
Applied Computing and Informatics (2017) 13, 47–56
Saudi Computer Society, King Saud University

Applied Computing and Informatics

(http://computer.org.sa)
www.ksu.edu.sa

www.sciencedirect.com
ORIGINAL ARTICLE
Real-time recommendation algorithms for

crowdsourcing systems
* Corresponding author at: Computer Science Department, Southern

Illinois University, Carbondale, IL, USA.

E-mail addresses: mejdl.safran@siu.edu (M. Safran), dch@cs.siu.edu

(D. Che).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.aci.2016.01.001
2210-8327 � 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Mejdl Safran a,b,*, Dunren Che a
aComputer Science Department, Southern Illinois University, Carbondale, IL, USA
bComputer Science Department, King Saud University, Riyadh, Saudi Arabia
Received 3 October 2015; revised 31 December 2015; accepted 2 January 2016
Available online 23 January 2016
KEYWORDS

Crowdsourcing;

Recommendation

algorithms;

Task recommendation;

Worker recommendation;

Top-k tasks;

Top-k workers
Abstract Crowdsourcing has become a promising paradigm for solving tasks that are beyond the

capabilities of machines alone via outsourcing tasks to online crowds of people. Both requesters and

workers in crowdsourcing systems confront a flood of data coming along with the vast amount of

tasks. Fast, on-the-fly recommendation of tasks to workers and workers to requesters is becoming

critical for crowdsourcing systems. Traditional recommendation algorithms such as collaborative

filtering no longer work satisfactorily because of the unprecedented data flow and the on-the-fly nat-

ure of the tasks in crowdsourcing systems. A pressing need for real-time recommendations has

emerged in crowdsourcing systems: on the one hand, workers want effective recommendation of

the top-k most suitable tasks with regard to their skills and preferences, and on the other hand,

requesters want reliable recommendation of the top-k best workers for their tasks in terms of work-

ers’ qualifications and accountability. In this article, we propose two real-time recommendation

algorithms for crowdsourcing systems: (1) TOP-K-T that computes the top-k most suitable tasks

for a given worker and (2) TOP-K-W that computes the top-k best workers to a requester with

regard to a given task. Experimental study has shown the efficacy of both algorithms.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

It has been a confirmed phenomenon that almost every area of

human activities, especially those related to scientific explo-
ration and technological applications is now producing and
consuming large scales of data. Google estimated that every

two days in 2010 the world generated as much data as the
sum it generated up to 2003 [1]. This phenomenon has brought
a great challenge to the technological society and to the vast
users who often do not find the desired information within

an acceptable time frame. In crowdsourcing systems, users

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aci.2016.01.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mejdl.safran@siu.edu
mailto:dch@cs.siu.edu
http://dx.doi.org/10.1016/j.aci.2016.01.001
http://dx.doi.org/10.1016/j.aci.2016.01.001
http://www.sciencedirect.com/science/journal/22108327
http://dx.doi.org/10.1016/j.aci.2016.01.001
http://creativecommons.org/licenses/by-nc-nd/4.0/

48 M. Safran, D. Che
(both requesters and workers) confront exactly the same prob-
lem to which a feasible solution is thorough real-time1 recom-
mendation. For many applications, recommendation is a

personalized filter, used to either predict the interestingness
of an item (a prediction problem), or to identify a set of items
that are interesting to a user (a top-k recommendation problem)

[2,3]. Effective recommendation plays a critical role in such
web-based systems and benefits users in multiple ways, discov-
ering relevant information, reducing waiting time, and increas-

ing productivity, to name a few. Many of the leading e-
commerce platforms such as Amazon and Netflix have already
adopted recommendation systems in their systems and demon-
strated the great value of effective recommendation.

Current recommendation systems are based on two main
approaches, i.e., content filtering and collaborative filtering.
As their names indicate, the content filtering approach relies

on the content of the items and the users’ profiles to identify
the best matches. On the other hand, the collaborative filtering
approach relies on the relationships among the items and the

correlations among the users to draw new hidden, interesting
relationships between the items and the users. These
approaches have been showing their successes in many applica-

tions, mostly online e-commerce systems.
However, when it comes to recommending tasks on crowd-

sourcing platforms such as AMT (Amazon Mechanical Turk),
these traditional recommendation approaches do not fit well.

In other words, they would not be sufficiently efficient any-
more when they are used for task recommendations in crowd-
sourcing systems. Before making detailed explanation, let’s

review the basics of crowdsourcing. In recent years, crowd-
sourcing has become a popular paradigm for accomplishing
tasks by outsourcing them to online crowds of people. Crowd-

sourcing systems (usually built as online platforms) originated
from the idea of leveraging human abilities on solving prob-
lems and accomplishing tasks that machines alone cannot do

well. Crowdsourcing has many different definitions [4], each
emphasizing different aspects: the nature of the collaboration,
the types of the target problems, the motivations of the crowd
members, and the types of incentives [5]. The definition in [6] is

concise and popular: ‘‘crowdsourcing is an online, distributed
problem-solving and production model”. Crowdsourcing sys-
tems may be categorized into four types [7] based on whether

the workers’ contributions are convergent or not and whether
they are homogeneous or heterogeneous. In the rest of this
article, our discussion is not limited to any particular type of

crowdsourcing systems. Even though we use AMT (a crowd
processing system) for illustration, the algorithms we present
in this article are suitable for any type of crowdsourcing sys-
tems as long as the systems provide task categories or the tasks

can be categorized.
In AMT, requesters post tasks with specifications and

requirements; workers select tasks to work on according to

their interest and skills, and then get paid once the requesters
accept their completed results. In terms of performance, the
number of tasks posted in AMT within a short period of time

