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Preface

Trees are a fundamental object in graph theory and combinatorics as well as
a basic object for data structures and algorithms in computer science. During
the last years research related to (random) trees has been constantly increasing
and several asymptotic and probabilistic techniques have been developed in
order to describe characteristics of interest of large trees in different settings.

The purpose of this book is to provide a thorough introduction into various
aspects of trees in random settings and a systematic treatment of the involved
mathematical techniques. It should serve as a reference book as well as a basis
for future research. One major conceptual aspect is to connect combinatorial
and probabilistic methods that range from counting techniques (generating
functions, bijections) over asymptotic methods (singularity analysis, saddle
point techniques) to various sophisticated techniques in asymptotic probabil-
ity (convergence of stochastic processes, martingales). However, the reading
of the book requires just basic knowledge in combinatorics, complex analysis,
functional analysis and probability theory of master degree level. It is also
part of concept of the book to provide full proofs of the major results even if
they are technically involved and lengthy.

Due to the diversity of the topic of the book it is impossible to present an
exhaustive treatment of all known models of random trees and of all important
aspects that have been considered so far. For example, we do not deal with the
simulation of random trees. The choice of the topics reflects the author’s taste
and experience. It is slightly leaning on the combinatorial side and analytic
methods based on generating functions play a dominant role in most of the
parts of the book. Nevertheless, the general goal is to describe the limiting
behaviour of large trees in terms of continuous random objects. This ranges
from central (or other) limit theorems for simple tree statistics to functional
limit theorems for the shape of trees, for example, encoded by the horizontal
or vertical profile. The majority of the results that we present in this book is
very recent.

There are several excellent books and survey articles dealing with some
aspects on combinatorics on trees and graphs resp. with probabilistic meth-
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ods in these topics which complement the present book. One of the first ones
was Harary and Palmer book Graphical enumeration [98]. Around the same
time Knuth published the first three volumes of The Art of Computer Pro-
gramming [128, 129, 130] where several classes of trees related to algorithms
from computer science are systematically investigated. His books with Green
Mathematics for the analysis of algorithms [96] and the one with Graham and
Patashnik Concrete Mathematics [95] complement this programme. In parallel
asymptotic methods in combinatorics, many of them based on generating func-
tions, became more and more important. The articles by Bender Asymptotic
methods in enumeration [7] and Odlyzko Asymptotic enumeration methods
[165] are excellent surveys on this topic. This development is highlighted by
Flajolet and Sedgewick’s recent (monumental) monograph Analytic Combina-
torics [84]. Computer science and in particular the mathematical analysis of
algorithms was always a driving force for developing concepts for the asymp-
totic analysis of trees (see also the books by Kemp [122], Hofri [102], Sedgewick
and Flajolet [191], and by Szpankowski [197]). Moreover, several concepts of
random trees arose naturally in this scientific process (see for example Mah-
moud’s book Evolution of random search trees [146], and Pittel’s, Devroye’s
or Janson’s work).

However, combinatorics and problems of computer science, though impor-
tant, are not the only origin of random tree concepts. There was at least
a second (and almost independent) line of research concerning conditioned
Galton-Watson trees. Here one starts with a Galton-Watson branching process
and conditions on the size of the resulting trees. For example, Kolchin’s book
Random Mappings [132] summarises many results from the Russian school.
This work is complemented by the American school represented by Aldous
[3, 5] and Pitman [171] where stochastic processes related to the Brownian
motion play an important role. The invention of the continuum random tree
as well as the ISE (integrated super-Brownian excursion) by Aldous are break-
throughs. Actually these continuous limit objects are quite universal concepts.
It seems that they also appear as limit objects for several kinds of random
planar maps and other related discrete objects. There are even more general
settings where Lévy processes are used (see the recent survey articles Random
Trees and Applications [135] and Random Real Trees [136] by Le Gall and the
book Probability and Real Trees [75] by Evans). By the way, the study of ran-
dom graphs is completely different from that of random trees (compare with
the books by Bollobás [21], Janson, �Luczak and Ruciński [116], and Kolchin
[133]). Nevertheless, there is a very interesting paper The Birth of the Gi-
ant Component [115] which uses analytic methods that are very close to tree
methods.

This book is divided into nine chapters. The first two of them are providing
some background whereas the remaining chapters 3–9 are devoted to more
specific and (more or less) self contained topics on random trees and on related
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subjects. Of course, they will use basic notions from Chapter 1 and some of
the methods from Chapter 2.

In Chapter 1 we survey several classes of random trees that are considered
here: combinatorial tree classes like planted plane trees, Galton-Watson trees,
recursive trees, and search trees including binary search trees and digital trees.

Chapter 2 is a second introductory chapter. It collects some basic facts on
combinatorics with generating functions and provides an analytic treatment
of generating functions that satisfy a functional equation (or a system of
functional equations) leading to asymptotics and central limit theorems. It is
probably not necessary to study all parts of this chapter in a first reading but
to use it as a reference chapter.

The first purpose of Chapter 3 is tree counting, to obtain explicit for-
mulas for the numbers of trees of given size with possible and asymptotic
information on these numbers in those cases, where no or no simple explicit
formula is available. The analysis of several combinatorial classes of trees and
also of Galton-Watson trees is based on generating functions and their analytic
properties that are discussed in Chapter 2. The recursive structure of (rooted)
trees usually leads to a functional equation for the corresponding generating
functions. By extending these counting procedures with the help of bivariate
generating functions one can also study (so-called) additive statistics on these
tree classes like the number of nodes of given degree or more generally the
number of occurrences of a given pattern. In all these cases we derive a central
limit theorem.

The general topic of Chapters 4–7 is the limiting behaviour of the profile
and related statistics of different classes of random trees. Starting from a
natural (vertex) labelling on a discrete object, for example the distance to a
root vertex in a tree, the profile is the value distribution of the labels. More
precisely, if a random discrete object has size n then the profile (Xn,k) is
given by the numbers Xn,k of vertices with label k. The idea behind is that
the profile (Xn,k) describes the shape of the random object. It is therefore
natural to search for a proper limiting object of the profile after a proper
scaling.

In Chapter 4 we discuss the depth profile (induced by the distance to
the root) of Galton-Watson trees with bounded offspring variance which can
be approximated by the local time of the Brownian excursion of duration
1. This property is closely related to the convergence of normalised Galton-
Watson trees to the continuum random tree introduced by Aldous [2, 3, 4].
The proof method that we use here follows the same principles as those of
the previous chapters. We use multivariate generating functions and analytic
methods. Interestingly these methods can be applied to unlabelled rooted
trees, too, where we obtain the same approximation result. And the only
successful approach to the latter class of trees – also called Pólya trees – is
based on generating functions in combination with Pólya’s theory of counting.
Thus, Pólya trees look like Galton-Watson trees although they are definitely
not of that kind.
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Chapter 5 considers again Galton-Watson trees but a different kind of pro-
file that is induced by a random walk on the tree. We fix an integer valued
distribution η with zero mean. Then, given a tree T , every edge e of T is en-
dowed with an independent copy ηe of η. The label of a node is then defined
as the sum of ηe over all edges e on the path to the root. There are several
motivations to study such random models. For example, if η has only values
±1 or 0 and ±1 then the resulting trees are closely related to random trian-
gulations and quadrangulations. Furthermore, the random variables ηe can be
seen as random increments in an embedding of the tree in the space. This idea
is originally due to Aldous [5] and gave rise of the ISE, the integrated super-
Brownian excursion, which acts as the limiting occupation measure of the
induced label distribution. The final result is that the corresponding profile
can be approximated by the (random) density of the ISE. This result reaches
very far and is out of scope of this book but, nevertheless, there are special
cases which are of particular interest and capable for the framework of the
present book. By the use of explicit generating functions of unexpected form
the analysis recovers one-dimensional versions of the functional limit theorem
and also leads to integral representations for several parameters of the ISE.
These observations are due to Bousquet-Mélou [23].

Chapter 6 deals with recursive trees and their variants (plane oriented
recursive trees, binary and m-ary search trees). The interesting feature of
these kinds of trees is that they can be seen from different points of views:
They can be seen as a combinatorial object (where usual counting procedures
apply) as well as the result of a (stochastic) growth process. Interestingly their
asymptotic structure is completely different from that of Galton-Watson trees.
They are so-called logn trees which means that their expected height is of
order logn (in contrast to Galton-Watson trees with expected height of order√
n). We provide a unified approach to several basic statistics like the degree

distribution. However, the main focus is again the profile. Here one observes
that most vertices are concentrated around few levels so that a (possible)
limiting object of the normalised project is not related to some functional of
the Brownian motion. Nevertheless, the normalised profileXn,k/EXn,k can be
approximated by X(k/ logn), where X(t) is now a random analytic function.
We also deal with the height and its concentration properties.

Tries and digital search trees are two other classes of logn trees which are
discussed in Chapter 7. Their construction is based on digital keys and not
on the order structure of the keys as in the case of binary search trees. Again,
most vertices are concentrated around few levels of order logn but the profile
behaves differently. It is even more concentrated around its mean value than
the profile of binary search trees or recursive trees. The normalised profile
Xn,k/EXn,k (of tries) converges to 1 and we observe a central limit theorem.

Chapter 8 is devoted to the so-called contraction method which was devel-
oped to handle stochastic recurrence relations which naturally appear in the
stochastic analysis of recursive algorithms like Quicksort. Such recurrences
also appear in the analysis of the profile of recursive trees and binary search
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trees (and their variants). The idea is that after normalisation the recur-
rence relation stabilises to a (stochastic) fixed point equation that can be
solved uniquely by Banach’s fixed point theorem in a properly chosen Banach
space setting. Here we restrict ourselves to an L2 setting with the Wasser-
stein metric. We mainly follow the work by Rösler, Rüschendorf, Neininger
[158, 161, 162, 186, 187].

The final Chapter 9 deals with planar graphs. At first sight planar graphs
and trees have nothing in common but there are strong similarities in the com-
binatorial and asymptotic analysis. For example the 2-connected parts of a
connected (planar) graph have a tree structure which is reflected by the struc-
ture of the corresponding generating functions. In particular in the asymptotic
analysis one can use the same techniques from Chapter 2 as for combinatorial
tree classes in Chapter 3. Besides the asymptotic counting problem the ma-
jor goal of this chapter is to study the degree distribution of random planar
graphs or equivalently the expected number of vertices of given degree where
we can again use asymptotic tree counting techniques. This chapter is based
on recent work by Giménez, Noy and the author [63, 64].

Of course, such a book project cannot be completed without help and
support from many colleagues and friends. In particular I am grateful to
Mireille Bousquet-Mélou, Luc Devroye, Philippe Flajolet, Bernhard Gitten-
berger, Alexander Iksanov, Svante Janson, Christian Krattenthaler, Jean-
François Marckert, Marc Noy, Ralph Neininger, Alois Panholzer, and Wojciech
Szpankowski. I also thank Frank Emmert-Streib for helping me to design the
book cover.

Finally I want to thank Veronika Kraus, Johannes Morgenbesser, and
Christoph Strolz for their careful reading of the manuscript and for several
hints to improve the presentation and Barbara Doležal-Rainer for her support
in type setting. I also want to thank Stephen Soehnlen from Springer Verlag
for his constant support in this book project and his patience.

I am especially indebted to my family to whom this book is dedicated.

Vienna, November 2008 Michael Drmota
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1

Classes of Random Trees

In this first chapter we survey several types of random trees. We start with
basic notions on trees and the description of several concepts of tree counting
problems. In particular we distinguish between rooted and unrooted, plane
and non-plane, and labelled and unlabelled trees. It is also possible to modify
the counting procedure by putting certain weights on trees, for example, by
using the degree distribution.

We consider classical combinatorial tree classes like planted plane trees or
labelled rooted trees. Furthermore we discuss simply generated trees which
can be also considered as conditioned Galton-Watson trees and cover sev-
eral classes of the classical (rooted) trees. We introduce unlabelled trees (also
called Pólya trees) that do not fall into this class but behave similarly to
simply generated trees. Recursive trees (and more generally increasing trees)
are labelled rooted trees where each path starting at the root has increasing
labels. All these kinds of trees give rise to a natural probability distribution
based on combinatorics by assuming that every tree of size n (of a certain
class) is equally likely.

Trees occur also in the context of algorithms from computer science, for
example, as data structures. Here the structure of the tree is determined by
the input data of the algorithm. Prominent examples are binary search trees,
digital search trees or tries. From a combinatorial point of view these kinds of
trees are just binary trees. However, if we assume some probability distribution
on the input data this induces a probability distribution on the corresponding
trees. Moreover, one usually has a tree evolution process by inserting more
and more data.
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1.1 Basic Notions

Trees are defined as connected graphs without cycles, and their properties are
basics of graph theory. For example, a connected graph is a tree, if and only if
the number of edges equals the number of nodes minus 1. Furthermore, each
pair of nodes is connected by a unique path.

The degree d(v) of a node v in a tree is the number of nodes that are
adjacent to v or the number of neighbours of v.

Nodes of degree ≤ 1 are usually called leaves or external nodes and the
remaining ones internal nodes.

1.1.1 Rooted Versus Unrooted trees

r

r

Fig. 1.1. Tree and rooted tree

If we mark a specific node r in a tree T , which we denote the root of T , we
call the tree itself rooted tree. A rooted tree may be described easily in terms
of generations or levels. The root is the 0-th generation. The neighbours of
the root constitute the first generation, and in general the nodes at distance
k from the root form the k-th generation (or level). If a node of level k has
neighbours of level k+ 1 then these neighbours are also called successors. The
number of successors of a node v is also called the out-degree d+(v). For all
nodes v different from the root we have d(v) = d+(v) + 1.

Furthermore, if v is a node in a rooted tree T then v may be considered
as the root of a subtree Tv of T that consists of all iterated successors of v.
This means that rooted trees can be constructed in a recursive way. Due to
that property counting problems on rooted trees are usually easier than on
unrooted trees.

Remark 1.1 Rooted trees also have various applications in computer science.
They naturally appear as data structures, e.g. the recursive structure of folders
in any computer is just a rooted tree. Furthermore, fundamental algorithms
such as Quicksort or the Lempel-Ziv data compression algorithm are closely
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related to rooted trees, namely to binary and digital search trees which are also
used to store (and search for) data. Rooted trees even occur in information
theory. For example, prefix free codes on an alphabet of order m are encoded
as the set of leaves in m-ary trees.

1.1.2 Plane Versus Non-Plane trees

Trees are planar graphs since they can be embedded into the plane without
crossings. Nevertheless, a tree may have different embeddings (compare with
Figure 1.2). This makes a difference in counting problems. When we say that
we are counting planar trees we mean that we are counting all possible different
embeddings into the plane.

Fig. 1.2. Two different embeddings of a tree

In the context of rooted trees it is common to use the term plane tree
or ordered tree when successors of the root and recursively the successors of
each node are equipped with a left-to-right-order. Alternatively one can give
the successors a rank so that one can speak of the j-th successor (j ≥ 1). Of
course, this induces a natural embedding into the half-plane (compare with
Figure 1.3). Note that this notion is different from considering all embed-
dings into the plane, since it is not allowed to rotate the subtrees of the root
cyclically around the root.

1.1.3 Labelled Versus Unlabelled Trees

We also distinguish between labelled trees, where the nodes are labelled by
different numbers, and unlabelled trees, where nodes are indistinguishable.
This is particularly important for the counting problem. For example, there
is only one unlabelled tree with three nodes whereas there are three different
labelled trees of size 3 with labels 1, 2, 3 (see Figure 1.4).

There is much latitude in choosing labels on trees. The simplest model
is to assume that the nodes of a trees of size n are labelled by the numbers
1, 2, . . . , n, but there are many other ways to do so. For so-called embedded
trees one only assumes that the labels of adjacent vertices differ (at most) by
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r

1

1

1

1

2

2 23

3

Fig. 1.3. Plane rooted tree

1

3

2 1

3

2 1

3

2

Fig. 1.4. Unlabelled versus labelled trees

1. Another possibility is to put labels consistently with the structure of the
tree. For example, recursive trees have the property that the root is labelled
by 1 and the labels on all paths away from the root are strictly increasing.

1.2 Combinatorial Trees

Let T be a class of finite trees which is defined by a structural condition (for
example that the trees are binary). We then consider the subclasses Tn of T
that consist of trees of size n and introduce a probability model on Tn by
assuming that every tree T in Tn is equally likely. By this construction we get
special kinds of random trees. Moreover, every parameter on trees (such as
the number of leaves or the diameter) is then a random variable.

For simplicity we start with rooted trees since they have a recursive
description.
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1.2.1 Binary Trees

Binary trees are rooted trees, where each node is either a leaf (that is, it
has no successor) or it has two successors. Usually these two successors are
distinguishable: the left successor and the right successor, that is, we are
dealing with plane trees. The leaves of a binary tree are also called external
nodes and those nodes with two successors internal nodes. It is clear that a
binary tree with n internal nodes has n + 1 external nodes. Thus, the total
number of nodes is always odd.

Fig. 1.5. Binary tree

A very important issue is that binary trees (and many other kinds of rooted
trees) have a recursive structure. More precisely we can use the following
recursive definition of binary trees:

A binary tree B is either just an external node or an internal node
(the root) with two subtrees that are again binary trees.

Formally we can write this in the form

B = � + ◦ × B × B, (1.1)

where B denotes the system of binary trees; � represents an external and ◦
an internal node.

In fact, this recursive description is the key for the analysis of many proper-
ties of binary (and similarly defined) trees. In particular, this formal equation
has a direct translation into an equation for the corresponding generating
(or counting) function b(x) of the form b(x) = 1 + xb(x)2. We discuss this
translation in detail in Chapter 2.

A direct generalisation of binary trees is m-ary rooted trees, where m ≥ 2
is a fixed integer. As in the binary case (m = 2) we just take into account the
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number n of internal nodes. The number of leaves is then given by (m−1)n+1
and the total number of nodes by mn+ 1.

Interestingly it is relatively easy to find explicit formulas for the numbers

b
(m)
n of m-ary trees with n internal nodes:

b(m)
n =

1

(m− 1)n+ 1

(
mn

n

)
.

