\right)$. It results that $\sum_{n=1}^{+\infty} \mathscr{L}\left(I_{n} \cap J_{k}\right) \leq \sum_{k=1}^{+\infty} \mathscr{L}\left(J_{k}\right)$.

Then

$$
\begin{equation*}
\sum_{n=1}^{+\infty} \mathscr{L}\left(I_{n}\right) \leq \mu^{*}(\Omega) \tag{6.12}
\end{equation*}
$$

So relations (6.11) and (6.12) gives that $\mu^{*}(\Omega) \leq \sum_{n=1}^{\infty} \mathscr{L}\left(I_{n}\right)$.
We deduce that if $\left(\omega_{n}\right)_{n \in \mathbb{N}}$ is a sequence of open sets, then $\mu^{*}\left(\bigcup_{n} \omega_{n}\right) \leq \sum_{n=1}^{+\infty} \mu^{*}\left(\omega_{n}\right)$. In fact if $\left(I_{n, k}\right)_{k}$ are the connected components of ω_{n}, we have: $\mu^{*}\left(\omega_{n}\right)=\sum_{k=1}^{+\infty} \mathscr{L}\left(I_{n, k}\right)$ and

$$
\mu^{*}\left(\bigcup_{n=1}^{+\infty} \omega_{n}\right)=\mu^{*}\left(\bigcup_{n, k=1}^{+\infty} I_{n, k}\right) \leq \sum_{n, k=1}^{+\infty} \mathcal{L}\left(I_{n, k}\right)=\sum_{n=1}^{+\infty} \sum_{k=1}^{+\infty} \mathcal{L}\left(I_{n, k}\right)=\sum_{n=1}^{+\infty} \mu^{*}\left(\omega_{n}\right)
$$

Let now prove that for any subset $A \subset \mathbb{R}, \mu^{*}(A)=\inf _{O \text { open } \supset A} \mu^{*}(O)$. If $\left(I_{n}\right)$ be a finite or countable covering of A by open intervals. Put $\omega=\bigcup_{n=1}^{+\infty} I_{n}$, then $\mu^{*}(A) \leq$ $\mu^{*}(\omega) \leq \sum_{n=1}^{+\infty} \mathscr{L}\left(I_{n}\right)$. We deduce that μ^{*} is an outer measure on $\mathscr{P}(\mathbb{R})$; in fact:
i) $\mu^{*}(\emptyset)=0$.
ii) If $A \subset B$, then $\mu^{*}(A)=\inf _{\omega(\text { open }) \supset A} \mu^{*}(\omega) \leq \inf _{\omega(\text { open }) \supset B} \mu^{*}(\omega)=\mu^{*}(B)$.
iii) If $\left(A_{n}\right)_{n \in \mathbb{N}}$ is a sequence of subsets of \mathbb{R}. Our goal is to prove that

$$
\begin{equation*}
\mu^{*}\left(\cup_{n} A_{n}\right) \leq \sum_{n} \mu^{*}\left(A_{n}\right) \tag{6.13}
\end{equation*}
$$

If there exists n_{0} such that $\mu^{*}\left(A_{n_{0}}\right)=+\infty$, the inequality (6.13) is trivially fulfilled. Assume now that $\mu^{*}\left(A_{n}\right)<+\infty$ for all $n \in \mathbb{N}$. Let $\varepsilon>0$, for any $n \in \mathbb{N}$ there exists an open set ω_{n} containing A_{n} such that $\mu^{*}\left(\omega_{n}\right) \leq \mu^{*}\left(A_{n}\right)+\frac{\varepsilon}{2^{n}}$.

$$
\begin{equation*}
\mu^{*}\left(\cup_{n=1}^{+\infty} A_{n}\right) \leq \mu^{*}\left(\cup_{n=1}^{+\infty} \omega_{n}\right) \leq \sum_{n=1}^{+\infty} \mu^{*}\left(\omega_{n}\right) \leq \sum_{n=1}^{+\infty} \mu^{*}\left(A_{n}\right)+\sum_{n=1}^{+\infty} \frac{\varepsilon}{2^{n}}=\sum_{n=1}^{+\infty} \mu^{*}\left(A_{n}\right)+\varepsilon \tag{6.14}
\end{equation*}
$$

for any $\varepsilon>0$, thus $\mu^{*}\left(\cup_{n=1}^{+\infty} A_{n}\right) \leq \sum_{n=1}^{+\infty} \mu^{*}\left(A_{n}\right)$.
According to the theorem 5.3 the set of the μ^{*}-measurable subsets is a σ-algebra \mathscr{L} on \mathbb{R} and $\left.\mu^{*}\right|_{\mathscr{L}}$ is a complete measure. This σ-algebra is called the Lebesgue σ-algebra, and the elements of \mathscr{L} are called the Lebesgue measurable sets. We will note $\mathscr{B}_{\mathbb{R}}^{*}$ this σ-algebra.