can be huge. As a result, the number of available tasks as can-
1 In this article, we use the term ‘‘real-time” in a less strict sense just

to emphasize the great promptness or efficiency required for the

recommendations in real crowdsourcing systems, given the fact that

many short tasks take minutes or even seconds and may have already

been completed by others before being recommended to a worker.
didates to be recommended to a worker is also huge. Addition-
ally, tasks in crowdsourcing systems like AMT are short ones
(taking a few seconds to a few minutes), so the life cycle of a

task in crowdsourcing systems is very short. Consequently,
effective recommendation of workers and tasks in crowd-
sourcing markets such as AMT is not easily fulfilled because

of the huge pools of tasks and workers and the limit of short
life span of the tasks. In terms of quality of completed tasks,
current crowdsourcing systems that include AMT have found

numerous drawbacks. Since AMT is based on the first-come-
first-serve basis, a less qualified worker may start working on
a task while a better-skilled worker may not find the right task
as it may be listed at a later page or has been already taken by

a less-skilled worker. As a result, less qualified workers may get
to work on a task and result in low-quality completion (some-
times still accepted). If unsatisfied, the requester may have to

repost the same task many times to get a quality result.
Repeated receiving of low quality results may discourage the
requesters from using the crowdsourcing system in the future.

Consequently, the need for efficient (real-time) recommen-
dation of both tasks and workers in crowdsourcing systems
is becoming a rather pressing issue. Workers, on the one side,

desire the top-k best-fitting tasks being promptly and effec-
tively recommended to them, and requesters, on the other
hand, want the top-k best workers recommended for their
tasks. This phenomenon had motivated our investigation and

has resulted in some interesting outcomes. The article reports
our work and brings in the following main contributions:

(i) We inspect the characteristics of the tasks in crowd-
sourcing systems as compared to the items/products in
e-commerce markets, and the differences of the workers’

interests in tasks vs. the users’ interests in items/prod-
ucts. The products in e-commerce markets are usually
offered as completed items to be purchased by online

users, whereas the tasks in crowdsourcing systems are
posted activities that are yet to be completed by online
workers. We incorporate a key mechanism, i.e., cate-
gories of tasks, into our recommendation approach that

significantly accelerates the recommendation procedure.
(ii) We propose the TOP-K-T algorithm to help workers in

crowdsourcing systems to instantly identify the top-k
most suitable tasks for them in a ‘‘pulling” manner.
Therefore the workers can spend more time directly on
completing the tasks [8] and maximize their productivity

and awards.
(iii) We also propose the TOP-K-W algorithm to help

requesters in crowdsourcing systems to quickly find the
top-k most qualified workers in a ‘‘pushing” manner.

To the best of our knowledge, there is no such algorithm
proposed that supports requesters by pushing their tasks
to the right workers.

(iv) We conduct extensive experiments on synthesized large-
scale datasets generated based on the scenarios of real-
world applications of crowdsourcing systems. Our

experimental results show that our algorithms (TOP-
K-T and TOP-K-W) can make valid recommendations
in real-time performance (in milliseconds or less) at all

the set scales of the test data.

The remainder of this article is organized as follows. In Sec-
tion 2, we briefly review the current recommendation

Real-time recommendation algorithms 49
approaches. In Section 3, we present our new recommendation
algorithms: TOP-K-T and TOP-K-W. In Section 4, we show
and discuss our experimental results. In Section 5, we comment

on related works and make comparisons with ours. Section 6
concludes the article.

2. Current recommendation approaches

In this section we briefly review current recommendations
methods centered around the two main recommendation

approaches: (1) the content filtering approach and (2) the col-
laborative filtering approach.

The content filtering approach recommends items to a user

based upon the description of the items and the profile of the
user’s interests [9]. A profile is created for each user and for
each product/item. The user profile can be simply a collection

of the user’s historical ratings on purchased items. The product
profile is a set of keywords representing the product. Similari-
ties between user profiles and product profiles are computed.
Products with high similarities will be recommended to the

corresponding users. Obviously, the approach does not have
cold start problem. The problems this approach may face
include the following: (1) some items may not be easily

described using content keywords; (2) distinct items may share
the same set of features described by the same keywords; (3)
profile information is not always available; and (4) poor per-

formance scalability.
The collaborative filtering approach is probably the most

successful and popular approach used in recommendation sys-
tems [3]. Comparing to content filtering, the collaborative fil-

tering approach relies only on the user’s past behavior. This
approach identifies hidden user-products relationships by ana-
lyzing the relationships among users and the correlations

among products [10,9,3]. One remarkable advantage of this
general approach is that it usually generates pretty accurate
results because the learned user-product relationships implic-

itly incorporate many subtle aspects that are hard to be explic-
itly profiled. The approach notoriously suffers from the cold
start problem because it relies on collected historical informa-

tion that new users/products do not yet have. Another equally
remarkable drawback of this approach at the current status is
its high runtime complexity, which is typically polynomial w.r.
t. both the number of users and the number of items, which

both can be huge in future crowdsourcing systems. Therefore,
in principle this attractive approach will not result in real-time
recommendation which is very much needed by future, very-

large-scale crowdsourcing systems. The approach has evolved
into two different methods as follows.