The set Tn of m-ary trees with n internal nodes then constitutes a set of
random trees if we assume that everym-ary tree in Tn is equally likely, namely

of probability 1/b
(m)
n .

Note that in the binary case the number of trees is precisely the n-th
Catalan number

Cn =
1

n+ 1

(
2n

n

)
.

It is also possible to consider binary and more generallym-ary trees, where
the left-to-right-order of the successors is not taken into account. However,
the counting problem of these classes of trees is much more involved (compare
with Sections 1.2.5 and 3.1.5).

1.2.2 Planted Plane Trees

Another interesting class of trees are planted plane trees. Sometimes they are
also called Catalan trees. Planted plane trees are again rooted trees, where each
node has an arbitrary number of successors with a natural left-to-right-order
(this again means that we are considering plane trees). The term planted comes
from the interpretation that the root is connected (or planted) to an additional
phantom node that is not taken into account (see Figure 1.6). Usually we will
not even depict this additional node when we deal with planted trees. However,
it is quite useful to define the degree of the root r by d(r) = d+(r) + 1
which means that the additional (planted) node is considered a neighbour
node. This has the advantage that in this case all nodes have the property
d(v) = d+(v) + 1.

The numbers pn of planted plane trees with n ≥ 1 nodes are given by

pn =
1

n

(
2n− 2

n− 1

)
.

This is precisely the (n−1)-st Catalan number Cn−1 which explains the term
Catalan tree. By the way, the relation pn+1 = bn has a natural interpretation
(see Section 3.1.2).
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r

r

Fig. 1.6. Planted plane tree

1.2.3 Labelled Trees

We recall that a tree T of size n is labelled if the n nodes are labelled by
1, 2, . . . , n.1 The counting problem of labelled trees is different from that of
unlabelled trees. There is, however, an easy connection between rooted and un-
rooted labelled trees. There are exactly n different ways to make an unrooted
tree to a rooted one by choosing one of the labelled nodes. Thus, the number
of rooted labelled trees of size n equals the number of unrooted labelled trees
exactly n times. Consequently it is sufficient to consider rooted labelled trees
which has the advantage that one can use the recursive structure.

Note that if we do not care about the embedding in the plane or about
the left to right order of the successors, an unrooted labelled tree can be
interpreted as a spanning tree of the complete graphKn with nodes 1, 2, . . . , n
(see Figure 1.7).

1 2

3

4

1 2

3

4

Fig. 1.7. 2 of 16 possible spanning trees of K4

1 Other kinds of labelled trees like recursive trees or well-labelled trees will be
discussed in the sequel.
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It is a well known fact that the number of unrooted labelled trees of size n
equals nn−2 (usually called Cayley’s formula). Hence, there are nn−1 different
rooted labelled trees of size n. Sometimes these trees are called Cayley trees
(but this term is also used for infinite regular trees).

1.2.4 Labelled Plane Trees

It is also of interest to count the number of different planar embeddings of
labelled trees. There is even an explicit formula, namely for n ≥ 2 there are

(2n− 3)!

(n− 1)!

different planar embeddings of labelled trees of size n (and n(2n−3)!/(n−1)!
different planar embeddings of rooted labelled trees of size n). For example,
for n = 4 there are 42 = 16 different labelled trees but 5!/3! = 20 different
planar embeddings.

1.2.5 Unlabelled Trees

Let T̃ denote the set of unlabelled unrooted trees and T be the set of unla-
belled rooted trees. Here we do not care about the possible embeddings into
the plane. We just think of trees in the graph-theoretical sense.

These kinds of trees are relatively difficult to count. Let us denote by t̃n
and tn the corresponding numbers of those trees of size n, for example we
have

t̃1 = 1, t̃2 = 1, t̃3 = 1, t̃4 = 2 and t1 = 1, t2 = 1, t3 = 2, t4 = 4.

However, if there is no direct recursive relation one has to take into account
all symmetries. Nevertheless, this problem can be solved by using generating
functions and Pólya’s theory of counting [176] (see Section 3.1.5). For that
reason these trees are also called Pólya trees.

In order to give an impression of the kind of problems one has to face we
just state that the generating functions

t̃(x) =
∑
n≥1

t̃nx
n and t(x) =

∑
n≥1

tnx
n

satisfy the relations

t(x) = x exp

(
t(x) +

1

2
t(x2) +

1

3
t(x3) + · · ·

)
(1.2)

and

t̃(x) = t(x) − 1

2
t(x)2 +

1

2
t(x2). (1.3)

It seems that there is no proper explicit formula for tn and t̃n. However, there
are asymptotic expansions for them and by using extensions of the mentioned
counting procedure it is also possible to study several shape characteristics of
these kinds of trees.
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1.2.6 Unlabelled Plane Trees

We already mentioned that a tree usually has several different embeddings
into the plane. Planted plane trees are, in particular, designed to take into
account all possible planar embeddings of planted rooted trees.

It is, however, another non-trivial step to count all embeddings of unla-
belled rooted trees and all embeddings of unlabelled trees. Again we have
to take into account symmetries. Fortunately Pólya’s theory can be applied
here, too. As in the case of unlabelled trees we do not get explicit formulas
but asymptotic expansions (see Section 3.1.6).

1.2.7 Simply Generated Trees – Galton-Watson Trees

Simply generated trees are weighted versions of rooted trees and have been
introduced by Meir and Moon [151]. The idea is to put a weight to a rooted
tree according to its degree distribution.

Let φj , j ≥ 0, be a sequence of non-negative real numbers, called the
weight sequence. Usually one assumes that φ0 > 0 and φj > 0 for some j ≥ 2.
We then define the weight ω(T ) of a finite rooted ordered tree T by

ω(T ) =
∏

v∈V (T )

φd+(v) =
∏
j≥0

φ
Dj(T )
j ,

where d+(v) denotes the out-degree of the vertex v (or the number of succes-
sors) and Dj(T ) the number of nodes in T with j successors. The numbers

yn =
∑
|T |=n

ω(T )

are then the weighted numbers of trees of size n. It is natural to define a
probability distribution on the set Tn by

πn(T ) =
ω(T )

yn
(T ∈ Tn). (1.4)

It is convenient to introduce the generating series

Φ(x) = φ0 + φ1x+ φ2x
2 + · · · =

∑
j≥0

φjx
j .

In Section 3.1.4 we will show that the generating function y(x) =
∑

n≥1 ynx
n

satisfies the equation
y(x) = xΦ(y(x)).

This equation is the key for the asymptotic analysis of these kinds of trees.
If we replace φj by φ̃j = abjφj , which is the same as replacing Φ(x) by

Φ̃(x) = aΦ(bx) for two numbers a, b > 0, then ω(T ) is replaced by
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ω̃(T ) =
∏
j≥0

(
abjφj

)Dj(T )
= a|T |b|T |−1ω(T ).

Note that
∑

j jDj(T ) = |T | − 1. Hence, ỹn = anbn−1yn and the probability

distribution πn on Tn is the same for Φ̃(x) and Φ(x) (for every n). Usually
only these distributions are important, and we may then freely make this type
of modification of φj .

Simply generated trees generalise several of the above examples of combi-
natorial trees.

Example 1.2 If φj = 1 for all j ≥ 0, that is, Φ(x) = 1/(1 − x), then all
planted plane trees have weight ω(T ) = 1 and yn is the number of planted
plane trees. Thus, πn is the uniform distribution on planted plane trees of
size n.

Example 1.3 Binary trees (counted according to their internal nodes) are
also covered by this approach. If we set φ0 = 1, φ1 = 2, φ2 = 1, and φj = 0
for j ≥ 3, that is, Φ(x) = (1+x)2, then nodes with one successor get weight 2.
This takes into account that binary trees (where external nodes are disregarded)
have two kinds of nodes with one successor, namely those with a left branch
but no right branch and those with a right branch but no left branch. Thus,
πn is the uniform distribution on all binary trees with n internal nodes.

Similarly, m-ary trees are covered with the help of the weights φj =
(
m
j

)
or with Φ(x) = (1 + x)m.

Example 1.4 If φ0 = φ1 = φ2 = 1 and φj = 0 for j ≥ 3 or Φ(x) = 1+x+x2,
then we get so-called Motzkin trees. Here only rooted trees, where all nodes
have less than 3 successors, get (a non-zero) weight ω(T ) = 1: yn is the
number of Motzkin trees with n nodes and πn is the uniform distribution on
Motzkin trees of size n.

Example 1.5 If we set φj = 1/j! then

n! · yn = nn−1

denotes precisely the number of labelled rooted non-plane trees. The weight
φj = 1/j! disregards all possible orderings of the successors of a vertex of
out-degree j and the factor n! corresponds to all possible labellings of n nodes.
Hence, πn yields the uniform distribution on labelled rooted trees.

Interestingly there is an intimate relation to Galton-Watson branching pro-
cesses. Let ξ be a non-negative integer-valued random variable, the so-called
offspring distribution. The Galton-Watson branching process starts with a
single individual (generation 0); each individual has a number of children dis-
tributed as independent copies of ξ. If Zk denotes the size of the generation
k, then a formal description of the process (Zk)k≥0 is Z0 = 1, and for k ≥ 1
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Zk =

Zk−1∑
j=1

ξ
(k)
j ,

where the (ξ
(k)
j )k,j are i.i.d.2 random variables distributed as ξ.

It is clear that Galton-Watson branching processes can be represented by
ordered (finite or infinite) rooted trees T such that the sequence Zk is just the
number of nodes at level k and

∑
k≥0 Zk (which is called the total progeny)

is the number of nodes |T | of T . We denote by ν(T ) the probability that a
specific tree T occurs. If P{ξ = 0} = 0 then the total progeny is infinite with
probability 1. Thus we always assume that P{ξ = 0} > 0.

The generating function y(x) =
∑

n≥1 ynx
n of the numbers

yn = P{|T | = n} =
∑
|T |=n

ν(T )

satisfies the functional equation

y(x) = xΦ(y(x)),

where
Φ(t) = E tξ =

∑
j≥0

φjt
j

with φj = P{ξ = j}. Observe that

ν(T ) =
∏
j≥0

φ
Dj(T )
j = ω(T ).

The weight of T is now the probability of T .
If we condition the Galton-Watson tree T on |T | = n, we thus get the

probability distribution (1.4) on Tn. Hence, the conditioned Galton-Watson
trees are simply generated trees with φj = P{ξ = j} as above. We have
here Φ(1) =

∑
j φj = 1, but this is no real restriction. In fact, if (φj)j≥0

is any sequence of non-negative weights satisfying the very weak condition
Φ(x) =

∑
j≥0 φjx

j <∞ for some x > 0, then we can replace (as above) φj by

abjφj with b = x and a = 1/Φ(x) and thus the simply generated tree is the
same as the conditioned Galton-Watson tree with offspring distribution P{ξ =
j} = φjx

j/Φ(x). Consequently, for all practical purposes, simply generated
trees are the same as conditioned Galton-Watson trees.

The argument above also shows that the distribution of a conditioned
Galton-Watson tree is not changed if we replace the offspring distribution ξ
by ξ̃ with P{ξ̃ = j} = P{ξ = j} = τ j/Φ(τ) and thus Φ̃(x) = Φ(τx)/Φ(τ) for
any τ > 0 with Φ(τ) <∞. (Such modifications are called conjugate or tilted
distributions.)

2 The letters “i.i.d.” abbreviate “independent and identically distributed”.
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Note that
μ = Φ′(1) = E ξ

is the expected value of the offspring distribution. If μ < 1, the Galton-Watson
branching process is called sub-critical, if μ = 1, then it is critical, and if μ > 1,
then it is supercritical. From a combinatorial point of view we do not have
to distinguish between these three cases. Namely, if we replace the offspring
distribution by a conjugate distribution as above, the new expected value is

Φ̃′(1) =
τΦ′(τ)

Φ(τ)
.

We can thus always assume that the Galton-Watson process is critical, pro-
vided only that there exists τ > 0 with

τΦ′(τ) = Φ(τ) <∞,

a weak condition that is satisfied for all interesting classes of Galton-Watson
trees.

It is usually convenient to choose a critical version, which explains why
the equation τΦ′(τ) = Φ(τ) appears in most asymptotic results. A heuristic
reason is that the probability of the event |T | = n that we condition on
typically decays exponentially in the subcritical and supercritical cases but
only as n−1/2 in the critical case, and it seems advantageous to condition on
an event of not too small probability.

Example 1.6 For planted plane trees (as in Example 1.2) we start with
Φ(x) = 1/(1 − x). The equation τΦ′(τ) = Φ(τ) is τ(1 − τ)−2 = (1 − τ)−1,
which is solved by τ = 1

2 . Random planted plane trees are thus conditioned
Galton-Watson trees with the critical offspring distribution given by Φ(x) =
(1 − x/2)−1/2 = 1/(2 − x), or P{ξ = j} = 2−j−1 (for j ≥ 0), a geometric
distribution.

Example 1.7 Similarly random binary trees are obtained with a binomial
offspring distribution Bi(2, 1/2) with Φ(x) = (1 + x)2/4, and more generally
random m-ary trees are obtained with offspring law Bi(m, 1/m) with Φ(x) =
((m− 1 + x)/m)

m
.

Example 1.8 For Motzkin trees the critical offspring distribution ξ is uni-
form on {0, 1, 2} with Φ(x) = (1 + x+ x2)/3.

Example 1.9 For uniform rooted labelled trees the critical ξ has a Poisson
distribution Po(1) with Φ(x) = ex−1.

Finally we remark that for a critical offspring distribution ξ, its variance
is given by

σ2 = Var ξ = E ξ2 − 1 = E(ξ(ξ − 1)) = Φ′′(1).
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Starting with an arbitrary sequence (φj)j≥0 and modifying it as above the get
a critical probability distribution, we obtain the variance

σ2 = Φ̃′′(1) =
τ2Φ′′(τ)

Φ(τ)
,

where τ > 0 is such that τΦ′(τ) = Φ(τ) < ∞ (assuming this is possible). We
will see that this quantity appears in several asymptotic results.

1.3 Recursive Trees

Recursive trees are rooted labelled trees, where the root is labelled by 1 and
the labels of all successors of any node v are larger than the label of v (see
Figure 1.8).

1

2

3

4

5

6 7

Fig. 1.8. Recursive tree

1.3.1 Non-Plane Recursive Trees

Usually one does not take care of the possible embeddings of a recursive
tree into the plane. In this sense recursive trees can be seen as the result of
the following evolution process. Suppose that the process starts with a node
carrying the label 1. This node will be the root of the tree. Then attach a
node with label 2 to the root. The next step is to attach a node with label 3.
However, there are two possibilities: either to attach it to the root or to the
node with label 2. Similarly one proceeds further. After having attached the
nodes with labels 1, 2, . . . , k, attach the node with label k + 1 to one of the
existing nodes.

Obviously, every recursive tree of size n is obtained in a unique way. More-
over, the labels represent something like the history of the evolution process.
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Since there are exactly k ways to attach the node with label k + 1, there are
exactly (n− 1)! possible trees of size n.

The natural probability distribution on recursive trees of size n is to assume
that each of these (n− 1)! trees is equally likely. This probability distribution
is also obtained from the evolution process by attaching successively each new
node to one of the already existing nodes with equal probability.

Remark 1.10 Historically, recursive trees appear in various contexts. They
are used to model the spread of epidemics (see [155]) or to investigate and
construct family trees of preserved copies of ancient manuscripts (see [157]).
Other applications are the study of the schemes of chain letters or pyramid
games (see [88]).

1.3.2 Plane Oriented Recursive Trees

Note that the left-to-right-order of the successors of the nodes in a recursive
tree was not relevant in the above counting procedure. It is, however, relatively
easy to consider all possible embeddings as plane rooted trees. These kind of
trees are usually called plane oriented recursive trees (PORTs).

1

2

3

4

5

6 7

1

2

3

4

5

6 7

=

Fig. 1.9. Two different plane oriented trees

They can again be seen as the result of an evolution process, where the
left-to-right-order of the successors is taken into account. More precisely, if a
node v has out-degree d, then there are d + 1 possible ways to attach a new
node to v. Hence, the number of different plane oriented recursive trees with
n nodes equals

1 · 3 · . . . · (2n− 3) = (2n− 3)!! =
1

2n−1

(2(n− 1))!

(n− 1)!
.

As above, the natural probability distribution on plane oriented recursive
trees of size n is to assume that each of these (2n− 3)!! trees is equally likely.
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This probability distribution is also obtained from the evolution process by
attaching each node with probability proportional to the out-degree plus 1 to
the already existing nodes.

1.3.3 Increasing Trees

The probabilistic model of simply generated trees was to define a weight that
reflects the degree distribution of rooted trees. The same idea can be applied
to recursive and to plane oriented recursive trees. The resulting classes of
trees are called increasing trees. They have been first introduced by Bergeron,
Flajolet, and Salvy [12].

As above we define the weight ω(T ) of a recursive or a plane oriented
recursive tree T by

ω(T ) =
∏

v∈V (T )

φd+(v) =
∏
j≥0

φ
Dj(T )
j ,

where d+(v) denotes the out-degree of the vertex v (or the number of suc-
cessors) and Dj(T ) the number of nodes in T with j successors. Then we
set

yn =
∑

T∈Jn

ω(T ),

where Jn denotes the set of recursive or plane oriented recursive trees of size
n. The natural probability distribution on the set Jn of increasing trees is
then given by

πn(T ) =
ω(T )

yn
(T ∈ Jn).

As in the case of simply generated trees it is also possible to introduce
generating series. We set

Φ(x) = φ0 + φ1x+ φ2
x2

2!
+ φ2

x3

3!
+ · · ·

in the case of recursive trees and

Φ(x) = φ0 + φ1x+ φ2x
2 + φ3x

3 + · · ·

in the case of plane oriented recursive trees. The generating function

y(z) =
∑
n≥0

yn
zn

n!

satisfies the differential equation

y′(z) = Φ(y(z)), y(0) = 0.

In the interest of clarity we state how the general concept specialises.
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1. Recursive trees (that is, every non-planar recursive tree gets weight 1) are
given by Φ(x) = ex. Here yn = (n− 1)! and y(z) = log(1/(1− z)).