Proposition 6.2

Any Borelian subset is Lebesgue measurable.

Proof .

It suffices to show that $\forall a \in \mathbb{R},] a,+\infty[\in \mathscr{L}$. Let E be a subset of \mathbb{R}. our goal is to prove that

$$
\begin{equation*}
\left.\left.\mu^{*}(E)=\mu^{*}(E \cap] a,+\infty[)+\mu^{*}(E \cap]-\infty, a\right]\right) \tag{6.15}
\end{equation*}
$$

The inequality $\left.\left.\mu^{*}(E) \leq \mu^{*}(E \cap] a,+\infty[)+\mu^{*}(E \cap]-\infty, a\right]\right)$ results from the fact that μ^{*} is an outer measure. For the other inequality the result is trivial if $\mu^{*}(E)=+\infty$. Assume that $\mu^{*}(E)<+\infty$. Let $\varepsilon>0$ there exists an open set $\Omega_{\varepsilon} \supset E$ such that: $\mu^{*}\left(\Omega_{\varepsilon}\right) \leq \mu^{*}(E)+\varepsilon$. Assume in the first time that $a \notin \Omega_{\varepsilon}$.

$$
\begin{equation*}
\mu^{*}\left(\Omega_{\varepsilon}\right)=\sum_{I \in \mathcal{C}} \mathscr{L}(I)=\sum_{I \in \mathcal{C} \cap] a,+\infty[} \mathscr{L}(I)+\sum_{I \in \mathcal{C} \cap]-\infty, a[} \mathscr{L}(I) \tag{6.16}
\end{equation*}
$$

with \mathcal{C} the set of the connected components of Ω_{ε}. Then it results that

$$
\mu^{*}\left(\Omega_{\varepsilon}\right)=\mu^{*}\left(\Omega_{\varepsilon} \cap\right] a,+\infty[)+\mu^{*}\left(\Omega_{\varepsilon} \cap\right]-\infty, a[) \geq \mu^{*}(E \cap] a,+\infty[)+\mu^{*}(E \cap]-\infty, a[)
$$

Then $\left.\left.\mu^{*}(E) \geq \mu^{*}(E \cap] a,+\infty[)+\mu^{*}(E \cap]-\infty, a\right]\right)$.
If now $a \in \Omega_{\varepsilon}$, let $\Omega_{\varepsilon}^{\prime}=\Omega_{\varepsilon} \backslash\{a\}$. According to the first remark $\mu^{*}\left(\Omega_{\varepsilon}^{\prime}\right)=\mu^{*}\left(\Omega_{\varepsilon}\right)$.
This which ends the proof of the theorem in taking $\lambda=\mu^{*}$. The measure λ on $\mathscr{B}_{\mathbb{R}}^{*}$ is called the Lebesgue measure on \mathbb{R}.

Proposition 6.3

Let $\mathscr{B}_{\mathbb{R}}^{*}$ the Lebesgue σ-algebra on \mathbb{R}, then $\forall A \in \mathscr{B}_{\mathbb{R}}^{*}$

$$
\begin{gathered}
\lambda(A)=\inf _{\omega \text { open } \supset A} \lambda(\omega) \\
\lambda(A)=\operatorname{Sup}_{K \text { compact } \subset A} \lambda(K) .
\end{gathered}
$$

We say that the measure λ is regular.

Proof .