The user-based collaborative filtering method recommends

to a user the products that have already been liked by like-
minded peers of the user. It consists of two steps [3]. First, a
user’s historical information is used to identify a neighborhood
of people who in the past have exhibited similar behavior, e.g.,

purchased similar products. Second, the identified neighbor-
hood is analyzed to figure out new products that may be liked
by the user. We furnish additional details of the user-based col-

laborative filtering method in Supplementary Table 1.
The item-based collaborative filtering method recommends

items similar to the items that a user already liked [2,10]. This

approach consists of two phases. The first phase is called the
model phase that computes the similarity between every pair
of items, and may be executed offline. The second phase com-
bines and compares the computed similarity scores to deter-
mine the most similar items to the items that have been

purchased in the past by the user. We provide more details
of the item-based collaborative filtering method in Supplemen-

tary Table 1. To build the model, the algorithm takes Oðm2nÞ
time [10], where m is the number of items and n is the number
of operations needed to compute the similarity between every

two items. The second phase takes OðkjPjÞ time [10] to decide
the k most similar items for each item in P (i.e., the set of items
purchased by a given user). We will see later in this article why

this polynomial algorithm does not result in a satisfactory,
real-time solution for crowdsourcing systems.

3. Proposed recommendation algorithms

In this section, we first motivate our overall strategy and pre-
sent the key supportive data structures. Based on that we then
present our two recommendation algorithms, TOP-K-T and

TOP-K-W, in turn.

3.1. Motivation, data structures, and matching scores

We observe several aspects of essential difference between tra-
ditional e-commerce systems and crowdsourcing systems that
ought to be carefully considered in the design of the recom-

mendation algorithms for crowdsourcing systems.

(1) The items in e-commerce markets are completed prod-

ucts to be purchased by online users or customers,
whereas the tasks in crowdsourcing systems are posted
activities yet to be completed (or solved) by online work-
ers. The tasks in crowdsourcing systems may be com-

pleted at varied levels of quality, and thus could be
rejected by the requesters/owners of the tasks if the com-
pletion does not fulfill the required quality standard.

(2) The items in e-commerce systems typically have many
copies and can be sold by different sellers, whereas the
tasks in crowdsourcing systems are unique (except for

the occasional case that a requester purposefully posts
the same task multiple times in order to gather majority
opinions or alternative solutions). Furthermore, the

tasks in a crowdsourcing system usually have pretty
short life span, of which many can be completed in min-
utes or seconds by experienced workers.

(3) A user’s interest in e-commerce markets is unrestricted

since one can buy basically anything in the market that
he/she likes as long as he/she has the money, whereas a
worker’s choice in a crowdsourcing system is reasonably

limited by his/her expertise/skills and personal interests.
Generally, a worker only picks up tasks that fit his/her
skills and interest, typically are a much restricted subset

of a potentially huge set of all tasks available in a crowd-
sourcing system.

Of the above observation, items 1 and 2 indicate the high

complexity, high diversity, and high velocity inherently exis-
tent in crowdsourcing systems, which further imply that
straightforward utilization of the recommendation methods

developed for traditional e-commerce systems would not result
in satisfactory performance. A novel recommendation

50 M. Safran, D. Che
approach is much needed in order to deliver the required high
(real-time) performance of recommendations for both tasks
and workers in crowdsourcing systems. Fortunately, item 3

brings up a twilight of hope toward overcoming the challenge
of recommendations of tasks and workers at real-time speed in
crowdsourcing systems. The mapping between the tasks and

the workers is much restricted compared to the unlimited map-
ping between products and buyers in an e-commerce system.
This difference is essential, analogous to the difference between

a highly selective h-join and an unlimited cross-product oper-
ation in a relational database system. This observation enlight-
ened us to introduce an efficient intermediate mechanism
sitting between the tasks and the workers to dramatically limit

the mapping between the two sets, and thus to avoid comput-
ing recommendations from the huge set of all possible pairing
of tasks and workers. Categories as such a mechanism, a medi-

ator between the set of workers and the set of tasks, thus come
into the play. Tasks can be put into various (multi-) categories
according to the skills needed, and workers can also be associ-

ated with various (multi-) categories per their profiles regard-
ing their expertise/skills, personal interests/preferences, and
historical performance. For e-commerce systems, category

has little use (except for browsing products) since it is infeasi-
ble to limit the buying choice of a customer to a few categories
of products. For crowdsourcing systems, categorization of
tasks and workers not only makes sense, but is a great deal

in facilitating fast recommendation of tasks (for a worker)
and workers (for a task requester). In crowdsourcing systems,
categories function as effective mediators and provide ‘‘short-

circuited”, but meaningful connections between tasks and
workers, which make fast (real-time) recommendations practi-
cally achievable. Our two novel algorithms, TOP-K-T and

TOP-K-W were thus designed based on leveraging the media-
tion mechanism of categories, as a result of the afflatus out-
lined above.

Categorization of tasks is a prerequisite for applications of
our proposed algorithms. The literature has many different
approaches to achieve satisfactory categorization levels. The
latest approach is to use a text classification system to create