2. Plane oriented recursive trees are given by Φ(x) = 1/(1− x). This means
that every planar recursive tree gets weight 1. Here yn = (2n − 3)!! =
1 · 3 · 5 · · · (2n− 3) and y(z) = 1−

√
1− 2z.

3. Binary recursive trees are defined by Φ(x) = (1 + x)2. We have yn = n!
and y(z) = 1/(1 − z). The probability model that is induced by this
(planar) binary increasing trees is exactly the standard permutation model
of binary search trees that is discussed in Section 1.4.1.

Note that the probability distribution on Jn is not automatically given by
an evolution process as it is definitely the case for recursive trees and plane
oriented recursive trees. It is interesting that there are precisely three families
of increasing trees, where the probability distribution πn is also induced by a
(natural) tree evolution process.

1. Φ(x) = φ0e
φ1
φ0

x
with φ0 > 0, φ1 > 0.

2. Φ(x) = φ0

(
1− φ1

rφ0
x

)−r

for some r > 0 and φ0 > 0, φ1 > 0.

3. Φ(x) = φ0 (1 + (φ1/(dφ0))x)
d

for some d ∈ {2, 3, . . .} and φ0 > 0, φ1 > 0.

The corresponding tree evolution process runs as follows:3 The starting point
is (again) a node (the root) with label 1. Now assume that a tree T of size n is
present. We attach to every node v of T a local weight ρ(v) = (k+1)φk+1φ0/φk

when v has k successors and set ρ(T ) =
∑

v∈V (T ) ρ(v). Observe that in a

planar tree there are k + 1 different ways to attach a new (labelled) node
to an (already existing) node with k successors. Now choose a node v in T
according to the probability distribution ρ(v)/ρ(T ) and then independently
and uniformly one of the k+ 1 possibilities to attach a new node there (when
v has k successors). This construction ensures that in these three particular
cases a tree T of size n, which occurs with probability proportional to ω(T ),
generates a tree T ′ of size n + 1 with probability that is proportional to
ω(T )φk+1φ0/φk, which equals ω(T ′). Thus, this procedure induces the same
probability distribution on Jn as the one mentioned above, where a tree T ∈
Jn has probability ω(T )/yn.

Note that if we are only interested in the distributions πn, then we can
work (without loss of generality) with some special values for φ0 and φ1. It is
sufficient to consider the generating functions

1. Φ(x) = ex,
2. Φ(x) = (1− x)−r for some r > 0,
3. Φ(x) = (1 + x)d for some d ∈ {2, 3, . . .}.

The first class is just the class of recursive trees. The second class can be
interpreted as generalised plane oriented recursive trees, since the probability

3 In the interest of brevity we only discuss the plane version.
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of choosing a node with out-degree j is proportional to j + r. For r = 1 we
get (usually) plane oriented recursive trees. The trees in the third class are
so-called d-ary recursive trees; they correspond to an interesting tree evolution
process that we shortly describe for d = 3.

Fig. 1.10. Substitution in 3-ary recursive trees

We consider 3-ary trees and distinguish (as in the case of binary trees)
between internal and external nodes. We define the size of the tree by the
number of internal nodes. The evolution process starts with an empty tree,
that is, with just an external node. The first step in the growth process is
to replace this external node by an internal one with three successors that
are external ones (see Figure 1.10). Then with probability 1/3 one of these
three external nodes is selected and again replaced by an internal node with
3 successors. In this way one continues. In each step one of the external nodes
is replaced (with equal probability) by an internal node with 3 successors.

1

1

2

1

2

3

Fig. 1.11. Evolution process of 3-ary recursive trees

1.4 Search Trees

Search trees are used in computer science for storing and searching data. There
are several concepts (compare with [146]). We just mention a few standard
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probabilistic models that are used to analyse these kinds of trees and the
algorithms that are related with them.

1.4.1 Binary Search Trees

The origin of binary search trees dates to a fundamental problem in computer
science: the dictionary problem. In this problem a set of records is given where
each can be addressed by a key. The binary search tree is a data structure
used for storing the records. Basic operations include insert and search.

Binary search trees are plane binary trees generated by a random permu-
tation (or list) π of the numbers {1, 2, . . . , n}. The elements of {1, 2, . . . , n}
serve as keys. The keys are stored in the internal nodes of the tree. Starting
with one of the keys (for example with π(1)) one first compares π(1) with
π(2). If π(2) < π(1), then π(2) becomes root of the left subtree; otherwise,
π(2) becomes root of the right subtree. When having constructed a tree with
nodes π(1), . . . , π(k), the next node π(k + 1) is inserted by comparison with
the existing nodes in the following way: start with the root as current node.
If π(k + 1) is less than the current node, then descend into the left subtree,
otherwise into the right subtree. Now continue with the root of the chosen
subtree as current, according to the same rule. Finally, attach n + 1 exter-
nal nodes (= leaves) at the possible places. Figure 1.12 shows an example
of a binary search tree (without and with external nodes) for the input keys
(4, 6, 3, 5, 1, 8, 2, 7).

1

2

3

4

5

6

7

8 1

2

3

4

5

6

7

8

Fig. 1.12. Binary search tree

Alternatively one can describe the construction of the binary search tree
recursively in the following way. If n > 1, we select (as above) a pivot (for
example π(1)) and subdivide the remaining keys into two sublists I1, I2:
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I1 = (x ∈ {π(2), . . . , π(n)} : x < π(1)) and

I2 = (x ∈ {π(2), . . . , π(n)} : x > π(1)) .

The pivot π(1) is put to the root and by recursively applying the same proce-
dure, the elements of I1 constitute the left subtree of the root and the elements
of I2 the right subtree. This is precisely the standard Quicksort algorithm.

At the moment there is no randomness involved. Every input sequence
induces uniquely and deterministically a binary search tree. However, if we
assume that the input data follow some probabilistic rule, then this induces
a probability distribution on the corresponding binary search trees. The most
common probabilistic model is the random permutation model, where one
assumes that every permutation of the input data 1, 2, . . . , n is equally likely.

By assuming this standard probability model, there is, however, a com-
pletely different point of view to binary search trees, namely the tree evolution
process of 2-ary recursive trees (compare with the description of 3-ary recur-
sive trees in Section 1.3.3). Here one starts with the empty tree (just consisting
of an external vertex). Then in a first step this external node is replaced by an
internal one with two attached external nodes. In a second step one of these
two external nodes is again replaced by an internal one with two attached
external nodes. In this way one continues. In each step one of the existing
external nodes is replaced by an internal one (plus two externals) with equal
probability.

It is easy to explain that these two models actually produce the same kinds
of random trees. Suppose that the keys 1, . . . , n are replaced by n real numbers
x1, . . . , xn that are ordered, that is, x1 < x2 < · · · < xn. Suppose that we have
already constructed a binary search tree T according to some permutation π
of x1, . . . , xn. The choice of an external node of T and replacing it by an
internal one corresponds to the choice of one of the n+ 1 intervals (−∞, x1),
(x1, x2), . . ., (xn,∞) and choosing a number x∗ of one of these intervals and
working out the binary search tree algorithm to the list of n + 1 elements,
where x∗ is appended to the list π (compare with Figure 1.12). However, this
procedure also produces equally likely random permutations of n+1 elements
from a random permutation of n elements.

1.4.2 Fringe Balanced m-Ary Search Trees

There are several generalisations of binary search trees. The search trees that
we consider here, are characterised by two integer parameters m ≥ 2 and
t ≥ 0. As binary search trees they are built from a set of n distinct keys
taken from some totally ordered sets such as real numbers or integers. For our
purposes we again assume that the keys are the integers 1, . . . , n. The search
tree is an m-ary tree where each node has at most m successors; moreover,
each node stores one or several of the keys, up to at most m− 1 keys in each
node. The parameter t affects the structure of the trees; higher values of t
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tend to make the tree more balanced. The special case m = 2 and t = 0
corresponds to binary search trees.

To describe the construction of the search tree, we begin with the simplest
case t = 0. If n = 0, the tree is empty. If 1 ≤ n ≤ m− 1 the tree consists of a
root only, with all keys stored in the root. If n ≥ m we select m− 1 keys that
are called pivots. The pivots are stored in the root. The m− 1 pivots split the
set of the remaining n−m+1 keys into m sublists I1, . . . , Im: if the pivots are
x1 < x2 < · · · < xm−1, then I1 := (xi : xi < x1), I2 := (xi : x1 < xi < x2),
. . . , Im := (xi : xm−1 < xi). We then recursively construct a search tree for
each of the sets Ii of keys (ignoring it if Ii is empty), and attach the roots of
these trees as children of the root in the search tree from left to right.

In the case t ≥ 1, the only difference is that the pivots are selected in
a different way. We now select mt + m − 1 keys at random, order them as
y1 < · · · < ymt+m−1, and let the pivots be yt+1, y2(t+1), . . . , y(m−1)(t+1). In
the case m ≤ n < mt+m−1, when this procedure is impossible, we select the
pivots by some supplementary rule (depending only on the order properties of
the keys). Usually one aims that the corresponding subtree that is generated
here is as balanced as possible. This explains the notion fringe balanced tree.
In particular, in the case m = 2, we let the pivot be the median of 2t + 1
selected keys (when n ≥ 2t+ 1).

The standard probability model is again to assume that every permutation
of the keys 1, . . . , n is equally likely. The choice of the pivots can then be
deterministic. For example, one always chooses the first mt +m − 1 keys. It
is then easy to describe the splitting at the root of the tree by the random
vector Vn = (Vn,1, Vn,2, . . . , Vn,m), where Vn,k := |Ik| is the number of keys
in the k-th subset, and thus the number of nodes in the k-th subtree of the
root (including empty subtrees).

We thus always have, provided n ≥ m,

Vn,1 + Vn,2 + · · ·+ Vn,m = n− (m− 1) = n+ 1−m
and elementary combinatorics, counting the number of possible choices of the
mt + m − 1 selected keys, showing that the probability distribution is, for
n ≥ mt+m− 1 and n1 + n2 + · · ·+ nm = n−m+ 1,

P{Vn = (n1, . . . , nm)} =

(
n1

t

)
· · ·
(
nm

t

)(
n

mt+m−1

) . (1.5)

(The distribution of Vn for m ≤ n < mt+m− 1 is not specified.)
In particular, for n ≥ mt + m − 1, the components Vn,j are identically

distributed, and another simple counting argument yields, for n ≥ mt+m−1
and 0 ≤ � ≤ n− 1,

P{Vn,j = �} =

(
�
t

)(
n−�−1

(m−1)t+m−2

)(
n

mt+m−1

) . (1.6)

For usual binary search tree with m = 2 and t = 0 we have Vn,1 and Vn,2 =
n− 1− Vn−1 which are uniformly distributed on {0, . . . , n− 1}.
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1.4.3 Digital Search Trees

Digital search trees are intended for the same kind of problems as binary
search trees. However, they are not constructed from the total order structure
of the keys for the data stored in the internal nodes of the tree but from digital
representations (or binary sequences) which serve as keys.

Consider a set of records, numbered from 1 to n and let x1, . . . , xn be
binary sequences for each item (that represent the keys). We construct a
binary tree – the digital search tree – from such a sequence as follows. First,
the root is left empty, we can say that it stores the empty word.4 Then the
first item occupies the right or left child of the root depending whether its
first symbol is 1 or 0. After having inserted the first k items, we insert item
k + 1: Choose the root as current node and look at the binary key xk+1. If
the first digit is 1, descend into the right subtree, otherwise into the left one.
If the root of the subtree is occupied, continue by looking at the next digit
of the key. This procedure terminates at the first unoccupied node where the
(k + 1)-st item is stored.

For example, consider the items

x1 = 110011 · · ·
x2 = 100110 · · ·
x3 = 010010 · · ·
x4 = 101110 · · ·
x5 = 000110 · · ·
x6 = 010111 · · ·
x7 = 000100 · · ·
x8 = 100101 · · · .

If we apply the above described procedure we end up with the binary tree
depicted in Figure 1.13. As in the case of binary search trees we can append
external nodes to make it a complete binary tree.

The standard probabilistic model – the Bernoulli model – is to assume
that the keys x1, . . . , xn are binary sequences, where the digits 0 and 1 are
drawn independently and identically distributed with probability p for 1 and
probability q = 1− p for 0. The case p = q = 1

2 is called symmetric.
There are several natural generalisations of this basic model. Instead of

a binary alphabet one can use an m-ary one leading to m-ary digital search
trees. One can also change the probabilistic model by using, for example,
discrete Markov processes to generate the key sequences or so-called dynamic
sources that are based on dynamical systems T : [0, 1] → [0, 1] (compare with
[41, 206]).

4 Sometimes the first item is stored to the root. The resulting tree is slightly differ-
ent but (in a proper probabilistic model) both variants have the same asymptotic
behaviour.
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Fig. 1.13. Digital search tree

1.4.4 Tries

The construction idea of Tries5 is similar to that of digital search trees except
that the records are stored in the leaves rather than in the internal nodes.
Again a 1 indicates a descent into the right subtree, and 0 indicates a descent
into the left subtree. Insertion causes some rearrangement of the tree, since a
leaf becomes an internal node. In contrast to binary search trees and digital
search trees, the shape of the trie is independent of the actual order of inser-
tion. The position of each item is determined by the shortest unique prefix of
its key. If we use the same input data as for the example of a digital search
tree, then we obtain the trie that is depicted in the left part of Figure 1.14.

An alternative description runs: Given a set X of strings, we partition X
into two parts, XL and XR, such that xj ∈ XL (respectively xj ∈ XR) if the
first symbol of xj is 0 (respectively 1). The rest of the trie is defined recursively
in the same way, except that the splitting at the k-th level depends on the
k-th symbol of each string. The first time that a branch contains exactly one
string, a leaf is placed in the trie at that location (denoting the placement
of the string into the trie), and no further branching takes place from such a
portion of the trie.

This description implies also a recursive definition of tries. As above con-
sider a sequence of n binary strings. If n = 0, then the trie is empty. If n = 1,
then a single (external) node holding this item is allocated. If n ≥ 1, then
the trie consists of a root (internal) node directing strings to the 2 subtrees
according to the first letter of each string, and string directed to the same
subtree are themselves tries, however, constructed from the second letter on.

Patricia tries are a slight modification of tries. Consider the case when
several keys share the same prefix, but all other keys differ from this prefix
already in their first position. Then the edges corresponding to this prefix may

5 The notion trie was suggested by Fredkin [86] as it being part of retrieval.
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Fig. 1.14. Trie and Patricia trie

be contracted to one single edge. This method of construction leads to a more
efficient structure (compare with Figure 1.14).

As in the case of digital search trees we can construct m-ary tries by using
strings over an m-ary alphabet leading to m-ary trees.

Finally, if the input strings follow some probabilistic rule (coming, for
example, from a Bernoulli or Markov source) then we obtain random tries
and random Patricia tries.





2

Generating Functions

Generating functions are not only a useful tool to count combinatorial objects
but also an analytic object that can be used to obtain asymptotics. They can
be used to encode the distribution of random variables that are related to
counting problems and, hence, asymptotic methods can be applied to obtain
probabilistic limit theorems like central limit theorems.

In this chapter we survey some properties of generating functions following
the mentioned categories above. First we collect some useful facts on gener-
ating functions in relation to counting problems, in particular, how certain
combinatorial constructions have their counterparts in relations for generat-
ing functions. Next we provide a short introduction into singularity analysis
of generating functions and its applications to asymptotics.

One major goal is to provide analytic and asymptotic properties of a gen-
erating function when it satisfies a functional equation and more generally
when it is related to the solution of a system of functional equations. This sit-
uation occurs naturally in combinatorial problems with a recursive structure
(as in tree counting problems) because a recursive relation usually translates
into a functional equation for the corresponding generating function.

It turns out that solutions of functional equations typically have a finite
radius of convergence R and – what is even more remarkable – that the kind
of singularity at x = R is of so-called square root type. This means that
the generating function can be represented as a power series in

√
R− x. This

explains that square root type singularities are omnipresent in the asymptotics
of tree enumeration problems.
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2.1 Counting with Generating Functions

Generating functions are quite natural in the context of tree counting since
(rooted) trees have a recursive structure that usually translates to recurrence
relations for corresponding counting problems. Besides generating functions
are a proper tool for solving recurrence equations.

In order to give an idea how generating functions can be used to count trees
we consider binary trees. Recall that binary trees are rooted trees, where each
node is either a leaf or it has two distinguishable successors: the left successor
and the right successor. The leaves of a binary tree are called external nodes
and those nodes with two successors internal nodes. As already mentioned a
binary tree with n internal nodes has n + 1 external nodes. Thus, the total
number of nodes is always odd.

Fig. 2.1. Binary tree

We prove an explicit formula for the number of binary trees with the help
of generating functions.

Theorem 2.1. The number bn of binary trees with n internal nodes is given
by the Catalan number

bn =
1

n+ 1

(
2n

n

)
.

Proof. Suppose that a binary tree has n+ 1 internal nodes. Then the left and
right subtrees are also binary trees (with k and n − k internal nodes, where
0 ≤ k ≤ n). Thus, one gets directly the recurrence for the corresponding
numbers:

bn+1 =

n∑
k=0

bkbn−k. (2.1)

The initial value is b0 = 1 (where the tree consists just of the root).
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This recurrence can be solved using the generating function

b(x) =
∑
n≥0

bnx
n.

By (2.1) we find the relation

b(x) = 1 + xb(x)2 (2.2)

and consequently an explicit representation of the form

b(x) =
1−

√
1− 4x

2x
. (2.3)

Hence (by using the notation [xn]a(x) = an for the n-th coefficient of a power
series a(x) =

∑
n≥0 anx

n) we obtain

bn = [xn]
1−

√
1− 4x

2x

= −1

2
[xn+1](1− 4x)

1
2

= −1

2

( 1
2

n+ 1

)
(−4)n+1

=
1

n+ 1

(
2n

n

)
.

By inspecting the proof of Theorem 2.1 one observes that the recurrence
relation (2.1) – together with its initial condition – is exactly a translation
of a recursive description of binary trees (that was given in Section 1.2.1: a
binary tree B is either just an external node or an internal node (the root)
with two subtrees that are again binary trees.