If A is bounded, there exists $n \in \mathbb{N}$ such that $A \subset[-n, n]$. Let $\varepsilon>0$, the set $[-n, n] \backslash A$ is measurable, then there exists an open set $\omega \supset([-n, n] \backslash A)$ such that

$$
\lambda(\omega) \leq \lambda([-n, n] \backslash A)+\varepsilon=\lambda[-n, n]-\lambda(A)+\varepsilon
$$

because $\lambda([-n, n] \backslash A)=\inf _{\omega \text { open } \supset([-n, n] \backslash A)} \lambda(\omega)$.
Let $K=[-n, n] \cap \omega^{c} . K$ is a compact in A.

$$
2 n=\lambda[-n, n]=\lambda\left([-n, n] \cap \omega^{c}\right)+\lambda([-n, n] \cap \omega) \leq \lambda(K)+\varepsilon+\lambda[-n, n]-\lambda(A) .
$$

Then $\lambda(A) \leq \lambda(K)+\varepsilon$ and $\lambda(A)=\operatorname{Sup}_{K \text { compact } C A} \lambda(K)$.
If A is not bounded, then $\forall n \in \mathbb{N}$ there exists a compact $K_{n} \subset[-n, n] \cap A$ such that

$$
\lambda\left(K_{n}\right) \geq \lambda([-n, n] \cap A)-1 / n
$$

then

$$
\operatorname{Sup}_{K \text { compact } \subset A} \lambda(K) \geq \operatorname{Sup}_{n}\left(\lambda\left(K_{n}\right)\right) \geq \lim _{n \rightarrow+\infty}(\lambda([-n, n] \cap A)-1 / n)=\lambda(A)
$$

7 Measurable Functions

Let X and Y be two nonempty sets. We showed in the previous section 2.9 that the pull back of a σ-algebra by a mapping $f: X \longrightarrow Y$ is a σ-algebra of X.

Definition 7.1

If (X, \mathscr{A}) and (Y, \mathscr{B}) are two measurable spaces. A mapping $f: X \longrightarrow Y$ is called measurable if the σ-algebra $f^{-1}(\mathscr{B}) \subset \mathscr{A}$.

Theorem 7.2

Let (X, \mathscr{A}) and (Y, \mathscr{B}) be two measurable spaces, and suppose that \mathcal{B} generates the σ-algebra \mathscr{B}. A function $f: X \rightarrow Y$ is measurable if and only if
for every subset V in the generator set \mathcal{B}, its pre-image $f^{-1}(V)$ is in \mathscr{A}.

Proof

The sufficient condition is just the definition of measurability.
For the "if" direction, define

$$
\mathcal{H}=\left\{V \in \mathscr{B}: f^{-1}(V) \in \mathscr{A}\right\} .
$$

It is easily verified that \mathcal{H} is a σ-algebra, since the operation of taking the inverse image commutes with the set operations of union, intersection and complement.

By hypothesis, $\mathcal{B} \subseteq \mathcal{H}$. Therefore, $\sigma(\mathcal{B}) \subseteq \sigma(\mathcal{H})$. But $\mathscr{B}=\sigma(\mathcal{B})$ by the definition of \mathcal{B}, and $\mathcal{H}=\sigma(\mathcal{H})$ since \mathcal{H} is a σ-algebra. This means that $f^{-1}(V) \in \mathscr{A}$ for every $V \in \mathscr{B}$.

Remark.

To show that a mapping $f: X \longrightarrow Y$ is measurable; it suffices to give a set \mathcal{C} which generates \mathscr{B} and such that $f^{-1}(\mathcal{C}) \subset \mathscr{A}$.

Proposition 7.3

Let (X, \mathscr{A}) be a measurable space and let $f: X \longrightarrow \mathbb{R}($ or in $\overline{\mathbb{R}})$ a mapping. Then f is measurable, if one of the following conditions is fulfilled:

1. $\forall a \in \mathbb{R}\{x \in X ; f(x) \geq a\} \in \mathscr{A}$.
2. $\forall a \in \mathbb{R}\{x \in X ; f(x)<a\} \in \mathscr{A}$.
3. $\forall a \in \mathbb{R}\{x \in X ; f(x) \leq a\} \in \mathscr{A}$.
4. $\forall a, b \in \mathbb{R}\{x \in X ; a<f(x)<b\} \in \mathscr{A}$.
5. $\forall a, b \in \mathbb{R}\{x \in X ; a \leq f(x)<b\} \in \mathscr{A}$.

The space \mathbb{R} (resp $\overline{\mathbb{R}}$) is equipped with the Borel σ-algebra $\mathscr{B}_{\mathbb{R}}$ (resp $\mathscr{B}_{\overline{\mathbb{R}}}$).
We take the measurable spaces $\left(\mathbb{R}, \mathscr{B}_{\mathbb{R}}\right)$ and $\left(\overline{\mathbb{R}}, \mathscr{B}_{\overline{\mathbb{R}}}\right)$.

Proof .