‘‘filters which allow narrowing down the search results based
Figure 1 Data
on predefined filter categories” [11]. Furthermore, the text clas-
sification system can be improved with the help of human
(online crowd) annotators involved into the training process

where different learning techniques can be combined such as
ensemble learning and active learning [12]. Categories as an
effective mediation mechanism introduced in our algorithms

are mainly to boost the recommendation performance and
the quality of completed tasks. Other researchers [13] have
reported that the worker’s perspective is a crucial factor to

be considered in crowdsourcing systems.
We may generally consider the top-k task recommendation

as computation of a restricted 1-to-K mapping from workers
to tasks, and, in reverse, the top-k worker recommendation

as computation of a restricted 1-to-K mapping from tasks to
workers. In order to efficiently compute these mappings, we
design commensurate data structures to facilitate the computa-

tion process. These data structures are described below.
We introduce C! T (category–task) as an array of n cate-

gories, fc1; c2; . . . ; cng, where each element ci points to an array

of available tasks in category ci as illustrated in Fig. 1(a); and
W! C (worker–category) as an array of m workers,
fw1;w2; . . . ;wmg, where each element wj points to an array of

n categories, fc1; c2; . . . ; cng, which each is paired with the
worker’s matching score si;j (to be defined shortly) with the cor-

responding category (as illustrated in Fig. 1(b)). A matching
score si;j measures the historical performance, preference, and

expertise of worker wj with category ci. For each worker wj,

we keep n matching scores in correspondence to n distinct cat-
egories. The list of n categories of each worker wj ðj 6 mÞ is
sorted in non-increasing order of the workers’ matching scores,
si;j ð1 6 i 6 nÞ. Expression Wj ! Ci quickly retrieves the

matching score of the ith most preferable task category of

worker wj. For example, W1 ! C1 gives the matching score

of the first most preferable category of worker w1. The

W! C data structure is illustrated in Fig. 1(b) using some
randomly set matching scores.

To facilitate top-k worker recommendation, the W! C

data structure (Fig. 1(b)) alone is not enough since the
W! C only represents the relationship between workers and
categories in one direction (i.e., from workers to categories).
structures.

Input: C! T: the category–task data structure.

W! C: the worker–category data structure.

index: the index of the worker seeking tasks.

k: the number of tasks to be recommended.

Output: L: an array of the top-k tasks for the worker.

1 Initialize output array L

2 passtonext 0

3 for i 1 to Windex ! C:size do

4 Ctarget getCategoryðWindex ! CiÞ;
5 SCtarget ;Windex

 getScoreðWindex ! CiÞ
6 numselected cascaderoundðSCtarget ;Windex

� kÞ;
7 if numselectedþ passtonext > Ctarget ! T:size then

8 passtonext passtonextþ numselected� Ctarget ! T:size

9 L all tasks in Ctarget ! T

10 else

11 L randomly select ðnumseletedþ passtonextÞ tasks
from Ctarget ! T

12 end

13 end

Real-time recommendation algorithms 51
We need an additional data structure to conveniently associate
qualified workers to corresponding task categories, i.e.,
C!W, as illustrated in Fig. 1(c). To avoid redundancy, the

worker lists in C!W hold pointers to the same entries in
W! C, but ordered differently. In C!W, each category is
associated with a list of workers sorted according to their

matching scores in that category, whereas in W! C, each
worker is associated with a list of categories sorted based on
the workers’ matching scores with those categories.

In the above discussion, we forward referenced the metric
term, matching score, which is yet to be defined below. For
a given work Wj (i.e., the jth worker) and a task category Ci

(i.e., the ith category), the worker’s matching score with the
tasks of this category is defined by the following equation:

Si;j ¼ ARi;j � CPSi;j � Similarityðpj; ciÞ ð1Þ
The equation defines matching score as a product of

three factors, which in turn stands for the acceptance rate,
the category preference score, and the profile-category similar-
ity score, which are respectively defined by Eqs. (2)–(4) in the

sequel.

ARi;j ¼ ATi;j

CTi;j

ð2Þ

CPSi;j ¼ CTi;j

TCTj

ð3Þ

Similarityðpj; ciÞ ¼
Ph

k¼1 pjk � cikffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPh
k¼1 p

2
jk

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPh
k¼1 c

2
ik

q ð4Þ

Acceptance Rate ðARi;jÞ is the ratio of the number of

accepted tasks to the total number of completed tasks in cate-

gory ci by worker wj. Category Preference Score ðCPi;jÞ is the
percentage of completed tasks in category ci by worker wj to

the total number of completed tasks by the worker in all cate-

gories. Profile–Category Similarity is a cosine similarity
between a worker’s profile pj (e.g., expertise, certificates, hon-

ors, etc.) and the category description ci. It is worth to note
that this score is computed offline after worker registration

and recomputed every time the worker’s profile is updated.
The vector-space model is used where the profile and category
are represented by their keywords (h keywords as in Eq. 4).

The tf� idf weighting method proposed in [14] is used to give
each keyword a weight, where tf measures the frequency of a
keyword t and idf varies inversely with the number of docu-
ments that contains t.
3.2. TOP-K-T recommendation algorithm

As the popularity and scale (including both the numbers of

tasks and workers) of crowdsourcing systems keep increasing,
workers tend to spend more time on finding proper tasks
matching their skills and interests than on the tasks themselves

[15,8]. The motive of our work is to help workers to instantly
find best matching tasks and to help requesters to quickly iden-
tify the best workers for their tasks at hand. Our first algo-

rithm, TOP-K-T, was thus designed to make
recommendation of the top-k most suitable tasks for a worker
at real-time speed.
Algorithm 1. TOP-K-T Task Recommendation Algorithm.
Our TOP-K-T was designed with the assumption that, in a
crowdsourcing system, at any given time, there is a huge list of

available tasks ðft1; t2; . . . ; tsgÞ of which each belongs to cer-
tain categories, and a huge list of online workers which each
is associated to certain (usually a few) categories. With the sup-

port of the data structures introduced earlier, our algorithm
TOP-K-T is nearly straightforward, as shown in Algorithm 1.

For a given worker, Windex, the algorithm iterates through

the categories of the worker maintained in Windex ! C that is
sorted in non-increasing order based on the matching scores
of the worker’s profile with these categories (Line 3 in Algo-
rithm 1). The matching scores of the worker with the associ-

ated categories are pre-normalized to sum up to 1. During
each iteration, one category of the worker is retrieved from
Windex ! C into Ctarget (line 4), and the matching score of the

worker with this category is fetched into SCtarget ;Windex
(line 5).