It is also worth mentioning that the formal restatement of this recursive
definition,

B = � + ◦ × B × B = � + ◦ × B2, (2.4)

leads to a corresponding relation (2.2) for the generating function:

b(x) = 1 + xb(x)2,

compare also with the schematic Figure 2.2.

2.1.1 Generating Functions and Combinatorial Constructions

We will now provide a more systematic treatment of combinatorial construc-
tions and generating functions. The presentation is inspired by the work of
Flajolet and his co-authors (see in particular the monograph [84] where this
concept is described in much more detail).
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= +

Fig. 2.2. Binary tree

Definition 2.2. The ordinary generating function (ogf) of a sequence (an)n≥0

(of complex numbers) is the formal power series

a(x) =
∑
n≥0

anx
n. (2.5)

Similarly the exponential generating function (egf) of the sequence (an)n≥0 is
given by

â(x) =
∑
n≥0

an
xn

n!
. (2.6)

We use the notation
[xn]a(x) = an

to extract the coefficient of xn in a generating function.
It is clear that certain algebraic operations on the sequence an have their

counterpart on the level of generating functions. The two tables in Figure 2.3
collect some of them.

A generating function a(x) represents an analytic function for |x| < R,
where

R =

(
lim sup

n→∞
|an|

1
n

)−1

denotes the radius of convergence. Thus, if R > 0 then we can either use a
differentiation to represent the sequence

an =
a(n)(0)

n!
,

or we use Cauchy’s formula

an =
1

2πi

∫
γ

a(x)
dx

xn+1
,

where γ is a closed curve inside the region of analyticity of a(x) with winding
number +1 around the origin.
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sequence ogf

sum cn = an + bn c(x) = a(x) + b(x)

product cn =
nP

k=0

akbn−k c(x) = a(x)b(x)

partial sums cn =
nP

k=0

ak c(x) = 1
1−x

a(x)

marking cn = nan c(x) = xa′(x)

scaling cn = γnan c(x) = a(γx)

sequence egf

sum cn = an + bn ĉ(x) = â(x) + b̂(x)

product cn =
nP

k=0

`
n
k

´
akbn−k ĉ(x) = â(x)b̂(x)

binomial sums cn =
nP

k=0

`
n
k

´
ak ĉ(x) = exâ(x)

marking cn = nan ĉ(x) = xâ′(x)

scaling cn = γnan ĉ(x) = â(γx)

Fig. 2.3. Basic relations between sequences and their generating functions

Another point of view of generating functions is that they can be consid-
ered as a power series generated by certain combinatorial objects.

Let C be a (countable) set of objects, for example, a set of graphs and

| · | : C → N

a weight function that assigns to every element c ∈ C a weight or size |c|. We
assume that the sets

Cn := | · |−1({n}) = {c ∈ C : |c| = n} (n ∈ N)

are all finite. Set cn = |Cn|. Then the ordinary generating function c(x) of the
pair (C, | · |) that we also call combinatorial structure is given by

c(x) =
∑
c∈C

x|c| =
∑
n≥0

cnx
n,

and the exponential generating function ĉ(x) by

ĉ(x) =
∑
c∈C

x|c|

|c|! =
∑
n≥0

cn
xn

n!
.

The choice of ordinary generating functions or exponential generating func-
tions depends on the kind of problem. As a rule unlabelled (or unordered)
structures should be counted with the help of ordinary generating functions
and labelled (or ordered) structures with exponential generating functions.

Example 2.3 The ogf of binary trees, where the weight is the number of
internal nodes, is given by
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b(x) =
1−

√
1− 4x

2x
.

Example 2.4 The egf of permutations of finite sets, where the weight is the
size of the finite set, is given by

p̂(x) =
∑
n≥0

n!
xn

n!
=

1

1− x .

One major aspect in the use of generating functions is that certain combi-
natorial constructions have their counterparts in relations of the corresponding
generating functions. The recursive description of binary trees (2.4) is a nice
example to support this statement.

We again use the notation A,B,C, . . . for sets of combinatorial objects
with corresponding size functions | · |. First suppose that the objects that we
consider are (in some sense) unlabelled or unordered. We have the following
basic operations:

1. If A and B are disjoint then C = A+B = A ∪B denotes the union of A
and B.

2. C = A × B denotes the Cartesian product. The size function of a pair
c = (a, b) is given by |c| = |a|+ |b|.

3. Suppose that A contains no object of size 0 and that the sets A, A × A,
A×A×A, . . . are disjoint. Then

C = A∗ := {ε}+A+A×A+A×A×A+ · · ·

is the set of (finite) sequences of elements of A (ε denotes the empty object
of size zero).

4. Let C = Pfin(A) denote the set of all finite subsets of A. The size of a
subset {a1, a2, . . . , ak} ⊆ A is given by |{a1, a2, . . . , ak}| = |a1| + |a2| +
· · ·+ |ak|.

5. Let C = Mfin(A) denote the set of all finite multisets {aj1
1 , a

j2
2 , . . . , a

jk

k }
of A, that is, the element ai is taken ji times (1 ≤ i ≤ k). Its size is given
by |{aj1

1 , a
j2
2 , . . . , a

jk

k }| = j1|a1|+ j2|a2|+ · · ·+ jk|ak|.
6. Suppose that B has no object of zero size. Then the composition C =
A(B) of A and B is given by

C = A(B) := A0 +A1 ×B +A2 ×B ×B + · · · ,

where An = {a ∈ A | |a| = n}. The size of (a, b1, b2, . . . , bn) ∈ An×B×B×
· · ·×B is defined by |b1|+|b2|+· · ·+|bn|. The combinatorial interpretation
of this construction is that an element a ∈ A of size |a| = n is substituted
by an n-tuple of elements of B.

As already indicated these combinatorial constructions have counterparts
in relations of generating functions:
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combinat. constr. ogf

C = A+B c(x) = a(x) + b(x)
C = A×B c(x) = a(x)b(x)
C = A∗ c(x) = 1

1−a(x)

C = Pfin(A) c(x) = ea(x)− 1
2 a(x2)+ 1

3 a(x3)∓···

C = Mfin(A) c(x) = ea(x)+ 1
2 a(x2)+ 1

3 a(x3)+···

C = A(B) c(x) = a(b(x))

We just indicate the proofs. For example, the ogf of the Cartesian product
C = A×B is given by

c(x) =
∑

(a,b)∈A×B

x|(a,b)| =
∑

(a,b)∈A×B

x|a|+|b| =
∑
a∈A

x|a| ·
∑
b∈B

x|b| = a(x) · b(x).

This implies that 1/(1− a(x)) represents the ogf of A∗.
The generating function of the finite subsets of A is given by

c(x) =
∏
a∈A

(
1 + x|a|

)
=
∏
n≥1

(1 + xn)an .

By taking logarithms and expanding the series log(1 + xn) one obtains the

proposed representation c(x) = ea(x)− 1
2 a(x2)+ 1

3 a(x3)∓···. Similarly the ogf of
finite multisets is given by

c(x) =
∏
a∈A

(
1

1− x|a|
)

=
∏
n≥1

(
1

1− xn

)an

.

There are similar constructions of so-called labelled or ordered combina-
torial objects with corresponding relations for their exponential generating
functions. We call a combinatorial object c of size n labelled if it is formally
of the form c = c̃ × π, where π ∈ Sn is a permutation. For example, we can
think of a graph c̃ of n vertices and the permutation π represents a labelling
of its nodes. We list some of the combinatorial constructions where we have
to take care of the permutations involved.

1. If A and B are disjoint then C = A+B = A ∪B denotes the union of A
and B.

2. The labelled product C = A ∗ B of two labelled structures is defined as
follows. Suppose that a = ã × π ∈ A has size |a| = k and b = b̃× σ ∈ B
has size |b| = m. Then we define a∗b as the set of objects ((ã, b̃), τ), where
τ ∈ Sk+m runs over all permutations that are consistent with π and σ in
the following way: there is a partition {j1, j2, . . . , jk}, {�1, �2, . . . , �m} of
{1, 2, . . . , k +m} with j1 < j2 < · · · < jk and �1 < �2 < · · · < �m such
that
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τ(1) = jπ(1), τ(2) = jπ(2), . . . , τ(k) = jπ(k) and

τ(k + 1) = �σ(1), τ(k + 2) = �σ(2), . . . , τ(k +m) = �σ(m).

Finally we set

A ∗B =
⋃

a∈A, b∈B

a ∗ b.

The size of ((ã, b̃), τ) is given by |((ã, b̃), τ)| = |a|+ |b|.
3. Suppose that A contains no object of size 0 and that the sets A, A ∗ A,
A ∗A ∗A, . . . are disjoint. Then

C = A∗ := {ε}+A+A ∗A+A ∗A ∗+ · · ·

is the set of (finite labelled) sequences of elements of A.
4. Similarly we define unordered labelled sequences by

C = eA = {ε}+A+
1

2!
A ∗A+

1

3!
A ∗A ∗A+ · · · ,

where the short hand notation 1
n!A∗A∗ · · · ∗A means that we do not take

care of the order of the n elements in the sequence A ∗A ∗ · · · ∗A.
5. Suppose that B has no object of size zero. Then the composition C =
A(B) of A and B is given by

C = A(B) := A0 +A1 ×B +A2 ×B ×B + · · · ,

where An = {a ∈ A | |a| = n}.

The corresponding relations for the exponential generating functions are
listed in the following table:

combinat. constr. egf

C = A+B ĉ(x) = â(x) + b̂(x)

C = A ∗B ĉ(x) = â(x)b̂(x)
C = A∗ ĉ(x) = 1

1−â(x)

C = eA ĉ(x) = eâ(x)

C = A(B) ĉ(x) = â(b̂(x))

The only case that has to be explained is the labelled product C = A ∗B.
If |a| = k and |b| = m then there are exactly

(
k+m

k

)
possible ways to partition

{1, 2, . . . , k+m} into two sets of size k and m. Thus a ∗ b has size
(
k+m

k

)
and

consequently

ĉ(x) =
∑

a∈A,b∈B

(|a|+ |b|
|a|

)
x|a|+|b|

(|a|+ |b|)! =
∑
a∈A

x|a|

|a|! ·
∑
b∈B

x|b|

|b|! = â(x) · b̂(x).
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2.1.2 Pólya’s Theory of Counting

Counting problems on more involved unlabelled or unordered structures are
usually much more difficult to handle than those on labelled structures. For
example, it is possible to count labelled planar graphs (using generating func-
tions), but the corresponding counting problem for unlabelled planar graphs
has not been solved so far. The problem arises from symmetries which are
difficult to deal with. Nevertheless, Pólya’s theory of counting gives a method
to handle such situations. We adopt the notation of [138].

Definition 2.5. Let D be a finite set (of size n) and G ≤ SD a sub-
group of the group SD of permutations of the set D. Then the cycle index
PG(x1, x2, . . . , xn) of G is defined by

PG(x1, x2, . . . , xn) :=
1

|G|
∑
π∈G

x
λ1(π)
1 x

λ2(π)
2 · · · xλn(π)

n ,

where λj(π) denotes the number of cycles of length j in the canonical cycle
decomposition of the permutation π.

Example 2.6 The cycle index of the trivial subgroup En = {id} of Sn is
given by

PEn(x1, x2, . . . , xn) = xn
1 ,

whereas the cycle index of Sn has the following representation:

PSn (x1, x2, . . . , xn)

=
1

n!

∑
k1+2k2+···+nkn=n

n!

k1!k2! · · ·kn! · 1k12k2 · · ·nkn
xk1

1 x
k2
2 · · ·xkn

n .

Note that the ogf of the cycle indices of Sn has a nice representation:∑
n≥0

PSn(x1, x2, . . . , xn)tn = etx1+
1
2 t2x2+

1
3 t3x3+···.

The term 1
k t

kxk can be considered as the egf of the cycle index of a cyclic
permutation of length k. Hence, the generating function

tx1 +
1

2
t2x2 +

1

3
t3x3 + · · ·

describes all possible cyclic permutations. Since permutations can be seen as
an unordered sequence of cyclic permutations, the generating function

etx1+
1
2 t2x2+

1
3 t3x3+···

represents all cycle indices of permutations. Due to the factor 1/n! in the
definition of the cycle index we finally have a ogf of the cycle indices of Sn.
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Example 2.7 The cycle index of the cyclic group Cn (of order n, considered
as a subgroup of Sn) is given by

PCn(x1, x2, . . . , xn) =
1

n

∑
d|n
ϕ(d)x

n/d
d ,

where ϕ denotes Euler’s totient function.

Also consider the set M = RD, that is, the set of all functions f : D → R.
Let G be a subgroup of SD.

We call two functions f, g ∈ M equivalent with respect to G (and denote
this by f ∼ g) if there is a permutation π ∈ G with f(π(x)) = g(x) for all
x ∈ D.

We consider a weight function w : R → W and define the weight of
f ∈M = RD by

w(f) =
∏
x∈D

w(f(x)).

It is clear that f ∼ g implies w(f) = w(g), that is, the weight w(c) can be
defined for an equivalence class c ∈M/∼, too.

Pólya’s theorem now gives an explicit representation of the sum of all
weights of equivalence classes (a proof based on Burnside’s lemma can be
found in [138]).

Theorem 2.8. Suppose that R and D are finite sets and let G be a subgroup
of SD, and set M = RD. Then we have

∑
c∈M/∼

w(c) = PG

(∑
r∈R

w(r),
∑
r∈R

w(r)2, . . . ,
∑
r∈R

w(r)|D|
)
,

where this equality is interpreted in the ring R[W ].

For example, it follows that the number of equivalence classes is given by
|M/∼| = PG(|R|, |R|, . . . , |R|).

However, we now want to apply this concept to combinatorial construc-
tions and generating functions. Let (A, | · |) be a combinatorial structure and
let k ≥ 1 be a fixed integer. Consider the set of k-tuples Ak, where the size
|(a1, a2, . . . , ak)| is defined by the sum of the sizes |a1|+ |a2|+ · · ·+ |ak|. Let
G be a subgroup of Sk and define (a1, a2, . . . , ak) ∼ (a′1, a

′
2, . . . , a

′
k) if there is

π ∈ Sk with aj = a′π(j) (1 ≤ j ≤ k). This is the same construction as above

by setting D = {1, 2, . . . , k} and R = A with the only difference that R is now
a countable set. Furthermore, we define the weight function w : A→ R[x] by
w(a) = x|a|.

If we set C = Ak/∼, then (C, | · |) is again a combinatorial structure and
Pólya’s theorem shows how the ordinary generating function c(x) is related
to a(x).
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Theorem 2.9. Let (A, | · |) be a combinatorial structure and C = Ak/∼ be
defined as above. Then the ordinary generating function c(x) is given by

c(x) = PG(a(x), a(x2), . . . , a(xk)). (2.7)

Proof. The proof is immediate. We only have to note that Theorem 2.8 for-
mally extends to countable sets R. For example, we first apply Theorem 2.8
for RN = {a ∈ A : |a| ≤ N} and MN = Rk

N . This leads to a corresponding
formula

cN (x) = PG(aN (x), aN (x2), . . . , aN(xk)),

where aN (x) and cN (x) are the ogf’s of AN and CN = Rk
N/∼. Obviously we

have [xn]aN (x) = [xn]a(x) and [xn]cN (x) = [xn]c(x) for all n ≤ N . Thus, we
can formally let N →∞ and obtain (2.7).

In particular, we can apply this construction to the cyclic group Ck and
the symmetric group Sk:

c(x) = PCk
(a(x), a(x2), . . . , a(xk)), (2.8)

or
c(x) = PSk

(a(x), a(x2), . . . , a(xk)). (2.9)

If we use the cyclic group then C can be interpreted as the set of cycles of
length k of elements of A and if we use the whole group Sk then C can be
seen as the set of multisets (of total size k) of elements of A. Note that the
representation (2.9) can also be deduced from the multiset construction of
unlabelled structures:

ea(x)+ 1
2! a(x2)+ 1

3! a(x3)+···.

If we introduce another variable t then the k-th coefficient

[tk]eta(x)+t2 1
2! a(x2)+t3 1

3! a(x3)+···

=
1

k!

∑
�1+2�2+···+k�k=k

k!

�1!�2! · · · �k! · 1�12�2 · · · k�k
a(x)�1a(x2)�2 · · · a(xk)�k

= PSk
(a(x), a(x2), . . . , a(xk))

collects all multisets of size k.
It is also of interest to consider k-tuples (a1, a2, . . . , ak) of different ele-

ments a1, a2, . . . , ak ∈ A. There is no general result here as for the unrestricted
case. Nevertheless there are some particular cases that can be treated simi-
larly. For example, if C denotes the set of k-tuples (a1, a2, . . . , ak) with the
property that all aj are different we have

c(x) = a(x)k −
k∑

�=2

(−1)�

(
k

l

)
a(x)k−�a(x�).
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This is just a direct application of the principle of inclusion and exclusion.
Finally, if C denotes the sets of size k of elements of A (that is, we consider

k-tuples (a1, a2, . . . , ak) with the property that all aj are different and the full
group Sk) we obtain

c(x) = PSk
(a(x),−a(x2), . . . , (−1)k−1a(xk)).

Here we just have to observe that this generating function is given by the k-th
coefficient

[tk]eta(x)−t2 1
2! a(x2)+t3 1

3! a(x3)∓···.

2.1.3 Lagrange Inversion Formula

Let a(x) =
∑

n≥0 anx
n be a power series with a0 = 0 and a1 = 0. The

Lagrange inversion formula provides an explicit representation of the coeffi-
cients of the inverse power series a[−1](x) which is defined by a(a[−1](x)) =
a[−1](a(x)) = x.

Theorem 2.10. Let a(x) =
∑
n≥0

anx
n be a formal power series with a0 = 0

and a1 = 0. Let a[−1](x) be the inverse power series and g(x) an arbitrary
power series. Then the n-th coefficient of g(a[−1](x)) is given by

[xn]g(a[−1](x)) =
1

n
[un−1]g′(u)

(
u

a(u)

)n

(n ≥ 1).

In tree enumeration problems the following variant is more appropriate.

Theorem 2.11. Let Φ(x) be a power series with Φ(0) = 0 and y(x) the
(unique) power series solution of the equation

y(x) = xΦ(y(x)).