Let taking for example the measurable space $\left(\overline{\mathbb{R}}, \mathscr{B}_{\overline{\mathbb{R}}}\right)$. As $\{x \in \overline{\mathbb{R}} ; f(x)<a\}=$ $f^{-1}\left(\left[-\infty, a[) \in \mathscr{A}\right.\right.$. The first condition of the proposition is still written $f^{-1}\{\mathcal{C}\} \subset \mathscr{A}$, where \mathcal{C} is the class of the intervals $[-\infty, a[$ of $\overline{\mathbb{R}}$, with $a \in \mathbb{R}$. To show that f is measurable it suffices to show that the σ-algebra generated by \mathcal{C} is the Borelian σ algebra of $\overline{\mathbb{R}}$. It is easy to show that the open intervals of $\overline{\mathbb{R}}$ are in the σ-algebra generated by \mathcal{C}.
Let \mathcal{T} the σ-algebra generated by \mathcal{C}. By complementarity $[a,+\infty] \in \mathcal{T}$, and $[a, b[\in$ $\mathcal{T}, \forall a, b \in \mathbb{R}$, because $\left[a, b\left[=[a,+\infty] \cap\left[-\infty, b[\right.\right.\right.$. And $] a, b\left[=\bigcup_{n=1}^{+\infty}\left[a+\frac{1}{n}, b[\in \mathcal{T}\right.\right.$. And for the same way $] a,+\infty]=\bigcup_{n=1}^{+\infty}\left[a+\frac{1}{n},+\infty\right]$. Then \mathcal{T} contains all the open sets of X and then $\mathcal{T}=\mathscr{B}_{\overline{\mathbb{R}}}$.

Particular Case .

Let X and Y two topological spaces and let \mathscr{B}_{X} and \mathscr{B}_{Y} the Borelian σ-algebras on X and Y respectively. Then every continuous function is measurable.
X and Y two topological spaces and let \mathscr{B}_{X} and \mathscr{B}_{Y} the Borelian σ-algebras on X and Y respectively. Then every measurable function $f: X \longrightarrow Y$ is called a Borelian function.

Proposition 7.4

Let $\left(X_{0}, \mathscr{B}_{0}\right),\left(X_{1}, \mathscr{B}_{1}\right)$ and $\left(X_{2}, \mathscr{B}_{2}\right)$ three measurable spaces. Let $f_{1}: X_{0} \longrightarrow X_{1}$ and $f_{2}: X_{1} \longrightarrow X_{2}$ two measurable mappings, then the mapping $f_{2} \circ f_{1}$ is measurable.

The proposition results from the fact that

$$
\left(f_{2} \circ f_{1}\right)^{-1}\left(\mathscr{B}_{2}\right)=f_{1}^{-1}\left(f_{2}^{-1}\left(\mathscr{B}_{2}\right)\right) \subset f_{1}^{-1}\left(\mathscr{B}_{1}\right) \subset \mathscr{B}_{0} .
$$

Proposition 7.5

Let (X, \mathscr{B}) and $\left(X_{j}, \mathscr{B}_{j}\right), j=1, \ldots, n(n+1)$ measurable spaces, and let $f: X \longrightarrow$ $\prod_{j=1}^{n} X_{j}$, a mapping $f=\left(f_{1}, \ldots, f_{n}\right)$. Then f is measurable if and only if each partial mapping $f_{j}: X \longrightarrow X_{j}$ is measurable.

Proof .

We remark that if p_{j} is the natural projection $p_{j}: \prod_{k=1}^{n} X_{k} \longrightarrow X_{j}, p_{j}^{-1}\left(A_{j}\right)=X_{1} \times$ $X_{2} \ldots \times A_{j} \times \ldots \times X_{n}$, which is measurable if A_{j} is measurable. Then p_{j} is a measurable mapping.
The partial mappings $f_{j}=p_{j} \circ f$ are measurable if f is measurable. Let now suppose that $f_{j}, j=1, \ldots, n$ are measurable. Let $A_{1} \times \ldots \times A_{n}$ be a rectangle in $\prod_{k=1}^{n} X_{k}$, then

$$
f^{-1}\left(A_{1} \times \ldots \times A_{n}\right)=f^{-1}\left(\bigcap_{j=1}^{n} p_{j}^{-1}\left(A_{j}\right)\right)=\bigcap_{j=1}^{n} f^{-1}\left(p_{j}^{-1}\left(A_{j}\right)\right)=\bigcap_{j=1}^{n} f_{j}^{-1}\left(A_{j}\right)
$$

Then f is measurable.