The algorithm then evaluates category Ctarget to select some

available tasks from that category. The number of tasks to

be selected from Ctarget is the result of cascade rounding (to

be explained shortly via an example) of the product of the
worker’s normalized matching score with the category and
the parameter k (line 6). Herein, two cases need to be differen-

tiated. (i) The number of available tasks in the considered cat-
egory Ctarget ! T is less than needed. In this case, all the

available tasks in Ctarget ! T are selected and added into the

output task list L (line 9) and the remaining number of tasks

yet to be identified is passed to the next iteration (line 8). (ii)
The number of available tasks in Ctarget ! T is more than

needed. In this case, the algorithm randomly selects
numselectedþ passtonext tasks from Ctarget ! T and adds them

to output list L (line 11). An illustrative example is shown in
Supplementary Table 2, furnished with explanations.

Updating of workers’ matching scores. Each time when a
worker completes a task, the acceptance rate (defined by Eq.
(2)) and the category preference score (defined by Eq. (3)) of
the worker ought to be updated, which further propagates to

the worker’s matching score and calls for resorting of the
entries in arrays C! T and C!W. However, it would be
too time-consuming to update these scores and the arrays

52 M. Safran, D. Che
every time a worker completes a task. Therefore, our approach
adopts periodic batch update on these scores and the arrays as
we assume that each time when a worker completes one task,

the affect on the worker’s matching score is marginal. This
approach may not satisfy the need of the workers who want
the recommendation system to recommend tasks that are sim-

ilar to their recently chosen and completed ones [13]. This is an
issue of trade-off between performance and accuracy of recom-
mendations. A possible solution would be to offer ‘‘instant

score update” as a user controllable function in the interface.
Alternatively, the system may be set to automatically adjust
the update pace based on explicit feedback from workers
regarding their satisfaction with the recommendations made

by the system to them. This information ought to be integrated
into the profiles of the workers and used in the future toward
more personalized recommendation. The above ideas have not

been reflected in our current algorithm.
Dealing with the cold-start problem. New workers face a

cold-start problem, which means the matching scores of these

workers are not available. This is a serious problem that, if left
unattended, new workers will never be recommended a task to
start with. To solve this problem, for new workers we count

only on the similarity scores (Eq. (4)). Recommendations
based on similarity scores reflect the worker’s expertise, skills,
and personal preferences only. Once a new worker has a cer-
tain number of tasks completed, the standard matching score

computation (Eq. (1)) will be switched on. Here we assume
that a crowdsourcing system requires workers to choose some
preferences when they try to register to the system. This

requirement is not directly reflected in our algorithm shown
in Algorithm 1. Alternatively, new workers may choose to
browse the listed tasks, select and work on their interested

tasks to mitigate the cold-start problem. Using similarity
scores as substitute for the matching scores may not well
encourage diversification of task categories since higher simi-

larity scores tend to lock on fewer categories. We propose to
differentiate between eager workers and lazy workers, of
which, the former are inclined to try new types of tasks even
though they may not do their best with, while the latter want

to keep working on the types of tasks they used to work on
and can do their best with. A partial solution to task diversifi-
cation for eager workers is to switch our cascade rounding

technique (exemplified in Supplementary Table 2) from
rounding-up to rounding-down in order to increase the chance
of selecting tasks from additional categories.

For a given worker, our TOP-K-T algorithm takes
Oðaþ kÞ runtime to produce recommendation, where a is the
number of task categories covered by the worker’s profile
and k is the number of tasks to be recommended to the worker.

Both parameters a and k are usually small numbers in real-
world scenarios. Evidently, algorithm TOP-K-T is extremely
time-efficient, regardless of the size of the data flow in a crowd-

sourcing system; the real-time recommendation of top-k tasks
to any given worker can be guaranteed. To recap, our TOP-K-
T algorithm achieves its real-time performance owing to the

creative incorporation of categories that significantly reduces
the search space for best matching tasks; the algorithm also
‘‘welcomes” new workers (i.e., dealing with the cold-start

problem) by automatic switching of its matching score
computation.
3.3. TOP-K-W recommendation algorithm

For a posted task, our TOP-K-W algorithm identifies the
top-k most suitable (technically qualified and interested) work-
ers to recommend to the requester for soliciting them to work

on the task. In order to obtain real-time performance, similar
strategy and data structures are used in the algorithm. The rec-
ommendation problem faced by our TOP-K-W algorithm is
stated as follows: given any task t associated with a weighted

list of categories that t belongs to, say,
fðc1; b1Þ; ðc2; b2Þ; . . . ; ðcr; brÞg, what are the top-k most suitable
workers to be recommended to work on the task?

The TOP-K-W algorithm is described in Algorithm 2. The
algorithm iterates through the categories of a given task, i.e.,
list TaskCat (starting at line 3 in Algorithm 2). During each

iteration, the next category index is fetched from list
TaskCat into variable Ctarget, and the associated category

weight is fetched into variable Cweight (lines 4 and 5, respec-

tively). The number of workers selected from Ctarget is decided

by the product of the category’s weight Cweight and the param-

eter k after applying cascade rounding (line 6). Similar to algo-
rithm TOP-K-T, two specific cases need to be separately

addressed, of which the deliberation is omitted due to analo-
gous disposition.

Algorithm 2. TOP-K-W Recommendation Algorithm.

Input: C!W: the category–worker data structure.