Then y(x) is invertible and the n-th coefficient of g(y(x)) (where g(x) is an
arbitrary power series) is given by

[xn]g(y(x)) =
1

n
[un−1]g′(u)Φ(u)n (n ≥ 1).

Theorems 2.10 and 2.11 are equivalent. If a(x) = x/Φ(x) then a[−1](x) = y(x),
where y(x) satisfies the equation y(x) = xΦ(y(x)).

We give an immediate application of Theorem 2.11. We have already ob-
served that the generating function b(x) of binary trees satisfies the functional
equation (2.2). If we set b̃(x) = b(x)− 1 then

b̃(x) = x(1 + b̃(x))2.

By Theorem 2.11 with Φ(x) = (1 + x)2 we obtain (for n ≥ 1)
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bn = [xn]b̃(x) =
1

n
[un−1](1 + u)2n

=
1

n

(
2n

n− 1

)
=

1

n+ 1

(
2n

n

)
.

Proof. Since Theorems 2.10 and 2.11 are equivalent, we only have to prove
Theorem 2.10. We just present an analytic proof for complex coefficients. The
resulting analytic identities are formal ones, too.

We start with Cauchy’s formula and use the substitution u = a[−1](x).
Note that if γ is a contour with winding number 1 around the origin then
γ′ = a[−1](γ) has the same property:

[xn]g(a[−1](x)) =
1

2πi

∫
γ

g(a[−1](x))

xn+1
dx

=
1

2πi

∫
γ′
g(u)

a′(u)

a(u)n+1
du.

Since (
g(u)

1

a(u)n

)′
= g′(u)

1

a(u)n
− n g(u)

a′(u)

a(u)n+1
,

it follows that ∫
γ′
g(u)

a′(u)

a(u)n+1
du =

1

n

∫
γ′
g′(u)

1

a(u)n
du,

and consequently

[xn]g(a[−1](x)) =
1

n

∫
γ′
g′(u)

un

a(u)n

du

un

=
1

n
[un−1]g′(u)

(
u

a(u)

)n

.

2.2 Asymptotics with Generating Functions

Generating functions a(x) =
∑

n≥0 anx
n can be considered, too, as power

series in a complex variable x. If the radius of convergence is positive then
one can apply Cauchy’s formula

an =
1

2πi

∫
γ

a(x)
dx

xn+1
,

where the contour γ is contained in the region of analyticity of a(x) and
encircles the x = 0 once. Thus, the analytic behaviour of a(x) can be used
to obtain information on the order of magnitude of an. In what follows we
follow this idea by showing that certain kinds of singularities of a(x) induce



38 2 Generating Functions

corresponding asymptotics for the coefficients an. This singularity analysis
was introduced in a systematic way by Flajolet and Odlyzko [83] and will be
the starting point of the following treatment. However, the main focus will be
the analysis of functions y(x) that satisfy a functional equation of the form
y(x) = F (x, y(x)). We determine the kind of singularity (that will be of square
root type) and extend this concept to a combinatorial central limit theorem
(Theorem 2.23).

Note that Lagrange’s inversion formula can be used to obtain explicit
representations for the coefficients of the solution of the functional equation
y = xΦ(y). The functional equation y = F (x, y) mentioned above is therefore
a natural generalisation that occurs frequently in tree enumeration problems,
too.

2.2.1 Asymptotic Transfers

The basic property that allows an asymptotic transfer between the analytic
behaviour of a generating function a(x) and to its coefficients is the so-called
Transfer Lemma by Flajolet and Odlyzko [83]. Note that an essential assump-
tion is that a(x) has an analytic continuation to a so-called Delta-domain Δ
that is depicted in Figure 2.4.

Lemma 2.12. Let
a(x) =

∑
n≥0

anx
n

be analytic in a region

Δ = Δ(x0, η, δ) = {x : |x| < x0 + η, | arg(x/x0 − 1)| > δ},

in which x0 and η are positive real numbers and 0 < δ < π/2. Furthermore
suppose that there exists a real number α such that

a(x) = O
(
(1− x/x0)−α

)
(x ∈ Δ).

Then
an = O

(
x−n

0 nα−1
)
.

Proof. One uses Cauchy’s formula

an =
1

2πi

∫
γ

a(x)

xn+1
dx,

where γ is a suitable chosen path of integration around the origin. In partic-
ular, one can use γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4, where (see also Figure 2.4)
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Δ

x0

Δ

x0

γ

Fig. 2.4. Delta-domain and path of integration

γ1 =

{
x = x0

(
1 + e−iδ−i+ (ηn− t)

n

)
: 0 ≤ t ≤ ηn

}
,

γ2 =

{
x = x0

(
1− e

iϕ

n

)
: −π

2
+ δ ≤ ϕ ≤ π

2
− δ
}
,

γ3 =

{
x = x0

(
1 + eiδ

i+ t

n

)
: 0 ≤ t ≤ ηn

}
,

and γ4 is a circular arc centred at the origin and making γ a closed curve.
It is easy to show that the bound |a(x)| ≤ C|1 − x/x0|−α implies∣∣∣∣∫

γ1∪γ2∪γ3

a(x)

xn+1
dx

∣∣∣∣ ≤ Cx−n
0 nα−1 ·

(
π + 2

∫ ∞
0

e−t cos δ

1 + tα
dt

)
= O
(
x−n

0 nα−1
)

whereas the integral over γ4 is exponentially smaller:∣∣∣∣∫
γ4

a(x)

xn+1
dx

∣∣∣∣ = O((x0(1 + η))−n).

Remark 2.13 A slight modification of the proof Lemma 2.12 also shows that

a(x) = o
(
(1− x/x0)−α

)
(x→ x0, x ∈ Δ)

implies
an = o

(
x−n

0 nα−1
)

(n→∞).

Next we discuss the case a(x) = (1 − x)−α, where the n-th coefficient
equals the binomial coefficient (−1)n

(−α
n

)
.

Lemma 2.14. For any compact set C in the complex plane C we have
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(−1)n

(−α
n

)
=
nα−1

Γ (α)
+O
(
n�α−2
)

(2.10)

uniformly for α ∈ C as n→∞.

Proof. By Cauchy’s formula we have

(−1)n

(−α
n

)
=

1

2πi

∫
γ

(1− x)−αx−n−1 dx,

where γ is a suitable closed curve around the origin. Note that the function
a(x) = (1 − x)−α has an analytic continuation to C \ (1,∞). Thus, we have
more flexibility as in the proof of Lemma 2.12. We use γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4,
where

γ1 =

{
x = 1− i+

√
n− t
n

: 0 ≤ t ≤
√
n

}
,

γ2 =

{
x = 1− 1

n
e−iϕ : −π

2
≤ ϕ ≤ π

2

}
,

γ3 =

{
x = 1 +

i+ t

n
: 0 ≤ t ≤

√
n

}
,

and γ4 is a circular arc centred at the origin and making γ a closed curve.
The easiest part is to estimate the integral over γ4:∣∣∣∣∣∣ 1

2πi

∫
γ4

(1− x)−αx−n−1 dx

∣∣∣∣∣∣ ≤ (1+n−
1
2 )−n max

(
n

1
2�α, (2 + n−

1
2 )−�α
)
e2π|α|.

On the remaining part γ1 ∪ γ2 ∪ γ3 we use the Substitution x = 1 + t
n , where

t varies on a corresponding curve H1 ∪H2 ∪H3 that can be considered as a
finite part of a so-called Hankel contourH (see Figure 2.5). The notion Hankel
contour is adopted from the path of integration that is used for Hankel’s
integral representation for

1

Γ (s)
=

1

2πi

∫
H

(−t)−se−t dt

that we use in a moment.
We approximate x−n−1 by e−t(1 + O(t2/n)). Now the integral over γ1 ∪

γ2 ∪ γ3 is asymptotically given by

1

2πi

∫
γ1∪γ2∪γ3

(1− x)−αx−n−1 dx =
nα−1

2πi

∫
H1∪H2∪H3

(−t)−αe−t dt

+
nα−2

2πi

∫
H1∪H2∪H3

(−t)−αe−t · O(t2) dt

= nα−1I1 + nα−2I2.
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H

Fig. 2.5. Hankel contour of integration

Now I1 approximates 1/Γ (α) by

I1 =
1

Γ (α)
+O

(∫ ∞
√

n

e2π|α|(1 + t2)−
1
2�αe−t dt

)
=

1

Γ (α)
+O
(
e2π|α|(1 + n2)−

1
2�αe−

√
n
)
.

Finally, I2 can be estimated by

I2 = O

(∫ ∞
0

e2π|α|(1 + t2)1−
1
2�α dt+O(1)

)
.

Thus, for any compact set C in C we have

(−1)n

(−α
n

)
=
nα−1

Γ (α)
+O(nα−2)

uniformly for α ∈ C as n→∞.

This transfer lemma has two direct corollaries:

Corollary 2.15 Suppose that a function is analytic in a region of the form
Δ and that it has an expansion of the form

a(x) = C

(
1− x

x0

)−α

+O

((
1− x

x0

)−β
)

(x ∈ Δ),

where β < �(α). Then we have

an = [xn]a(x) = C
nα−1

Γ (α)
x−n

0 +O
(
x−n

0 nmax{�(α)−2,β−1}
)
. (2.11)

Proof. We just have to use Lemma 2.14 for the leading term and to apply
Lemma 2.12 for the remainder term.
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Corollary 2.16 Suppose that a(x) is analytic in a Delta-region Δ such that

a(x) ∼ C
(

1− x

x0

)−α

for x → x0 with x ∈ Δ, where α is a complex number different from
{0,−1,−2, . . .}. Then, as n→∞

[xn]a(x) ∼ Cn
α−1

Γ (α)
x−n

0 .

Proof. Instead of Lemma 2.12 we now use the properties mentioned in Re-
mark 2.13 for estimating the remainder term.

Remark 2.17 Transfer principles like the one presented in Corollary 2.16
are not only valid for functions that behave like C(1 − x/x0)−α. For example
one can add slowly varying factors (compare with [83]). In particular, if it is
a purely logarithmic behaviour of the form

a(x) ∼ C log

(
1− x

x0

)
for x ∈ Δ then we have

[xn]a(x) ∼ C

n
x−n

0 .

Another important issue is that in fact all estimates in the proof of
Lemma 2.12 are explicit and, thus, we obtain uniform estimates if we have an
additional parameter.

Lemma 2.18. Suppose that a(x;w) is a power series in x and a parameter
w ∈W such that there is an expansion of the form

a(x;w) = C(w)

(
1− x

x0(w)

)−α(w)

+O

((
1− x

x0(w)

)−β(w)
)
,

that is uniform for w ∈ W and x ∈ Δ(x0(w)) with functions C(w), x0(w),
α(w), and β(w) that remain bounded and satisfy β(w) < �(α(w)) for all
w ∈W . Then we get

[xn]a(x;w) = C(w)
nα(w)−1

Γ (α(w))
x0(w)−n +O

(
x0(w)−nnmax{�(α(w))−2,β(w)−1}

)
(2.12)

uniformly for w ∈W as n→∞.

Proof. We just have to use two facts. First, the expansion (2.10) holds uni-
formly if α varies in some compact subset of the complex plane. Second, the
estimates of Lemma 2.12 are explicit and also uniform.
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2.2.2 Functional Equations

We already mentioned that functional equations of the form y = F (x, y) occur
naturally in tree enumeration problems. Informally they reflect the recursive
nature of trees when one considers the subtrees of the root.

The next theorem shows that solutions of functional equations of that
type (usually) have a square root singularity. The history of this theorem
goes back to Bender [7], Canfield [31] and Meir and Moon [152]. It will have
several applications within this book, in particular in Chapters 3, 4 and 9.

Theorem 2.19. Suppose that F (x, y) is an analytic function in x, y around
x = y = 0 such that F (0, y) = 0 and that all Taylor coefficients of F around
0 are real and non-negative. Then there exists a unique analytic solution y =
y(x) of the functional equation

y = F (x, y) (2.13)

with y(0) = 0 that has non-negative Taylor coefficients around 0.
If the region of convergence of F (x, y) is large enough such that there exist

positive solutions x = x0 and y = y0 of the system of equations

y = F (x, y),

1 = Fy(x, y)

with Fx(x0, y0) = 0 and Fyy(x0, y0) = 0, then y(x) is analytic for |x| < x0

and there exist functions g(x), h(x) that are analytic around x = x0 such that
y(x) has a representation of the form

y(x) = g(x)− h(x)

√
1− x

x0
(2.14)

locally around x = x0. We have g(x0) = y(x0) and

h(x0) =

√
2x0Fx(x0, y0)

Fyy(x0, y0)
.

Moreover, (2.14) provides a local analytic continuation of y(x) (for arg(x −
x0) = 0).

If we assume that [xn] y(x) > 0 for n ≥ n0, then x = x0 is the only sin-
gularity of y(x) on the circle |x| = x0 and we obtain an asymptotic expansion
for [xn] y(x) of the form

[xn] y(x) =

√
x0Fx(x0, y0)

2πFyy(x0, y0)
x−n

0 n−3/2
(
1 +O(n−1)

)
. (2.15)
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Note that the assumptions Fx(x0, y0) = 0 and Fyy(x0, y0) = 0 are really
necessary to obtain a representation of the form (2.14). If Fx(x, y) = 0 then
F (x, y) (and y(x)) would not depend on x. If Fyy(x, y) = 0 then F is linear
in y:

F (x, y) = yF1(x) + F2(x), (2.16)

and consequently

y(x) =
F2(x)

1− F1(x)
(2.17)

is explicit and surely not of the form (2.14). However, a representation of
the form (2.17) (where F1(x) ≡ 0) usually leads to almost the asymptotic
expansions for the coefficients of y(x) in the case covered by Theorem 2.19.
Suppose that the radius r of convergence of F1(x) is large enough that there
is 0 < x0 < r with F1(x0) = 1 and that [xn]y(x) > 0 for n ≥ n0. Then x0 is
the only singularity on the circle of convergence |x| = x0 of y(x) and one gets

[xn]y(x) =
F2(x0)

x0F ′(x0)
x−n

0 +O((x0 + η)−n)

for some η > 0.

Remark 2.20 Theorem 2.19 is designed for combinatorial applications, where
the non-negativity of the coefficients is automatically satisfied. However, as we
will see in the subsequent proof, in order to obtain a local representation of
the form (2.14) it is sufficient to check analyticity of F and the conditions

y0 = F (x0, y0),

1 = Fy(x0, y0),

0 = Fx(x0, y0),

0 = Fyy(x0, y0).

Proof. Firstly we show that there exists a unique (analytic) solution y = y(x)
of y = F (x, y) with y(0) = 0. Since F (0, y) = 0, it follows that the functional
mapping

y(x) �→ F (x, y(x))

is a contraction for small x. Thus the iteratively defined functions y0(x) ≡ 0
and

ym+1(x) = F (x, ym(x)) (n ≥ 0)

converge uniformly to a limit function y(x) which is the unique solution of
(2.13). By definition it is clear that ym(x) is an analytic function around 0
and has real and non-negative Taylor coefficients. Consequently, the uniform
limit y(x) is analytic, too, with non-negative Taylor coefficients.

It is also possible to use the implicit function theorem. Since

Fy(0, 0) = 0 = 1,
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there exists a solution y = y(x) of (2.13) which is analytic around 0.
However, it is useful to know that all Taylor coefficients of y(x) are non-

negative. Namely, it follows that if y(x) is regular at x′ (which is real and
positive) then y(x) is regular for all x with |x| ≤ x′.

Let x0 denote the radius of convergence of y(x). Then x0 is a singularity
of y(x). The mapping

x �→ Fy(x, y(x))

is strictly increasing for real and non-negative x as long as y(x) is regular.
Note that Fy(0, y(0)) = 0. As long as Fy(x, y(x)) < 1 it follows from the
implicit function theorem that y(x) is regular even in a neighbourhood of x.
Hence there exists a finite limit point x1 such that lim

x→x1−
y(x) = y1 is finite

and satisfies Fy(x1, y1) = 1. If y(x) was regular at x = x1, then

y′(x1) = Fx(x1, y(x1)) + Fy(x1, y(x1))y′(x1)

would imply Fx(x1, y(x1)) = 0 which is surely not true. Thus, y(x) is singular
at x = x1 which implies that x1 = x0. Moreover y0 = y(x0) = y1 is finite.

Now let us consider the equation y − F (x, y) = 0 around x = x0 and
y = y0. We have 1 − Fy(x0, y0) = 0, but −Fyy(x0, y0) = 0. Hence by the
Weierstrass preparation theorem1 there exist functions H(x, y), p(x), q(x)
which are analytic around x = x0 and y = y0 and satisfy H(x0, y0) = 1,
p(x0) = q(x0) = 0 and

y − F (x, y) = H(x, y)((y − y0)2 + p(x)(y − y0) + q(x))

locally around x = x0 and y = y0. Since Fx(x0, y0) = 0, we also have qx(x0) =
0. This means that any analytic function y = y(x) which satisfies y(x) =
F (x, y(x)) in a subset of a neighbourhood of x = x0 with x0 on its boundary
is given by

y(x) = y0 −
p(x)

2
±
√
p(x)2

4
− q(x).

Since p(x0) = 0 and qx(x0) = 0, we have

∂

∂x

(
p(x)2

4
− q(x)

)
x=x0

= 0,

too. Thus there exists an analytic function K(x) such that K(x0) = 0 and

p(x)2

4
− q(x) = K(x)(x − x0)

1 The Weierstrass preparation theorem (see [121] or [84, Theorem B.5])
says that every non-zero function F (z1, . . . , zd) with F (0, . . . , 0) = 0
that is analytic at (0, . . . , 0) has a unique factorisation F (z1, . . . , zd) =
K(z1, . . . , zd)W (z1; z2, . . . , zd) into analytic factors, where K(0, . . . , 0) �= 0 and
W (z1; z2, . . . , zd) = zd

1 + zd−1
1 g1(z2, . . . , zd) + · · · + gd(z2, . . . , zd) is a so-called

Weierstrass polynomial, that is, all gj are analytic and satisfy gj(0, . . . , 0) = 0.
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locally around x = x0. This finally leads to a local representation of y = y(x)
of the kind

y(x) = g(x)− h(x)

√
1− x

x0
, (2.18)

in which g(x) and h(x) are analytic around x = x0 and satisfy g(x0) = y0 and
h(x0) < 0.