Corollary 7.6

Let (X, \mathscr{B}) be a measurable space, f and g are two measurable functions on X with values in \mathbb{R} or $\overline{\mathbb{R}}$. Let $F: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be a continuous function. Then the function $h=F(f, g)$ is a measurable function.

Proof .

The mapping (f, g) is measurable on X with values in \mathbb{R}^{2} and F is measurable thus h is measurable on X.

Corollary 7.7

Let $(X, \mathscr{B}),\left(Y, \mathscr{B}^{\prime}\right)$ and (Z, \mathscr{T}) three measurable spaces and let $f: X \times Y \longrightarrow Z a$ mapping. Then for any $a \in X$ (resp $b \in Y$), the partial mapping $f(a,$.$) (resp f(., b)$) is measurable.

Proof .

Let us fix an element $a \in X$. The mapping $g: Y \longrightarrow X \times Y$, defined by $g(y)=(a, y)$ is measurable from the previous proposition. $f(a,)=.f \circ g$ this which shows the corollary.

Corollary 7.8

Let $\left(X_{1}, \mathscr{B}_{1}\right), \ldots,\left(X_{n} \mathscr{B}_{n}\right), n$ measurable spaces, $f_{j}: X_{j} \longrightarrow \overline{\mathbb{R}}, j=1, \ldots, n$ and $f: \prod_{j=1}^{n} X_{j} \longrightarrow \overline{\mathbb{R}}$ defined by $f\left(x_{1}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right) \ldots f_{n}\left(x_{n}\right)$. Assume that $f_{j} \not \equiv 0$. Then f is measurable if and only if the functions f_{1}, \ldots, f_{n} are measurable.

Proof .

As the mapping $\left(y_{1}, \ldots, y_{n}\right) \longmapsto y_{1} \cdot y_{2} \ldots y_{n}$ from \mathbb{R}^{n} to \mathbb{R} is measurable, then it is clear that f is measurable if the mappings f_{j} are measurable. For proving the measurability of f_{1} for example knowing that f is measurable, we choose a_{2}, \ldots, a_{n} such that $f_{j}\left(a_{j}\right) \neq 0$ for any $j=2, \ldots, n$. For $x \in X_{1}$ we have:

$$
f_{1}(x)=\frac{f\left(x, a_{2}, \ldots, a_{n}\right)}{\prod_{j=2}^{n}\left(f_{j}\left(a_{j}\right)\right)}
$$

This proves that f_{1} is measurable.
In particular a non empty rectangle $\prod_{j=1}^{n} A_{j}$ is measurable if and only if each A_{j} is.

Proposition 7.9

Let (X, \mathscr{B}) be a measurable space.
a) If f is measurable of (X, \mathscr{B}) with values in \mathbb{R} or $\overline{\mathbb{R}}$, then $|f|$ is measurable.
b) If $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a sequence of measurable functions of (X, \mathscr{B}) with values in \mathbb{R} or in $\overline{\mathbb{R}}$, then the functions g, h, k defined by $g(x)=\operatorname{Sup}_{n \in \mathbb{N}} f_{n}(x), h(x)=\varlimsup_{n \rightarrow+\infty} f_{n}(x)$ and $k(x)=\underline{\lim }_{n \rightarrow+\infty} f_{n}(x)$ are measurable.

Proof .

a) If $a<0 ;\{x \in X ;|f(x)|>a\}=X$.

If $a \geq 0 ;\{x \in X ;|f(x)|>a\}=\{x \in X ; f(x)>a\} \cup\{x \in X ; f(x)<-a\}=$ $\left.\left.f^{-1}(] a,+\infty\right]\right) \cup f^{-1}([-\infty,-a[) \in \mathscr{B}$.
b) $\{x \in X ; g(x)>a\}=\bigcup_{n \in \mathbb{N}}\left\{x \in X ; f_{n}(x)>a\right\} \in \mathscr{B}$.
$h(x)=\inf _{n \in \mathbb{N}}\left(\operatorname{Sup}_{j \geq n} f_{j}(x)\right)$

$$
\{x \in X ; h(x)>a\}=\bigcap_{n=1}^{+\infty} \bigcup_{j=n}^{\infty}\left\{x \in X ; f_{j}(x)>a\right\} \in \mathscr{B} .
$$

$k(x)=\operatorname{Sup}_{n \in \mathbb{N}}\left(\inf _{j \geq n} f_{j}(x)\right)$

$$
\{x \in X ; k(x)>a\}=\bigcup_{n=1}^{+\infty} \bigcap_{j=n}^{\infty}\left\{x \in X ; f_{j}(x)>a\right\} \in \mathscr{B} .
$$

Remark .