TaskCat: list of the weighted categories of given task.

k: the number of workers to be recommended

Output: L: list of top-k workers for recommendation.

1 Initialize output array L

2 passtonext 0

3 for i 1 to TaskCat:size do

4 Ctarget getCategoryðTaskCat½i�Þ
5 Cweight getWeightðTaskCat½i�Þ
6 numselected cascaderoundðCweight � kÞ
7 if numselectedþ passtonext > Ctarget !W:size then

8 passtonext passtonextþ numselected� Ctarget

!W:size

9 L all workers in Ctarget !W (not already in L)

10 else

11 L first ðnumseletedþ passtonextÞ workers from
Ctarget !W (not already in L)

12 end

13 end

Special case discussion. The TOP-K-W algorithmmay face a

situation where all the recommended k workers are busy doing
other tasks or unavailable for any other special reasons. Our
TOP-K-W algorithm solves this problem by taking the advan-
tage of the already sorted list of workers stored in Cindex !W.

The algorithm periodically increases the value of k until one of
the recommended workers starts working on the task. Instead
of simply recommending alternative workers in the subsequent

rounds of recommendation, our algorithm retains previously
recommended workers in the recommendation list in order to

Real-time recommendation algorithms 53
retain the opportunity of getting those high-ranked workers as
their statuses may change soon.

In summary, the TOP-K-W algorithm takes Oðkþ kÞ run-
time, where k is the number of categories that a given task
belongs to and k is the number of workers to be recommended

for the task. It is evident that both k and k are usually small
numbers in real-world scenarios. Our TOP-K-W algorithm is
able to obtain real-time performance (in less than a millisecond

per our experiments, to be detailed shortly), regardless of the
potentially huge volume of data flow typically found in crowd-
sourcing systems. The TOP-K-W algorithm adopts an incre-

mental recommendation strategy to bring down the possible
delay of task completion to the minimum. Similar to algorithm
TOP-K-T, this algorithm also assumes offline batch update on

workers’ matching scores and resorting of the worker list
under each category in order to deliver real-time performance.

4. Experimental results

In this section, we evaluate our proposed algorithms, TOP-K-
T and TOP-K-W, through experimental study. As currently
(to the best of our knowledge), there are no applicable datasets

gathered from real-world crowdsourcing systems that are pub-
licly available and fit the need of the presented work, we con-
ducted our study based on synthesized datasets. To make

synthesized datasets realistic and representative, we generated
our datasets at various scales and at every step we tried to
mimic the scenarios in a real-world crowdsourcing system.

Table 1 shows the characteristics of generated datasets. Uni-
form distribution had been assumed at several places during
the process of generating these synthesized datasets. Supple-

mentary Figs. 3–6 show the distribution features of a sample
of the synthesized datasets. Our proposed algorithms and the
data generation are implemented using C#. All experiments
are conducted on a PC with Intel Xeon 2.40 GHz processors

and 16 GB DDR3 RAM in a light load condition. Every
experiment presented below is conducted twenty times and
the average running time is computed. In the following, we

present the experiment results of algorithms TOP-K-T and
TOP-K-W, respectively.

4.1. TOP-K-T

As mentioned earlier, the theoretical time complexity of the
TOP-K-T algorithm is Oðaþ kÞ, where a is the number of

worker’s categories and k is the number of tasks to be recom-
mended. To fairly evaluate the performance of this algorithm,
we select three different types of workers, i.e., workers with
maximum number of categories (MAXworker), workers with

average number of categories (AVGworker), and workers with
Table 1 Synthesized datasets and characteristics.

Dataset #Workers #Categories #Completed

tasks

#Available

tasks

DS1 100,000 300 178,898,799 80,710

DS2 300,000 500 974,854,896 490,815

DS3 500,000 600 1,908,867,719 960,814

DS4 1,000,000 1000 3,127,310,923 1,396,721
minimum number of categories (MINworker). Besides, we
consider three different values for k, namely, 1, 20, and 50,
to see how different values of k would affect the performance

of TOP-K-T.
Fig. 2(a) shows the performance of TOP-K-T with the

parameter k set to 1 (i.e., to recommend only one task to each

worker). As shown in the figure, the runtimes are basically
constant in terms of dataset sizes, but with noticeable fluctua-
tions in the range from 132 to 143 ns. The reason that caused

the fluctuations is the randomness in the numbers of categories
of workers, the numbers of tasks of categories, etc. For exam-
ple, when a preferred task category does not have any or does
not have enough available tasks, the algorithm needs to run

additional iterations to selects tasks from subsequent cate-
gories. Fig. 2(b) shows the performance of TOP-K-T with k
set to 20 (i.e., to recommend top 20 tasks for each worker).

The 20 tasks are selected from different categories, and the
running time increases as the number of categories probed
increases. For example, the case with MINworker runs the

fastest as it involves the minimum number of categories to pro-
cess. Fig. 2(c) shows the performance of TOP-K-T with k set to
50 (i.e., to recommend top 50 tasks to each worker). As

expected, the times taken accordingly increase when k
increases from 20 to 50. The performance plots show basically
constant performance with regard to varied dataset sizes and
our explanation for the performance data is basically the same

as with the cases of smaller k values. The only thing we would
like to point out herein is that when k is 50, which is pretty
large in real-world scenarios, our TOP-K-T algorithm remains

extremely efficient, taking up to only a couple of milliseconds
in our experiments.

Analytically, the running time of our TOP-K-T algorithm is

affected only by a and k which are typically very small num-
bers, regardless of the data sizes (the numbers of workers,
tasks, etc.). Our experimental study confirms the validness

and the constant time performance of our algorithm.