In order to calculate h(x0) we use Taylor’s theorem

0 = F (x, y(x))

= Fx(x0, y0)(x− x0) +
1

2
Fyy(x0, y0)(y(x) − y0)2 + · · · (2.19)

= Fx(x0, y0)(x− x0) +
1

2
Fyy(x0, y0)h(x0)2(1− x/x0) +O(|x− x0|3/2).

By comparing the coefficients of (x− x0) we immediately obtain

h(x0) =

√
2x0Fx(x0, y0)

Fyy(x0, y0)
.

We now want to apply the transfer lemma (Lemma 2.12). For this purpose
we have to show that y(x) can be continued analytically to a region of the
form Δ. The representation (2.18) provides such an analytic continuation for
x in a neighbourhood of x0. Now suppose that |x2| = x0 and | arg(x2)| ≥ δ.
Then the assumption yn > 0 for n ≥ n0 implies that |y(x2)| < y(|x2|) = y(x0)
and consequently

|Fy(x2, y(x2))| ≤ Fy(|x2|, |y(x2)|) < Fy(|x2|, y(|x2|)) = Fy(x0, y0) = 1.

Thus, Fy(x2, y(x2)) = 1 and the implicit function theorem shows that there
exists an analytic solution y = y(x) in a neighbourhood of x2. For |x| < x0 this
solution equals the power series y(x) and for |x| ≥ x0 it provides an analytic
continuation to a region of the form Δ (by compactness it is sufficient to
consider finitely many x2 with |x2| = x0 and | arg(x2)| ≥ δ). So finally we
can apply Lemma 2.12 (or (2.11) with α = −1/2 and β = −3/2; the analytic
part of g(x) provides exponentially smaller contributions.) This completes the
proof of (2.15).

2.2.3 Asymptotic Normality and Functional Equations

We start with a slight extension of Theorem 2.19, where we add an additional
k-dimensional parameter u = (u1, . . . , uk) (compare also with [59]). This con-
cept turns out to be useful for studying the distribution of tree parameters
like the number of leaves. However, it has many other applications.

The reader might skip most parts of this section in a first reading, since it
is quite technical, and should focus on Theorem 2.23 which is the main result
of Section 2.2.3.
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Theorem 2.21. Suppose that F (x, y,u) =
∑

n,m Fn,m(u)xnym is an analytic
function in x, y around 0 and u around 0 such that F (0, y,u) ≡ 0, that
F (x, 0,u) ≡ 0, and that all coefficients Fn,m(1) of F (x, y, 1) are real and
non-negative. Then the unique solution y = y(x,u) =

∑
n yn(u)xn of the

functional equation
y = F (x, y,u) (2.20)

with y(0,u) = 0 is analytic around 0 and has non-negative coefficients yn(1)
for u = 1 = (1, . . . , 1).

If the region of convergence of F (x, y,u) is large enough such that there
exist non-negative solutions x = x0 and y = y0 of the system of equations

y = F (x, y,1),

1 = Fy(x, y,1)

with Fx(x0, y0, 1) = 0 and Fyy(x0, y0,1) = 0 then there exist functions f(u),
g(x,u), h(x,u) which are analytic around x = x0, u = 1 such that y(x,u) is
analytic for |x| < x0 and |uj − 1| ≤ ε (for some ε > 0 and 1 ≤ j ≤ k) and has
a representation of the form

y(x,u) = g(x,u)− h(x,u)

√
1− x

f(u)
(2.21)

locally around x = x0, u = 1.
If yn(1) > 0 for n ≥ n0, then we also get

yn(u) =

√
f(u)Fx(f(u), y(f(u),u),u)

2πFyy(f(u), y(f(u),u),u)
f(u)−nn−3/2

(
1 +O(n−1)

)
(2.22)

uniformly for |uj − 1| < ε, 1 ≤ j ≤ k.

Proof. The proof is completely the same as that of Theorem 2.19. We just
have to be aware of the additional analytic parameter u, in particular we
have to apply Lemma 2.18 for w = u.

Interestingly there is a strong relation to random variables that are asymp-
totically Gaussian. A random variable Z is called Gaussian or normal with
law N(μ, σ2), if its distribution function is of the form

P{Z ≤ x} = Φ

(
x− μ
σ

)
,

where μ is real, σ is positive and real, and

Φ(x) =
1√
2π

∫ x

−∞
e−

1
2 t2 dt.

We have EZ = μ and VarZ = σ2. Equivalently, its characteristic function is
given by



48 2 Generating Functions

E eitZ = eiμt− 1
2 σ2t2 .

A random vector Z = (Z1, . . . , Zk) is normally distributed with mean μ and
covariance matrix Σ (with law N(μ,Σ)), if and only if all linear forms aTZ =
a1Z1+· · ·+akZk are normally distributed with mean aTμ and variance aTΣa.

The Gaussian distribution is important because it is a universal law that
appears as a limiting distribution for sums of independent and weakly depen-
dent random variables.

We say, that a sequence of random variables Xn satisfies a central limit
theorem with (scaling) mean μn and (scaling) variance σ2

n, if

P{Xn ≤ μn + x · σn} = Φ(x) + o(1)

as n→∞. In terms of weak convergence2 this is equivalent to

Xn − μn

σn

d−→ N(0, 1). (2.23)

For example, if Xn is the sum ξ1 + ξ2 + · · ·+ ξn of i.i.d. random variables ξj
(with finite second moment) we have (2.23) with μ = E ξj and σ =

√
Var ξj .

This can be checked easily by Lévy’s criterion. Note that the characteristic
function of Xn is just the n-th power of the characteristic function of ξj :

E eitXn = E eit(ξ1+ξ2+···+ξn) =
(
E eitξj
)n
.

We state (and prove) a multivariate version of the so-called Quasi Power
Theorem by H.-K. Hwang [104] (see also [84], similar theorems can be found
in [6, 10]), which is very useful to prove a central limit theorem. The idea
is that if the characteristic function of a sequence of random variables Xn

behaves almost like powers of a function, then the distribution of Xn should
be approximated by a corresponding sum of i.i.d. random variables and, thus,
one can expect a central limit theorem. Note that the so-called probability
generating function EuX is related to the characteristic function by setting
u = eit.

We also include simple tail estimates. (There exists a more precise large
deviation result for the univariate case [105].)

Theorem 2.22. Let Xn be a k-dimensional random vector with the property
that3

2 A sequence of random variables Xn converges weakly to a random variable
X, if limn→∞ P{Xn ≤ x} = P{X ≤ x} holds for all points of continuity of

FX(x) = P{X ≤ x}. This is denoted by Xn
d−→ X. Another possible definition

is that limn→∞ E F (Xn) = E F (Xn) for all bounded continuous functions F . It
is sufficient to check this condition for exponential functions F (x) = eitx. Hence,

Xn
d−→ X, if and only if limn→∞ E eitXn = E eitX (for all real numbers t) which

is Lévy’s criterion. Corresponding properties hold for random vectors.
3 If u = (u1, . . . , uN ) and x = (x1, . . . , xN) are vectors of real (or complex) numbers

then ux abbreviates ux1
1 ux2

2 · · ·uxN
N .
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EuXn = eλn·A(u)+B(u)

(
1 +O

(
1

φn

))
(2.24)

holds uniformly in a complex neighbourhood of u = 1, where λn and φn are
sequences of positive real numbers with λn → ∞ and φn → ∞, and A(u)
and B(u) are analytic functions in this neighbourhood of u = 1 with A(1) =
B(1) = 0. Then Xn satisfies a central limit theorem of the form

1√
λn

(Xn − EXn)
d−→ N (0,Σ) (2.25)

and we have
EXn = λnμ +O (1 + λn/φn)

and
CovXn = λnΣ +O

(
(1 + λn/φn)

2
)
,

where
μ = Au(1) = (Auj (1))1≤j≤k

and
Σ = (Auiuj (1) + δijAuj (1))1≤i,j≤k .

Finally if we additionally assume that λn = φn there exist positive constants
c1, c2, c3 such that

P

{
‖Xn − EXn‖ ≥ ε

√
λn

}
≤ c1e−c2ε2 (2.26)

uniformly for ε ≤ c3
√
λn.

Proof. We first consider the univariate case k = 1, that is, we have

EuXn = eλn·a(u)+b(u)

(
1 +O

(
1

φn

))
. (2.27)

By assumption, we obtain for t in a neighbourhood of t = 0

E eitXn = eitλnμ− 1
2 t2λnσ2+O(λnt3)+O(t)

(
1 + O

(
1

φn

))
,

where μ = a′(1) and σ2 = a′(1) + a′′(1). Set Yn = (Xn − λnμ)/
√
λn. Then,

replacing t by t/
√
λn, one gets

E eitYn = e−
σ2

2 t2+O(t3/
√

λn)+O(t/
√

λn)

(
1 +O

(
1

φn

))
.

Thus, Yn is asymptotically normal with mean zero and variance σ2.
Next set fn(u) = EuXn . Then f ′n(1) = EXn. On the other hand, by

Cauchy’s formula, we have
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f ′n(1) =
1

2πi

∫
|u−1|=ρ

fn(u)

(u− 1)2
du.

In particular, we use the circle |u − 1| = 1/λn as the path of integration and
get

EXn =

1

2πi

∫
|u−1|=1/λn

1 + (λna
′(1) + b′(1))(u − 1) +O(λn(u− 1)2)

(u − 1)2

(
1 +O

(
1

φn

))
du

= λna
′(1) +O

(
1 +

λn

φn

)
.

We can manage the variance similarly. Set gn(u) = fn(u)u−λna′(1)−b′(1).
Then VarXn = g′′n(1) +O

(
1 + λ2

n/φ
2
n

)
. By using the approximation

exp (λn(a(u)− a′(1) log u) + (b(u)− b′(1) log u)

= 1 + (λn(a′′(1) + a′(1)) + (b′′(1) + b′(1)))
(u − 1)2

2

+O(λn(u− 1)3) +O(λ2
n(u− 1)4)

and a similar calculation as above one obtains

g′′n(1) = λn(a′′(1) + a′(1)) +O

(
1 +

λn

φn

)
and consequently

VarXn = λn(a′′(1) + a′(1)) +O
(

(1 + λn/φn)
2
)
.

If σ2 > 0, then Yn/σ and (Xn − EXn)/
√

VarXn have the same limiting
distribution. Hence, the central limit theorem follows.

In order to obtain tail estimates we proceed as follows. Suppose that λn =
φn. Then we get (similarly as above)

E et(Xn−E Xn)/
√

λn = e
σ2

2 t2+O(t3/
√

λn)+O(t/
√

λn)

(
1 +O

(
1

λn

))
.

Hence, there exist positive constants c′, c′′, c′′′ with

E et(Xn−E Xn)/
√

λn ≤ c′ec′′t2

for real t with |t| ≤ c′′′
√
λn. By a Chernov type argument we get for every

t > 0 the inequality

P{|Y | ≥ ε} ≤
(
E etY + E e−tY

)
e−εt.
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We also get (2.26) (for k = 1) by choosing c1 = 2c′, t = ε/(2c′′), c2 = 1/(4c′′),
and c3 = 2c′′c′′′.

Now recall that a random vector Y is normally distributed with mean zero
and covariance matrix Σ, if and only if aTY = a1Y1 + · · ·+ akYk is normally
distributed with mean zero and variance aTΣa.

Hence, if we assume that a sequence of random vectors Xn satisfies
(2.24) then the random variable Xn(a) = aTXn satisfies (2.27) with a(u) =
A(ua1 , . . . , uak) and b(u) = B(ua1 , . . . , uak). Consequently Xn(a) is asymp-
totically normal with EXn(a) = λnμ + O (1 + λn/φn) and VarXn(a) =
λnσ

2 +O (1 + λn/φn), where

μ = a′(1) = aTμ and σ2 = a′(1) + a′′(1) = aTΣa.

The tail estimate (2.26) can also be derived from the one-dimensional case
k = 1.

If ‖Xn − EXn‖ ≥ ε
√
λn, then there exists j with ‖X (j)

n − EX
(j)
n ‖ ≥

ε
√
λn/

√
k. Hence

P

{
‖Xn − EXn‖ ≥ ε

√
λn

}
≤ kc1e−c2ε2/k.

Thus, we also get (2.26) in the multidimensional case. We just have to adjust
c1 and c2.

By combining Theorems 2.21 and 2.22 we immediately obtain the following
combinatorial central limit theorem. (For simplicity we just state a univariate
version and discuss the multivariate version afterwards.)

Theorem 2.23. Suppose that Xn is a sequence of random variables such that

EuXn =
[xn] y(x, u)

[xn] y(x, 1)
,

where y(x, u) is a power series, that is the (analytic) solution of the func-
tional equation y = F (x, y, u), where F (x, y, u) satisfies the assumptions of
Theorem 2.21. In particular, let x = x0 > 0 and y = y0 > 0 be the (minimal)
solution of the system of equations

y = F (x, y, 1),

1 = Fy(x, y, 1)

and set

μ =
Fu

x0Fx
,

σ2 = μ+ μ2 +
1

x0F 3
xFyy

(
F 2

x (FyyFuu − F 2
yu)− 2FxFu(FyyFxu − FyxFyu)

+ F 2
u (FyyFxx − F 2

yx)
)
,
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where all partial derivatives are evaluated at the point (x0, y0, 1). Then we
have

EXn = μn+O(1) and VarXn = σ2n+O(1)

and if σ2 > 0 then
Xn − EXn√

VarXn

d−→ N(0, 1).

Proof. By Theorem 2.21 we have uniformly for u in a complex neighbourhood
of 1

EuXn =
[xn] y(x, u)

[xn] y(x, 1)

=

√
f(u)Fx(f(u), y(f(u), u), u)Fyy(x0, y0, 1)

Fyy(f(u), y(f(u), u), u)x0Fx(x0, y0, 1)

(
x0

f(u)

)n (
1 +O(n−1)

)
.

Thus, we can apply Theorem 2.22 with A(u) = − log(f(u)/x0), where f(u) =
x(u) and y(u) are the solutions of the system

y = F (x, y, u),

1 = Fy(x, y, u).

In particular the constants μ and σ2 are given by

μ = −x
′(1)

x0
and σ2 = μ+ μ2 − x

′′(1)

x0
.

By implicit differentiation one gets (with some algebra)

x′(1) = −Fu(x0, y0, 1)

Fx(x0, y0, 1)
= −Fu

Fx

and

x′′(1) = − 1

Fx

(
Fxxx

′(1)2 + Fxyx
′(1)y′(1) + 2Fuxx

′(1) + Fuyy
′(1) + Fuu

)
,

where

y′(1) = −Fxyx
′(1) + Fuy

Fyy
.

The explicit representations for μ and σ2 follow immediately.

Remark 2.24 If we have several variables (u1, . . . , uk) =: u and a sequence
of random vectors Xn with

EuXn =
[xn] y(x,u)

[xn] y(x,1)
,
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where y(x,u) is a power series, which is the solution of the function equation
y = F (x, y,u), then we get

EXn = μn+O(1) and Cov Xn = Σn+O(1),

where μ = (μ1, . . . , μk) and Σ = (σij)1≤i,j≤k can be calculated by

μi =
Fui

x0Fx
,

σij = μiμj + μiδi,j

+
1

x0F 3
xFyy

(
F 2

x (FyyFuiuj − FyuiFyuj )− FxFui(FyyFxuj − FyxFyuj )

− FxFuj (FyyFxui − FyxFyui) + FuiFuj (FyyFxx − F 2
yx)
)
,

and we also have a central limit theorem of the form

1√
n

(Xn − EXn)
d−→ N (0,Σ) .

We finally state a useful variant of a central limit theorem for random
variables which are defined with the help of generating functions.

Theorem 2.25. Suppose that a sequence of k-dimensional random vectors
Xn satisfies

EuXn =
cn(u)

cn(1)
,

where cn(u) is the coefficient of xn of an analytic function

f(x,u) =
∑
n≥0

cn(u)xn

that has a local singular representation of the form

f(x,u) = g(x,u) + h(x,u)

(
1− x

ρ(u)

)α

for some real α ∈ R \ N and functions g(x,u), h(x,u) = 0 and ρ(u) = 0 that
are analytic around x = x0 > 0 and u = 1. Suppose also that x = ρ(u) is the
only singularity of f(x, u) on the disc |x| ≤ |ρ(u)|, if u is sufficiently close
to 1 and that there exists an analytic continuation of f(x,u) to the region
|x| < |ρ(u)|+ δ, | arg(x− ρ(u))| > ε for some δ > 0 and ε > 0.

Then Xn satisfies a central limit theorem

1√
n

(Xn − EXn)
d−→ N (0,Σ)

with
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EXn = μn+O(1) and Cov Xn = Σn+O(1),

where

μ = −ρu(1)

ρ(1)

and

Σ = −ρuu(1)

ρ(1)
+ μμT + diag(μ).

Furthermore there exist positive constants c1, c2, c3 such that

P
{
‖Xn − EXn‖ ≥ ε

√
n
}
≤ c1e−c2ε2

uniformly for ε ≤ c3
√
n.

Proof. By Lemma 2.18 we get the asymptotic expansion

cn(u) =
h(ρ(u),u)

Γ (−α)
n−α−1ρ(u)−n

(
1 +O

(
1

n

))
that is uniform for u in a complex neighbourhood of u = 1. Hence,

EuXn =
cn(u)

cn(1)

=
h(ρ(u),u)

h(ρ(1),1)

(
ρ(1)

ρ(u)

)n(
1 +O

(
1

n

))
and consequently the result follows from Theorem 2.22.

2.2.4 Transfer of Singularities

The main objective of this section is to consider analytic functions f(x, u)
that have a local representation4

f(x, u) = g(x, u)− h(x, u)

√
1− x

ρ(u)
(2.28)

that holds in a (complex) neighbourhood U ∈ C2 of (x0, u0) with x0 = 0,
u0 = 0 and with ρ(u0) = x0 (we only have to cut off the half lines {x ∈ C :
arg(x−ρ(u)) = 0} in order to have an unambiguous value of the square root).