It results from the previous proposition that if f is measurable then the functions $f^{+}=\operatorname{Sup}(f, 0)$ and $f^{-}=\inf (f, 0)$ are measurable, and if $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a sequence of measurable functions which converges point wise toward a function f on X, then f is measurable.

Corollary 7.10

For any sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ of measurable functions with real values on a measurable space X, if $C=\left\{x \in X ; \lim _{n \rightarrow+\infty} f_{n}(x)\right.$ exists in $\left.\overline{\mathbb{R}}\right\}$. Then C is measurable.

Proof .

We put $D=C^{c}, D=\left\{x \in X ; \underline{\lim }_{n \rightarrow+\infty} f_{n}(x)<\overline{\lim }_{n \rightarrow+\infty} f_{n}(x)\right\}$. If we put $g=$ $\varliminf_{n \rightarrow+\infty} f_{n}$ and $h=\varlimsup_{n \rightarrow+\infty} f_{n}$. For each rational r, let

$$
D_{r}=\{x \in X ; g(x)<r<h(x)\}=\{g(x)<r\} \cap\{h(x)>r\}
$$

which is measurable. $D=\bigcup_{r \in \mathbb{Q}} D_{r}$ which proves the measurability of D.

Theorem 7.11

Let $A \subset \mathbb{R}^{m}$ and $f: A \longrightarrow \mathbb{R}^{n}$ a mapping. Assume that for any point $a \in A$, there exists a neighborhood $V(a)$ such that

$$
\mu_{n}^{*}(f(A \cap V(a)))=0
$$

Then $\mu_{n}^{*}(f(A))=0$.

Proof .

For any $a \in A$, there exists a ball $B \subset \mathbb{R}^{m}$ of center of rational coordinates such that $a \in B$ and $\mu_{n}^{*}(f(A \cap B))=0$. The family \mathcal{B} of these balls is at least countable and cover A. It follows that $f(A)$ is covered by the sequence $f(A \cap B), B \in \mathcal{B}$, and every one is of measure zero. It follows that $\mu_{n}^{*}(f(A))=0$.

Theorem 7.12

Let $A \subset \mathbb{R}^{m}$ and $f: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n}$ a mapping such that, there exists $s \geq m / n$ and

$$
|f(x)-f(y)| \leq M^{s}|x-y|^{s}, \quad \forall x, y \in A
$$

Then

1. If $s>m / n \Rightarrow \mu_{n}^{*}(f(A))=0$.
2. If $s=m / n \Rightarrow \mu_{n}^{*}(f(A)) \leq 2^{n}(M \sqrt{m})^{m} \mu_{n}^{*}(A)$.

Proof .

We can suppose that $\mu_{m}^{*}(A)<\infty$, if not we take the sequence $A \cap[-p, p] ; p \in \mathbb{N}$. We denote $\|x\|_{\infty}=\operatorname{Sup}_{1 \leq j \leq k}\left|x_{j}\right|$ if $x \in \mathbb{R}^{k}$. We have $\|x\|_{\infty} \leq|x| \leq \sqrt{n}\|x\|_{\infty}$ on \mathbb{R}^{n} and $\|x\|_{\infty} \leq|x| \leq \sqrt{m}| | x \|_{\infty}$ on \mathbb{R}^{m}. Thus

$$
\|f(x)-f(y)\|_{\infty} \leq(M \sqrt{m})^{s}\|x-y\|_{\infty}^{s}, \quad \forall x, y \in A
$$

Let $0<\varepsilon<1$ and $P=P(b, r)$ a rectangle with $r<\varepsilon<1$. Assume that $P \cap A \neq \emptyset$. Let $a, b \in A \cap P \Rightarrow\|x-b\|_{\infty} \leq r / 2,\|a-b\|_{\infty} \leq r / 2$ and $\|x-a\|_{\infty} \leq r$. Then it follows that $\|f(x)-f(a)\|_{\infty} \leq(M \sqrt{m})^{s} r^{s}$ and

$$
f(A \cap P) \subset P(f(a)), 2(M \sqrt{m})^{s} r^{s} \Rightarrow \mu_{n}^{*}(f(A \cap P)) \leq 2^{n}(M \sqrt{m})^{n s} r^{m} r^{n s-m}
$$