4.2. TOP-K-W

As pointed out before, our TOP-K-W algorithm takes

Oðkþ kÞ time, where k is the number of categories that a given
task belongs to and k is the number of workers to be recom-
mended to the task requester. To evaluate the algorithm we

assume the following scenario: (1) a requester posts 5 tasks
ðt1; t2; t3; t4; t5Þ and sets parameter k to 3, 10, 20, 30, and 50,
respectively; (2) the tasks, t1; t2; t3; t4, and t5 respectively

belong to 1 category, 4 categories, 7 categories, 3 categories,
and 10 categories. Fig. 3 shows the performance plots of
TOP-K-W with regard to the above assumptions. It can be
easily observed from Fig. 3 that the running times are basically

constant in terms of dataset sizes, affected only by parameters
k and k (both in practice are very small numbers). It can also
be observed that the sizes of the datasets do not have notice-

able influence on the running time of the algorithm as the time
plots all appear to be constant plots with regard to varied data-
set sizes.

5. Related works

The study of task recommendation in crowdsourcing systems

has been growing to such a point of forming a distinct disci-

Figure 3 Performance of TOP-K-W with varied k values.

Figure 2 Performance of TOP-K-T with k ¼ 1, 2 and 50.

54 M. Safran, D. Che
pline with its own identity and merits. Several representative
approaches [15–18] have been proposed to tackle the recom-

mendation problem in crowdsourcing systems. In this section,
while we review these related works, we make comparisons
with ours.

Our argument for effective, real-time recommendation of
top-k tasks and top-k workers in crowdsourcing systems is
not alone. Ipeirotis [15] examined the task posting and comple-

tion activities on AMT, and concluded that AMT is a heavy-
tailed market, i.e., it has a heavy-tailed distribution of both
the completion time and posting time, as illustrated in Supple-
mentary Fig. 1, where the number of tasks arrived on Novem-
ber 10th, 2013 reached 50,000, followed by 400,000 on the next
day. The tasks in crowdsourcing systems include micro-tasks,

particularly on AMT, that have very short life spans, e.g., from
minutes (if not seconds) to hours. These unique features of
crowdsourcing systems, i.e., huge flow of tasks with very short

life spans, make traditional recommendation algorithms inap-
plicable simply because they were not designed and are unable
to deliver the desired real-time recommendation performance

by most crowdsourcing systems.
Ambati et al. [16] proposed a task recommendation

approach based on a classification technique. Their proposed
approach first generates a worker model by acquiring the

Real-time recommendation algorithms 55
worker’s performance information, based on which, a classifier
is then trained to classify the available tasks as interesting or
uninteresting to a given worker. Per our understanding, this

approach may suffer with the following three issues: (1) simi-
larity computed based only on task description may not ade-
quately capture the true nature of the tasks since two tasks

with similar keywords may not be similar in nature and the
skills needed; (2) this approach relies on a carefully-selected,
balanced training set which is very hard to obtain for emerging

research topics such as crowdsourcing; and (3) this approach
may also suffer from poor scalability when applied to really
large crowdsourcing systems.

The work reported in [17] improves in [16] by additionally

incorporating a worker’s task selection history besides the
worker’s performance history. The proposed algorithm in
[17] assumes that there is a set of categories predefined; and

any task posted by a requester can be categorized into one
of those categories. The algorithm recommends to a worker
a list of tasks sorted according to the worker’s preferences

and the acceptance tendency of the worker’s completed tasks
by the requesters. Comparing to our work, this approach has
the following limitations: (1) limited scalability since it iterates

through all available tasks in all categories (which can be enor-
mous) every time a worker logs into the system and needs to
updates the worker’s scores every time s/he completes a task
and (2) this approach has the cold-start problem.

The same group extended their algorithm in [18]. In the
extended version, a worker-task matrix is used where each
entry in the matrix has a value from 1 to 5. The main goal

of this approach is to predict the missing values in the
worker-task matrix. This approach employs matrix factoriza-
tion technique to understand the worker’s preference on the

tasks. Comparing to our work, this approach has the following
concerns: (1) this approach may still suffer from scalability
issues since it records all interactions between all the workers

and the system, and yet, its matrix is expanding rapidly which
makes the relearning of the matrix much harder to handle and
(2) it is difficult to obtain the worker’s task searching history
since it is only accessible to the crowdsourcing systems’ admin-

istrators as the authors pointed [18].

6. Conclusion and future work

With the increased popularity and scales, crowdsourcing sys-
tems involve a flood of data which could leave the workers
and requesters at dismay when they (as workers) are trying

to find suitable tasks to work on or (as requesters) to find
the best workers for their tasks. Therefore, making the good
recommendation on the fly has become critical to these sys-

tems. In this article, we revealed our insight into the essential
difference between the tasks in crowdsourcing systems and
the products/items in e-commerce markets, and the difference
between a buyer’s interest in products/items and a worker’s

interest in tasks. Our insight inspired us to bring up categories
as a key mediation mechanism between workers and tasks,
which has been proven an highly effective means in our effort

toward designing extremely scalable and efficient recommen-
dation algorithms for crowdsourcing systems. Our effort has
resulted in two novel algorithms, TOP-K-T (computing the

top-k most suitable tasks to recommend to a worker) and
TOP-K-W (computing the top-k best workers to recommend
to a task requester). Both algorithms demonstrate superb
(real-time) performance — make valid recommendations in
just a few milliseconds regardless of dataset sizes, which

explains the great scalability and efficiency of our algorithms.
Besides categories as a general mediation mechanism, our var-
ious data structures (illustrated in Fig. 1(a)–(c)) provide instru-

mental support to the implementation of our approaches.
These data structures absorb a major part of the intrinsic com-
plexities of the recommendation problems, and render us suc-

cinct algorithms with great efficiency and scalability. We have
done extensive experimental study of our algorithms with syn-
thesized datasets because no suitable real dataset is available
for our study. We did not do horizontal comparison with

related algorithms in the experimental study as our algorithms
are quite different in nature from all other related algorithms,
and are evidently superb to them, which makes equal-footing

empirical comparison with them less interesting and
unnecessary.