We derive certain closure properties which will be mainly used in Chapter 9
for the asymptotic analysis of planar graphs. It might be skipped in a first
reading.

The functions g(x, u) and h(x, u) are analytic in U and ρ(u) is analytic
in a neighbourhood of u0. In our context we can usually assume that x0 and

4 The reason for the negative sign in front of h(x, u) is that the coefficients ofp
1 − x/ρ(u) are negative (if ρ(u) > 0) so that the coefficients of f(x, u) in x are

non-negative (provided that h(x, u) > 0, too).



2.2 Asymptotics with Generating Functions 55

u0 are positive real numbers. In Section 2.2.2 we have shown that solutions
f(x, u) of functional equations (usually) have a local expansion of this form.

Note that a function f(x, u) of the form (2.28) can also be represented as

f(x, u) =
∑
�≥0

a�(u)

(
1− x

ρ(u)

)�/2

=
∑
�≥0

a�(u)X�, (2.29)

where X =
√

1− x/ρ(u). The analytic function g(x, u) and h(x, u) are given
by

g(x, u) =
∑
k≥0

a2k(u)

(
1− x

ρ(u)

)k

=
∑
k≥0

(−1)ka2k(u)ρ(u)−k
(
x− ρ(u)

)k
,

and

h(x, u) =
∑
k≥0

a2k+1(u)

(
1− x

ρ(u)

)k

=
∑
k≥0

(−1)ka2k+1(u)ρ(u)−k
(
x− ρ(u)

)k
.

In particular, the coefficients a�(u) are analytic in u (for u close to u0) and
the power series ∑

�≥0

a�(u)X�

converges uniformly and absolutely, if u is close to u0 and |X | < r (for some
properly chosen r > 0). It also represents an analytic function of u and X (in
that range).

In the following passage we analyse some properties of functions that have
a singular expansion of the form (2.28).

Lemma 2.26. Suppose that f(x, u) has a singular expansion of the form
(2.28) and that H(x, u, z) is a function that is analytic at (x0, u0, f(x0, u0))
such that

Hz(x0, u0, f(x0, u0)) = 0.

Then
fH(x, u) = H(x, u, f(x, u))

has the same kind of singular expansion, that is

fH(x, u) = g(x, u)− h(x, u)

√
1− x

ρ(u)

for certain analytic functions g(x, u) and h(x, u).
If ρ(u) = 0 and f(x, u) has an analytic continuation to the region |x| ≤

|ρ(u)|+ε, arg(x/ρ(u)−1) = 0 for some ε > 0, and if H(x, u, z) is also analytic
for |x| < x0 + ε, |u| < u0 + ε and |z| < f(x0, u0)+ ε, then f(x, u) and fH(x, u)
have power series expansions
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f(x, u) =
∑
n≥0

an(u)xn and fH(x, u) =
∑
n≥0

bn(u)xn,

where an(u) and bn(u) satisfy

lim
n→∞

bn(u)

an(u)
= Hz(ρ(u), u, f(ρ(u))). (2.30)

Proof. We use the Taylor series expansion of H(x, u, z) at z = g(x, u),

H(x, y, z) =

∞∑
�=0

H�(x, u)(z − g(x, u))�,

and substitute z = f(x, u):

fH(x, u) = H(x, y, f(x, u))

=

∞∑
�=0

H�(x, u)

(
−h(x, u)

√
1− x

ρ(u)

)�

=
∞∑

k=0

H2k(x, u)

(
−h(x, u)

√
1− x

ρ(u)

)2k

+

∞∑
k=0

H2k+1(x, u)

(
−h(x, u)

√
1− x

ρ(u)

)2k+1

= g(x, u)− h(x, u)

√
1− x

ρ(u)
,

where g(x, u) and h(x, u) are analytic at (x0, u0). (Note that all H�(x, u) are
analytic in (x, u) and all appearing series are absolutely convergent.)

Finally we can use Lemma 2.18 in order to obtain asymptotic results for
an(u) and bn(u) which implies (2.30).

Lemma 2.27. Suppose that f(x, u) has a singular expansion of the form
(2.28) such that |ρ(u)| is the radius of convergence of the function x �→ f(x, u),
if u is sufficiently close to u0. Then the partial derivative fx(x, u) and the in-
tegral
∫ x
0
f(t, u) dt have local singular expansions of the form

fx(x, u) =
g2(x, u)√
1− x

ρ(u)

+ h2(x, u) (2.31)

and ∫ x

0

f(t, u) dt = g3(x, u) + h3(x, u)

(
1− x

ρ(u)

)3/2

, (2.32)

where g2(x, u), g3(x, u), h2(x, u), and h3(x, u) are analytic at (x0, u0).5

5 We decide the signs in front of g2(x, u) and h3(x, u) to be positive, since 1/
√

1 − x
and (1 − x)3/2 have positive coefficients (with one exception: the linear term of
(1 − x)3/2).
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Proof. First, from (2.28) one derives

fx(x, u) = gx(x, u)− hx(x, u)

√
1− x

ρ(u)
+

h(x, u)

2ρ(u)
√

1− x
ρ(u)

=

h(x,u)
2ρ(u) − hx(x, u)

(
1− x

ρ(u)

)
√

1− x
ρ(u)

+ gx(x, u)

=
g2(x, u)√
1− x

ρ(u)

+ h2(x, u).

The proof of the representation of the integral is a bit more complicated.
We represent f(x, u) in the form

f(x, u) =

∞∑
j=0

aj(u)

(
1− x

ρ(u)

)j/2

. (2.33)

Recall that the power series
∞∑

j=0

aj(u)X�

converges absolutely and uniformly in a complex neighbourhood of u0: |u −
u0| ≤ r and for |X | ≤ r (for some r > 0). Hence, there exists η > 0 such that
η|ρ(u)| < r for all u with |u−u0| ≤ r. By assumption there are no singularities
of f(x, u) in the range |x| ≤ |ρ(u)|(1− η).

We now assume that x is close to x0 such that |1− x/ρ(u)| < r. Then we
split the integral

∫ x

0 f(t, u) dt into three parts:∫ x

0

f(t, u) dt =

∫ ρ(u)(1−η)

0

f(t, u) dt+

∫ ρ(u)

ρ(u)(1−η)

f(t, u) dt+

∫ x

ρ(u)

f(t, u) dt

= I1(u) + I2(u) + I3(x, u).

Since η is properly chosen, there are no singularities of f(t, u) in the range
|t| ≤ |ρ(u)|(1− η). Hence, I1(u) is an analytic function in u.

Next, by using the series representation (2.33) we obtain

I2(u) =

∫ ρ(u)

ρ(u)(1−η)

∞∑
j=0

aj(u)

(
1− t

ρ(u)

)j/2

dt

= −
∞∑

j=0

aj(u)
2ρ(u)

j + 1

(
1− t

ρ(u)

) j+2
2

∣∣∣∣∣
t=ρ(u)

t=ρ(u)(1−η)

=

∞∑
j=0

aj(u)
2ρ(u)

j + 1
η

j+2
2 ,
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which represents an analytic function, too.
Finally, the third integral evaluates to

I3(x, u) =

∫ x

ρ(u)

∞∑
j=0

aj(u)

(
1− t

ρ(u)

)j/2

dt

= −
∞∑

j=0

aj(u)
2ρ(u)

j + 1

(
1− t

ρ(u)

) j+2
2

∣∣∣∣∣
t=x

t=ρ(u)

= −
∞∑

j=0

aj(u)
2ρ(u)

j + 1

(
1− x

ρ(u)

) j+2
2

.

This can be represented as

I3(x, u) = g̃(x, u) + h̃(x, u)

(
1− x

ρ(u)

)3/2

with analytic functions g̃(x, u) and h̃(x, u). Putting these three representations
together, we get (2.32).

Another important feature is that we can switch between local expansions
in terms of x and u.

Lemma 2.28. Suppose that f(x, u) has a local representation of the form
(2.28) such that

ρ(u0) = 0 and ρ′(u0) = 0.

Then the singular expansion (2.28) can be rewritten as

f(x, u) = g̃(x, u)− h̃(x, u)

√
1− u

R(x)
,

where R(x) is the (analytic) inverse function of ρ(u).

Proof. Since ρ′(u0) = 0, it follows from the Weierstrass preparation theorem
(in our context we use a shifted version and apply it for d = 1 which actually is
a refined version of the implicit function theorem) that there exists an analytic
function K(x, u) with K(x0, u0) = 0 such that

ρ(u)− x = K(x, u)(R(x)− u),

where R(x) is the (analytic) inverse function of ρ(u) in a neighbourhood of
x0. This is because near (x0, u0) we have R(x) = u, if and only if ρ(u) = x.

Consequently

1− x

ρ(u)
= K(x, u)

R(x)

ρ(u)

(
1− u

R(x)

)
,
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and hence

f(x, u) = g(x, u)− h(x, u)

√
K(x, u)

R(x)

ρ(u)

√
1− u

R(x)

= g̃(x, u)− h̃(x, u)

√
1− u

R(x)
.

Remark 2.29 Note that Lemma 2.28 has some flexibility. For example, if
f(x, u) has a singular expansion of the form

f(x, u) = g(x, u) + h(x, u)

(
1− x

ρ(u)

)3/2

,

then we also get a singular expansion of the form

f(x, u) = g̃(x, u) + h̃(x, u)

(
1− u

R(x)

) 3
2

.

Similarly, if f(x, u) is of the form

f(x, u) =
g2(x, u)√
1− x

ρ(u)

+ h2(x, u),

then we can rewrite this to

f(x, u) =
g̃2(x, u)√
1− u

R(x)

+ h̃2(x, u).

If we combine Lemma 2.27 and Lemma 2.28 we thus get the following
result.

Theorem 2.30. Suppose that f(x, u) has a singular expansion of the form
(2.28) such that |ρ(u)| is the radius of convergence of the function x �→ f(x, u),
if u is sufficiently close to u0 and ρ(u) satisfies ρ(u0) = 0 and ρ′(u0) = 0.
Then the partial derivative fu(x, u) and the integral

∫ u
0 f(x, t) dt have local

singular expansions of the form

fu(x, u) =
g2(x, u)√
1− x

ρ(u)

+ h2(x, u) (2.34)

and ∫ u

0

f(x, t) dt = g3(x, u) + h3(x, u)

(
1− x

ρ(u)

) 3
2

, (2.35)

where g2(x, u), g3(x, u), h2(x, u), and h3(x, u) are analytic at (x0, u0).
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Proof. For the proof of (2.34) and (2.35), we first apply Lemma 2.28 and
switch to a singular expansion in terms of

√
1− u/R(x). Then we apply

Lemma 2.27 in order to get an expansion for the derivative or the integral,
and finally we apply Lemma 2.28 again in order to get back to an expansion
in terms of

√
1− x/ρ(u).

We terminate this section by proving a variant of Theorem 2.21 where
the right hand side of the equation y = F (x, y, u) is not regular but has a
square-root like singular behaviour of specific type. We also provide a variant
of Lemma 2.26. These properties will be quite useful for enumerating planar
graphs asymptotically (see Chapter 9).

Theorem 2.31. Suppose that F (x, y, u) has a local representation of the form

F (x, y, u) = g(x, y, u) + h(x, y, u)

(
1− y

r(x, u)

)3/2

(2.36)

with functions g(x, y, u), h(x, y, u), r(x, u) that are analytic around (x0, y0, u0)
and satisfy gy(x0, y0, u0) = 1, h(x0, y0, u0) = 0, r(x0, u0) = 0 and rx(x0, u0) =
gx(x0, y0, u0). Furthermore, suppose that y = y(x, u) is a solution of the func-
tional equation

y = F (x, y, u)

with y(x0, u0) = y0. Then y(x, u) has a local representation of the form

y(x, u) = g1(x, u) + h1(x, u)

(
1− x

ρ(u)

)3/2

, (2.37)

where g1(x, u), h1(x, u) and ρ(u) are analytic at (x0, u0) and satisfy h1(x0, u0) =
0 and ρ(u0) = x0.

Proof. Set Y = (1− y/r(x, u))1/2. Then F (x, y, u) can be represented as

F (x, y, u) = A0(x, u) +A2(x, u)Y 2 +A3(x, u)Y 3 +A4(x, u)Y 4 + · · · ,

where Ak(x, u) are analytic functions (compare with (2.29)). If we now
consider the equation y = F (x, y, u) and replace the left hand side by
y = r(x, u)(1 − Y 2), we get

r(x, u)−A0(x, u) = (r(x, u) +A2(x, u))Y 2 +A3(x, u)Y 3 +A4(x, u)Y 4 + · · · .

Since r(x0, u0) = A0(x0, u0) = g(x0, y0, u0) and rx(x0, u0) = A0,x(x0, u0) =
gx(x0, y0, u0), we can again apply the Weierstrass preparation theorem. There
exist analytic functions K(x, u) and ρ(u) with K(x0, u0) = 0 and ρ(u0) = x0,
such that locally around (x0, u0)

r(x, u) −A0(x, u) = K(x, u)(x− ρ(u)).
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Hence, if we set X = (1−x/ρ(u))1/2 and L(x, u) = (−K(x, u)ρ(u))1/2, we get

L(x, u)2X2 = Y 2
(
r(x, u) +A2(x, u) +A3(x, u)Y +A4(x, u)Y 2 · · ·

)
or

L(x, u)X = B1(x, u)Y +B2(x, u)Y 2 +B3(x, u)Y 3 + · · · ,

where B1(x, u) = (r(x, u) +A2(x, u))1/2 and B�(x, u) are suitably chosen an-
alytic functions. Since L(x, u) = 0 and B1(x, u) = 0 are in a neighbourhood
of (x0, u0), we can invert this relation and get

Y =
L(x, u)

B1(x, u)
X + C2(x, u)X2 + C3(x, u)X3 + · · · .

By squaring this equation and substituting Y 2 = 1 − y/r(x, u), we finally
obtain the representation

1− y

r(x, u)
=
L(x, u)2

B1(x, u)2
X2 +D3(x, u)X3 +D4(x, u)X4 + · · ·

which can be rewritten in the form (2.37). Since h1(x0, u0) = r(x0, u0)·
D3(x0, u0), we only need to check that D3(x0, u0) = 0. But D3 = 2B2L

2/B2
1

and B2 = A3/(2
√
r +A2), and thus, it is sufficient to recall that L(x0, u0) = 0

and A3(x0, u0) = 0.

Lemma 2.32. Let f(x) =
∑

n≥0 anx
n denote the generating function of a

sequence an of non-negative real numbers and suppose that f(x) has exactly
one dominant singularity at x = ρ of the form

f(x) = f0 + f2X
2 + f3X

3 +O(X4),

where X =
√

1− x/ρ has an analytic continuation to the region {x ∈ C :
|x| < ρ+ ε}\{x ∈ R : x ≥ ρ} for some ε > 0. Let H(x, z, w) denote a function
that has a dominant singularity at z = f(ρ) > 0 of the form

H(x, z, w) = h0(x,w) + h2(x,w)Z2 + h3(x,w)Z3 +O(Z4),

where w is considered as a parameter, Z =
√

1− z/f(ρ), the functions
hj(x,w) are analytic in x and H(x, z, w) has an analytic continuation in a
suitable region.

Then the function
fH(x) = H(x, f(x), w)

has a power series expansion fH(x) =
∑

n≥0 bn(w)xn and the coefficients bn
satisfy

lim
n→∞

bn(w)

an
= −h2(ρ, w)

f0
+
h3(ρ, w)

f3

(
−f2
f0

)3/2

. (2.38)
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Proof. The proof is similar to that of Lemma 2.26 and is based on composing
the singular expansion of H(x, z, w) with that of f(x). Indeed, taking into
account that f(ρ) = f0, we have near x = ρ

fH(x) = h0(x,w) + h2(x,w)

(
−f2X

2 + f3X
3

f0

)
+ h3(x,w)

(
−f2X

2 + f3X
3

f0

)3/2

+ · · ·

Now note that x = ρ− ρX2. Thus, if we expand and extract the coefficient of
X3 and apply the transfer lemma, we have

an ∼
f3

Γ (−3/2)
n−5/2ρ−n

and

bn(w) ∼ 1

Γ (−3/2)

(
−h2(ρ, w)f3

f0
+ h3(ρ, w)

(
−f2
f0

)3/2
)
n−5/2ρ−n,

so the result follows.

2.2.5 Systems of Functional Equations

In Section 2.1 we have discussed analytic solutions y = y(x, u) of equations
of the form y = F (x, y, u). The main observation was that (under suitable
assumptions on F ) there is a local singular representation of y(x, u) of the
form

y(x, u) = g(x, u)− h(x, u)

√
1− x

x0(u)
. (2.39)

The purpose of this section is to present a generalisation to a system of
equations. This concept will be applied in Chapter 3 for the analysis of pattern
occurrences in trees (see Section 3.3) and in Chapter 9 for the analysis of
number of vertices of given degree in some classed of planar graphs.

Let F(x,y,u) = (F1(x,y,u), . . . , FN (x,y,u)) be a vector of functions
Fj(x,y,u), 1 ≤ j ≤ N with complex variables x, y = (y1, . . . , yN), u =
(u1, . . . , uk) which are analytic around 0 and satisfy Fj(0,0,0) = 0 for
1 ≤ j ≤ N . We are interested in the analytic solution y = y(x,u) =
(y1(x,u), . . . , yN(x,u)) of the functional equation

y = F(x,y,u) (2.40)

with y(0,0) = 0, i.e., we demand that the (unknown) functions yj = yj(x,u),
1 ≤ j ≤ N , satisfy the system of functional equations
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y1 = F1(x, y1, y2, . . . , yN ,u),

y2 = F2(x, y1, y2, . . . , yN ,u),

...

yN = FN (x, y1, y2, . . . , yN ,u).

If the functions Fj(x,y,u) have non-negative Taylor coefficients then it
is easy to see that the solutions yj(x,u) have the same property. (One only
has to solve the system iteratively by setting y0(x,u) = 0 and yi+1(x,u) =
F(x,yi(x,u),u) for i ≥ 0. The limit y(x,u) = limi→∞ yi(x,u) is the (unique)
solution of the system above.)