If $\left(P_{k}\right)_{k}$ is a covering of A by of the rectangles of thisôtés $\leq \varepsilon$, then

$$
\mu_{n}^{*}(f(A)) \leq 2^{n}(M \sqrt{m})^{n s} \varepsilon^{n s-m} \sum_{k} \operatorname{Vol}\left(P_{k}\right)
$$

Thus $\mu_{n}^{*}(f(A)) \leq 2^{n}(M \sqrt{m})^{n s} \varepsilon^{n s-m} \mu_{m}^{*}(A)$.

Corollary 7.13

1. Every null set in \mathbb{R}^{n} is of measure zero in any system of coordinate in \mathbb{R}^{n}.
2. Every subspace of dimension $m<n$ is a null set in \mathbb{R}^{n}.
zero.

Proof .

1. Every linear mapping $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ fulfills $\|f(x)\| \leq M\|x\|$. The result follows from the previous theorem with $m \leq n$ and $s=1$.
2. If V is a subspace of dimension $m<n, V=f\left(\mathbb{R}^{m}\right)$ and we applied the first result of this corollary.

Corollary 7.14

Let $f: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n}$ be a mapping of class \mathcal{C}^{1} in any point a of $A \subset \mathbb{R}^{m}$. If $m<n$ then $\mu_{n}^{*}(f(A))=0$.

Proof .
For any $a \in A$ there exists an open ball $B(a, r)$ such that

$$
\|f(x)-f(y)\| \leq(1+\|d f(a)\|)\|x-y\|
$$

for any $x, y \in B(a, r), d f(a)$ is the differential of f in the point a. It follows that

$$
\mu_{n}^{*}(f(A \cap B(a, r)))=0 \Rightarrow \mu_{n}^{*}(f(A))=0
$$

Corollary 7.15

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be a mapping of class \mathcal{C}^{1} in any point a of $A \subset \mathbb{R}^{n}$. If $\mu_{n}^{*}(A)=0$ then $\mu_{n}^{*}(f(A))=0$.

Exercise

Let $f: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n}$ be a mapping of class \mathcal{C}^{p} and let A a subset of \mathbb{R}^{m}. Assume that $p>m / n, D_{j} f=0$ on A for any $0 \leq j \leq p-1$. Show that $\mu_{n}^{*}(f(A))=0$. (ind: we can prove that $\|f(x)-f(y)\| \leq M\|x-y\|^{p}$ locally on A)

Exercise .

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be a linear mapping such that $f\left(e_{j}\right)=\lambda_{j} e_{j}, e_{1}, \ldots, e_{n}$ is a base of \mathbb{R}^{n}. Show that if A is a subset of \mathbb{R}^{n}

$$
\mu_{n}^{*}(f(A)) \leq\left|\lambda_{1} \ldots \ldots \lambda_{n}\right| \mu_{n}^{*}(A)
$$

(ind: if P is a rectangle of center a and of sides of lengths s_{1}, \ldots, s_{n}, then $f(P)$ is a rectangle of center $f(a)$ and of sides of lengths $\left|\lambda_{1}\right| s_{1}, \ldots,\left|\lambda_{n}\right| s_{n}$. If any $\left|\lambda_{j}\right|=0$ the result is trivial and if not we can applied the result to f^{-1}.

Theorem 7.16 (Egoroff)
Let $(X, \mathscr{B}), \mu)$ be a measure space. Assume that the measure μ is bounded. Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real or complex measurable functions on X which converges point wise on X to a function f. For any $\varepsilon>0$ there exists a set $A_{\varepsilon} \in \mathscr{B}$, such that $\mu\left(A_{\varepsilon}\right) \leq \varepsilon$ and the restriction of the sequence $\left(f_{n}\right)$ on the complementary of A_{ε} is uniformly convergent.

Proof .