As part of our future work, we are looking forward to

obtaining real datasets from the existing crowdsourcing sys-
tems such as AMT to further evaluate our algorithms. Mean-
while, we plan to take workers’ rewards and preferred work

times as additional factors into our recommendation frame-
work in order to make our recommendations more appealing
to both workers and requesters.

Appendix A. Supplementary material

Supplementary data associated with this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.aci.2016.

01.001.

References

[1] D. Che, M. Safran, Z. Peng, From big data to big data mining:

challenges, issues, and opportunities, Database Systems for

Advanced Applications, vol. 7827, Springer, Berlin, Heidelberg,

2013, pp. 1–15 (Chapter 1).

[2] B. Sarwar, G. Karypis, J. Konstan, J. Reidl, Item-based

collaborative filtering recommendation algorithms, in: 10th

International Conference on World Wide Web, Hong Kong,

Hong Kong, 2001, pp. 285–295.

[3] G. Karypis, Evaluation of item-based top-n recommendation

algorithms, in: 10th International Conference on Information

and Knowledge Management, 2001, pp. 247–254.

[4] E. Estellés-Arolas, F. González-Ladrón-De-Guevara, Towards

an integrated crowdsourcing definition, Inf. Sci. 38 (2) (2012)

189–200.

[5] A. Doan, R. Ramakrishnan, A. Halevy, Crowdsourcing systems

on the world-wide web, Commun. ACM 54 (4) (2011) 86–96.

[6] D. Brabham, Crowdsourcing as a model for problem solving: an

introduction and cases, Convergence: Int. J. Res. New Media

Technol. 14 (1) (2008) 75–90.

[7] D. Geiger, M. Schader, Personalized task recommendation in

crowdsourcing information systems current state of the art,

Decis. Support Syst. 65 (2014) 3–16.

[8] L. Chilton, J. Horton, R. Miller, S. Azenkot, Task search in a

human computation market, in: The ACM SIGKDDWorkshop

on Human Computation, New York, NY, USA, 2010, pp. 1–9.

[9] Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques

for recommender systems, Computer 42 (8) (2009) 30–37.

[10] M. Deshpande, G. Karypis, Item-based top-n recommendation

algorithms, ACM Trans. Inf. Syst. 22 (1) (2004) 143–177.

http://dx.doi.org/10.1016/j.aci.2016.01.001
http://dx.doi.org/10.1016/j.aci.2016.01.001
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0005
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0005
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0005
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0005
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0005
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0020
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0020
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0020
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0025
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0025
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0030
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0030
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0030
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0035
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0035
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0035
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0045
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0045
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0050
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0050

56 M. Safran, D. Che
[11] S. Schmidt, S. Schnitzer, C. Rensing, Text classification based

filters for a domain-specific search engine, Comput. Ind. (in

press), 2015 (http://dx.doi.org/10.1016/j.compind.2015.10.004).

[12] S. Schnitzer, S. Schmidt, C. Rensing, B. Harriehausen-

Muhlabauer, Combining active and ensemble learning for

efficient classification of web documents, Polibits 49 (2014) 39–

45.

[13] S. Schnitzer, C. Rensing, S. Schmidt, K. Borchert, M. Hirth, P.

Tran-Gia, Demands on task recommendation in crowdsourcing

platforms – the workers perspective, in: CrowdRec Workershop,

ACM RecSys, 2015.

[14] G. Salton, C. Buckely, Term-weighting approaches in automatic

text retrieval, Inf. Process. Manage. 24 (5) (1988) 513–523.
[15] P. Ipeirotis, Analyzing the Amazon Mechanical Turk

marketplace, ACM XRDS 17 (2) (2010) 16–21.

[16] V. Ambati, S. Vogel, J. Carbonell, Towards task

recommendation in micro-task markets, in: The 25th AAAI

Workshop in Human Computation, AAAI, 2011.

[17] M.C. Yuen, I. King, K.S. Leung, Task matching in

crowdsourcing, in: The 4th IEEE International Conference on

Cyber, Physical and Social Computing, IEEE Computer

Society, 2011, pp. 409–412.

[18] M.C. Yuen, I. King, K.S. Leung, Task recommendation in

crowdsourcing systems, in: ACM KDD Workshop on Data

Mining and Knowledge Discovery with Crowdsourcing, 2012.

http://dx.doi.org/10.1016/j.compind.2015.10.004
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0060
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0060
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0060
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0060
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0065
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0065
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0065
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0065
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0065
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0070
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0070
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0075
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0075
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0085
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0085
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0085
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0085
http://refhub.elsevier.com/S2210-8327(16)00002-8/h0085

	Real-time recommendation algorithms for crowdsourcing systems
	1 Introduction
	2 Current recommendation approaches
	3 Proposed recommendation algorithms
	3.1 Motivation, data structures, and matching scores
	3.2 TOP-K-T recommendation algorithm
	3.3 TOP-K-W recommendation algorithm

	4 Experimental results
	4.1 TOP-K-T
	4.2 TOP-K-W

	5 Related works
	6 Conclusion and future work
	Appendix A Supplementary material
	References