The function f is measurable. For any integers $(n, k), k>0$, let

$$
E_{n}^{(k)}=\bigcap_{p=n}^{+\infty}\left\{x ;\left|f_{p}(x)-f(x)\right| \leq \frac{1}{k} \cdot\right\}
$$

This set is measurable. For a given k, the sequence $\left(E_{n}^{(k)}\right)_{n \in \mathbb{N}}$ is increasing and $\lim _{n \rightarrow+\infty} E_{n}^{(k)}=X$. (Because the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges to f on X). As μ is bounded, $\lim _{n \rightarrow+\infty} \mu\left(E_{n}^{(k)}\right)^{c}=0$. Then there exists an integer $n(k)$ such that $\mu\left(E_{n(k)}^{(k)}\right)^{c} \leq$ $\varepsilon / 2^{k}$. The set $A_{\varepsilon}=\bigcup_{k=1}^{+\infty}\left(E_{n(k)}^{(k)}\right)^{c}$ is appropriate. In fact $\mu\left(A_{\varepsilon}\right) \leq \varepsilon$, and on the complementary of A_{ε} the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges uniformly to f.

Remark .

The requirement that μ is bounded is essential. For constructing a counterexample it suffices of take μ the Lebesgue measure on \mathbb{R} and f_{n} the characteristic function of the range $[n,+\infty[$. (Assume the existence of an invariant measure by translation on \mathbb{R}, called Lebesgue measure.)

The classical Cantor ternary set .

Let $a<b$ two real numbers. We call "tiers median" of the interval $I \subset[a, b]$, the open interval of length $\frac{b-a}{3}$ and of the same center that $[a, b] . \quad(I=] \frac{b-a}{3}, \frac{2(b-a)}{3}[)$.
Let $E_{0}=[0,1]$. We remove the tiers-median of E_{0}, and we recall E_{1} this which remains. $E_{1}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right]$. We remove the tiers-median of these two intervals and we recall E_{2} this which remains

$$
E_{2}=\left[0, \frac{1}{9}\right] \cup\left[\frac{2}{9}, \frac{3}{9}\right] \cup\left[\frac{6}{9}, \frac{7}{9}\right] \cup\left[\frac{8}{9}, 1\right] .
$$

By repeating this operation successively, we construct a sequence of decreasing sets $\left(E_{n}\right)_{n \in \mathbb{N}}$ such that each E_{n} is union of 2^{n} intervals each one is of length $\frac{1}{3^{n}}$. We denote $I_{n, k}\left(k=1, \ldots, 2^{n}\right)$ the intervals of E_{n}. We call triadic Cantor's set the set

$$
P=\bigcap_{n=1}^{\infty} E_{n}
$$

$P \neq \emptyset$ because it is clear that 0 and 1 are in $P . P$ is compact because P is closed and bounded. P does not contain any non empty open interval. In fact E_{n} can not contain intervals of length greater than $\frac{1}{3^{n}}$. If I is an interval in $P, I \subset P \subset E_{n}$, thus the length of I is small that $\frac{1}{3^{n}}$, this for any n, then I is of length zero, and thus P is of interior empty. From the construction if x is an endpoint of an interval $I_{n, k}$, then x remains an endpoint of an interval $I_{n+p, k(p)}$ for any $p \in \mathbb{N}$. Thus $x \in P$. It results that P is a perfect set; in fact for any $x \in P$ and for any $n \in \mathbb{N}$, there exists a_{n} and b_{n} in P such that $a_{n} \leq x \leq b_{n}$ and $\lim _{n \rightarrow+\infty}\left(b_{n}-a_{n}\right)=0$. It suffices to take a_{n} and b_{n} the endpoints of the intervals $I_{m, k}$. The sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ are bounded, then we can extract a convergent sub-sequence. And as $b_{n}-a_{n}>0$ and $\lim _{n \rightarrow+\infty}\left(b_{n}-a_{n}\right)=0, x=\lim _{n \rightarrow+\infty} b_{n}=\lim _{n \rightarrow+\infty} a_{n}$ and it is an accumulation point.

It is easy to verify that the left endpoints of the intervals $I_{n, k}$ are of the form $\sum_{p=1}^{n} \frac{\alpha_{p}}{3^{p}}$ where $\alpha_{p}=0$ or 2 . There result that any point x of P is limit of a sequence of points of P which are of the endpoints space of intervals of the form $I_{n, k}$. Thus $x=\sum_{p=1}^{+\infty} \frac{\alpha_{p}}{3^{p}}$, with $\alpha_{p}=0$ or 2 . It result that P is in bijection with the sets of the mapping of $\mathbb{N} \longrightarrow\{0,2\}$ which is not countable. We have P is in bijection with $[0,1]$. Thus P is a compact of measure zero and in bijection with $[0,1]$.