It is convenient to define the notion of a dependency (di)graphGF = (V,E)
for such a system of functional equations y = F(x,y,u). The vertices V =
{y1, y2, . . . , yN} are just the unknown functions and an ordered pair (yi, yj)
is contained in the edge set E, if and only if Fi(x,y,u) really depends on yj ,
that is, if the partial derivative ∂Fi

∂yj
= 0.

In the following Theorem 2.33 we will use the assumption that the depen-
dency graph is strongly connected, which means that every pair of vertices
can be linked by a directed path in the graph. Informally this says that no
subsystem can be solved prior to the whole system of equations. An equivalent
condition is that the corresponding adjacency matrix and, thus, the Jacobian

matrix A =
(

∂Fi

∂yj

)
is irreducible, that is, there is no common reordering of

the columns and rows of A such that the resulting matrix has the form (see
[154]) (

B C

0 D

)
.

The most important property of irreducible matrices A with non-negative
entries is the Perron-Frobenius theorem (see [154]) saying that there is a
unique positive and simple eigenvalue r = r(A) with the property that all
other eigenvalues λ satisfy |λ| ≤ r. This unique positive eigenvalue is a strictly
increasing function of the entries of the non-negative matrix. More precisely if
A = (aij) and A′ = (a′ij) are different irreducible non-negative matrices with
aij ≤ a′ij (for all i, j) then r(A) < r(A′). Moreover, every principal submatrix
has a smaller dominant eigenvalue.

Theorem 2.33. Let F(x,y,u) = (F1(x,y,u), . . . , FN (x,y,u)) be a non-
linear system of functions analytic around x = 0, y = (y1, . . . , yN ) = 0,
u = (u1, . . . , uk) = 0, whose Taylor coefficients are all non-negative, such
that F(0,y,u) = 0, F(x,0,u) = 0, Fx(x,y,u) = 0. Furthermore assume
that the dependency graph of F is strongly connected and that the region of
convergence of F is large enough that there exists a complex neighbourhood U
of u = 1 = (1, . . . , 1), where the system

y = F(x,y,u), (2.41)

0 = det(I− Fy(x,y,u)), (2.42)
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has solutions x = x0(u) and y = y0(u) that are real, positive and minimal
for positive real u ∈ U .

Let
y = y(x,u) = (y1(x,u), . . . , yN(x,u))

denote the analytic solutions of the system

y = F(x,y,u) (2.43)

with y(0,u) = 0.
Then there exists ε > 0 such that yj(x,u) admit a representation of the

form

yj(x,u) = gj(x,u)− hj(x,u)

√
1− x

x0(u)
(2.44)

for u ∈ U , |x − x0(u)| < ε and | arg(x − x0(u)| = 0, where gj(x,u) = 0 and
hj(x,u) = 0 are analytic functions with (gj(x0(u),u))j = (yj(x0(u),u))j =
y0(u).

Furthermore, if [xn] yj(x,1) > 0 for 1 ≤ j ≤ N and for sufficiently large
n ≥ n1, then there exists 0 < δ < ε such that yj(x,u) is analytic in (x,u) for
u ∈ U and |x−x0(u)| ≥ ε but |x| ≤ |x0(u)|+ δ (this condition guarantees that
y(x,u) has a unique smallest singularity with |x| = |x0(u)|).

Proof. In order to simplify the proof we first assume that u is real, positive
and fixed, and we also suppress the dependency on u in the notation. Thus,
we will work with x0 and y0 that satisfy y0 = F(x0,y0) and det(I−A) = 0,
where A = Fy(x0,y0) abbreviates the Jacobian matrix of F with respect to
y. Note that the condition det(I−A) = 0 says that 1 is eigenvalue of A. If the
Jacobian matrix A had no eigenvalue 1, then the implicit function theorem
could be applied and it would follow that the system of functional equations
y = F(x,y) has locally an analytic solution y = y(x) with y(x0) = y0.

Recall that the assumption that the dependency graph is strongly con-
nected can be rephrased in A is a non-negative irreducible matrix. Hence,
there is a unique (dominant) positive real simple eigenvalue. It is easy to ob-
serve that this dominating eigenvalue is actually 1. Set A(x) = Fy(x,y(x)) for
0 ≤ x ≤ x0. Then by assumption A(0) = 0 and A(x) is (again) an irreducible
positive matrix for x > 0 with the property that all non-zero entries of A(x)
are strictly increasing in x. Thus, by the properties of irreducible non-negative
matrices the dominant positive eigenvalue of A(x) is an increasing function,
too. Since (x0,y0) is the minimal solution of (2.41) and (2.42), the eigenvalue
1 appears first for x = x0.

Next we divide the system into the first equation and into the system of
the remaining equations:

y1 = F1(x, y1,y), (2.45)

y = F(x, y1,y), (2.46)
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where y = (y2, . . . , yN) and F = (F2, . . . , FN ). Observe that the Jacobian ma-
trix Fy(x0,y0) of F can be also obtained by deleting the first row and column
of A. Hence, all eigenvalues of B are strictly smaller than 1. Consequently, the
matrix I−B is invertible and, thus, by the implicit function theorem, there is
a local solution y = y(x, y1) of (2.46), where y1 is considered as an additional
variable. As in the proof of Theorem 2.19 it follows that this solution is pre-
cisely the unique solution of (2.46) that has a power series expansion in x and
y1 at 0. Note, too, that due to the positivity assumptions on the coefficients
of F this solution has non-negative coefficients as a power series in x and y1.

We now insert this function into the first equation (2.45) and obtain a
single equation

y1 = F1(x, y1,y(x, y1)) (2.47)

for y1 = y1(x). Again, the coefficients of

G(x, y1) = F1(x, y1,y(x, y1))

as a power series in x and y1 are non-negative. At this point we can safely
apply the methods of Theorem 2.19 (and 2.21). Actually, equation (2.47) is an
equation of the form y1 = G(x, y1) with the property that Gy1(x0, y1,0) = 1.
Thus, it follows from Theorem 2.19 that y1(x) has a local representation of the
form y1(x) = g(x) − h(x)

√
1− x/x0. Consequently there are corresponding

local representations for (y1(x), . . . , yN (x)) = y2(x, y1(x)). Of course, x0 is
the common radius of convergence of y1(x), . . . , yN(x).

This proves (2.44) for fixed real and positive u. However, it is easy to
adapt the above proof for u close to the real axis. In particular, by continuity
it follows that 1 will stay a simple eigenvalue of the Jacobian matrix.

Furthermore, if [xn]y1(x,1) > 0 for sufficiently large n ≥ n1, then as in the
proof of Theorem 2.19 it follows that x0 is the only singularity on the circle of
convergence of y1(x), and there is an analytic continuation to |x| ≤ x0 +δ and
|x− x0| ≥ ε. This also applies for yj for 2 ≤ j ≤ N , and finally by continuity
this is also true for u sufficiently close to the positive real axis.

With the help of a variation of Lemma 2.26 we derive the following

Corollary 2.34 Let y = y(x,u) = (y1(x,u), . . . , yN(x,u)) be the solution
of the system of equations (2.43) and assume that all assumptions of The-
orem 2.33 are satisfied. Suppose that G(x,y,u) is a power series such that
the point (x0(1),y0(x0(1),1),1) is contained in the interior of the region of
convergence of G(x,y,u) and that Gy(x0(1),y0(1),1) = 0.

Then G(x,y(x,u),u) has a representation of the form

G(x,y(x,u),u) = g(x,u)− h(x,u)

√
1− x

x0(u)
(2.48)

for u ∈ U and |x − x0(u)| < ε, where g(x,u) = 0 and h(x,u) = 0 are
analytic functions. Moreover, G(x,y(x,u),u) is analytic in (x,u) for u ∈ U
and |x− x0(u)| ≥ ε, but |x| ≤ |x0(u)|+ δ.
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Let G(x,y,u) be also a power series with non-negative Taylor coefficients
at (0,0,0) such that (x0(1),y0(1),1) is an inner point of the region of con-
vergence of G(x,y,u). Then (with y(x,u), the solution of (2.43) from Theo-
rem 2.33)

G(x,y(x,u),u) =
∑
n,m

cn,mx
num

has non-negative coefficients cn,m, too. In fact, for sufficiently large n ≥ n0

there exists m with cn,m > 0. In particular it follows that

cn(u) =
∑
m

cn,mum

is non-zero for n ≥ n0.
Let Xn = (X

(1)
n , . . . , X

(N)
n ), (n ≥ n0) denote an N -dimensional discrete

random vector with
P{Xn = m} =

cn,m

cn
. (2.49)

Then the expectation EuXn = Eu
X(1)

n
1 · · ·uX(N)

n

N is given by

EuXn =
cn(u)

cn(1)
.

Putting these preliminaries together we finally get a central limit theorem
for random variables that are related to systems of functional equations. For
convenience we set

μ = −x0,u(1)

x0(1)
,

and define a matrix Σ by

Σ = −x0,uu(1)

x0(1)
+ μμT + diag(μ), (2.50)

where x = x0(u) and y = y0(u) are the solutions of the system (2.41) and
(2.42).

Theorem 2.35. Suppose that Xn is a sequence of N -dimensional random
vectors that are defined by (2.49), where

∑
n,m cn,mx

num = G(x,y(x,u),u)
and the generating functions y(x,u) = (yj(x,u))1≤j≤N satisfy a system of
functional equations of the form (2.43), in which F satisfies the assumptions
of Theorem 2.33.

Then Xn satisfies a central limit theorem of the form

1√
n

(Xn − EXn)
d−→ N (0,Σ) . (2.51)

Furthermore there exist positive constants c1, c2, c3 such that

P
{
‖Xn − EXn‖ ≥ ε

√
n
}
≤ c1e−c2ε2 (2.52)

uniformly for ε ≤ c3
√
n.
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Finally we comment the evaluation of μ and Σ. The problem is to extract
the derivatives of x0(u). The function x0(u) is the solution of the system
(2.41)–(2.42) and is exactly the location of the singularity of the mapping
x �→ y(x,u) when u is fixed (and close to 1).

Let x0(u) and y0(u) = y(x0(u),u) denote the solutions of (2.41–2.42).
Then we have

y0(u) = F(x0(u),y0(u),u). (2.53)

Taking derivatives with respect to u we get

y0,u(u) = Fx(x0(u),y0(u),u)x0,u(u) + Fy(x0(u),y0(u),u)y0,u(u) (2.54)

+ Fu(x0(u),y0(u),u),

where the three terms in F denote evaluations at (x0(u),y0(u),u) of the
partial derivatives of F, and not the (total) derivative of the composite func-
tion F(x0(u),y0(u),u), and where x0,u and y0,u denote the Jacobian matrices
of x0 and y0 with respect to u. In particular, for u = 1 we have x0(1) = x0

and y0(1) = y0 and
det(I− Fy(x0,y0,1)) = 0.

Since Fy is a non-negative matrix and the dependency graph is strongly con-
nected, there is a unique Perron-Frobenius eigenvalue of multiplicity 1. Here
this eigenvalue equals 1. Thus, I−Fy has rank N − 1 and (up to scaling) has
a unique positive left eigenvector b:

bT(I− Fy(x0,y0,1)) = 0.

From (2.54) we obtain

(I− Fy(x0,y0,1))yu(1) = Fx(x0,y0,1)xu(1) + Fu(x0,y0,1).

By multiplying b from the left we thus get

bTFx(x0,y0,1)xu + bTFu(x0,y0,1) = 0, (2.55)

and consequently

μ =
1

x0

bTFu(x0,y0,1)

bTFx(x0,y0,1)
. (2.56)

The derivation of Σ is more involved. We first define b(x,y,u) as the
(generalised) vector product6 of the N − 1 last columns of the matrix I −
Fy(x,y,u). We define D(x,y,u) as

D(x,y,u) =
(
bT(x,y,u) (I− Fy(x,y,u))

)
1

= det (I− Fy(x,y,u)) ,

where the subindex denotes the first coordinate. In particular we have

6 More precisely, this is the wedge product combined with the Hodge duality.
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D(x(u),y(u),u) = 0.

Then from

(I− Fy)yu = Fxxu + Fu,

−Dyyu = Dxxu +Du (2.57)

we can calculate yu (the first system has rank N − 1; this means that we can
skip the first equation. This reduced system is then completed to a regular
system by appending the second equation (2.57)).

We now set

d1(u) = d1(x(u),y(u),u) = b(x(u),y(u),u)Fx(x(u),y(u),u)

d2(u) = d2(x(u),y(u),u) = b(x(u),y(u),u)Fu(x(u),y(u),u).

By differentiating equation (2.55) we get

xuu(u) = − (d1xxu + d1yyu + d1u)xu + (d2xxu + d2yyu + d2u)

d1
, (2.58)

where d1x, d1y, d1u,d2x,d2y,d2u denote the respective partial derivatives, and
where we have omitted the dependence on u. With the knowledge of x0,y0

and yu(1) we can now evaluate xuu at u = 1 and compute Σ from (2.50).
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Advanced Tree Counting

In this third chapter we will present methods for counting trees that are based
on the concept of generating functions. First we derive explicit formulas for
basic tree classes and asymptotic formulas for simply generated trees and
Pólya trees. However, the main goal is to show that certain tree parameters
that behave additively (in a proper sense) satisfy a central limit theorem in a
natural probabilistic setting.

For instance, if we consider certain trees Tn of size n it is natural to assume
that every tree in Tn is equally likely. Every tree parameter then induces a
sequence of random variables Xn (depending on the size n). A prominent
example of tree parameters is the number of leaves or the number of nodes
of degree k. We call a parameter additive if it is also obtained (up to some
small correction term) by splitting the tree into subtrees and adding up. The
number of leaves is additive in this sense. Another additive parameter is the
number of occurrences of a certain pattern that we will discuss in Section 3.3.

Intuitively we can expect a central limit theorem for additive tree parame-
ters, since they can be seen as the approximate sum of random variables if we
split the tree into small subtrees. Nevertheless, it seems not to be possible to
apply a direct probabilistic approach. The dependence structure is not easy to
cover and there is no direct evolution process that recovers the combinatorial
probability model.

Instead we use the method of generating functions that directly extends to
the counting problem of additive parameters. Depending on the complexity of
the parameter the recursive structure of trees leads to a functional equation or
to a system of functional equations for the corresponding generating functions,
and the result of Chapter 2 can be applied.
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3.1 Generating Functions and Combinatorial Trees

Generating functions are quite natural in the context of tree counting, since
(rooted) trees have a recursive structure that usually translates to recurrence
relations in corresponding counting problems. And generating functions are a
proper tool for solving recurrence equations.

3.1.1 Binary and m-ary Trees

We recall the explicit formula for the number bn of binary trees with n in-
ternal nodes that was obtained by a proper use of generating functions (see
Theorem 2.1):

bn = Cn =
1

n+ 1

(
2n

n

)
.

Another kind of rooted trees where we can solve the counting problem by
using generating functions is the class of m-ary rooted trees, where m ≥ 2 is
a fixed integer. As in the binary case (m = 2) we just take into account the
number n of internal nodes. The number of leaves is then given by (m−1)n+1
and the total number of nodes by mn+ 1.

Theorem 3.1. The number b
(m)
n of m-ary trees with n internal nodes is given

by

b(m)
n =

1

(m− 1)n+ 1

(
mn

n

)
.

Proof. As in the binary case, m-ary trees Bm can be described formally by

Bm = � + ◦ × Bm
m,

compare also with the schematic Figure 3.1.

= +

...

Fig. 3.1. Recursive structure of an m-ary tree

Thus, the generating function

bm(x) =
∑
n≥0

b(m)
n xn
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satisfies the relation
bm(x) = 1 + x bm(x)m.

Setting b̃m(x) = bm(x) − 1 we get

b̃m(x) = x(1 + b̃m(x))m

and by Lagrange’s inversion formula (for n ≥ 1)

b(m)
n = [xn]b̃m(x) =

1

n
[un−1](1 + u)mn

=
1

n

(
mn

n− 1

)
=

1

(m− 1)n+ 1

(
mn

n

)
.

3.1.2 Planted Plane Trees

We recall that planted plane trees (or Catalan trees) are also rooted trees,
where each node has an arbitrary number of successors with a natural left-to-
right-order (similarly as for binary trees). There is a similar formula for the
number pn of planted plane trees of size n.

Theorem 3.2. The number pn of planted plane trees with n ≥ 1 nodes is
given by

pn =
1

n

(
2n− 2

n− 1

)
.

Proof. We directly proceed in a formal way. Let P denote the set of planted
plane trees. Then from the above description we obtain the recursive relation

P = ◦+ ◦ × P + ◦ × P2 + ◦ × P3 + · · · ,

see also the schematic Figure 3.2.

= + + + ...+

Fig. 3.2. Recursive structure of a planted plane tree

With
p(x) =

∑
n≥1

pnx
n
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this translates to

p(x) = x+ x p(x) + x p(x)2 + x p(x)3 + · · · =
x

1− p(x)
.

Hence

p(x) =
1−

√
1− 4x

2
= x b(x), (3.1)

where b(x) is the generating function of binary trees (compare with Theo-
rem 2.1). Consequently

pn = bn−1 =
1

n

(
2n− 2

n− 1

)
.

Remark 3.3 As in the case of binary trees we can also use Lagrange’s in-
version formula (with Φ(x) = 1/(1− x) to obtain pn explicitly:

pn =
1

n
[un−1](1− u)−n =

1

n

( −n
n− 1

)
(−1)n−1 =

1

n

(
2n− 2

n− 1

)
.

The relation pn = bn−1 has a deeper meaning. First there is a natural
bijection between planted plane trees with n nodes and binary trees with
n− 1 internal nodes, the so-called rotation correspondence. Let us start with
a planted plane tree with n nodes and apply the following procedure:

1. Delete the root and all edges going to the root.
2. If a node has successors delete all edges to these successors despite one

edge to the most left one.
3. Join all these (previous) successors with a path (by horizontal edges).
4. Rotate all these new (horizontal) edges by the angle π/4 below.
5. The remaining n−1 nodes are now considered as internal nodes of a binary

tree. Append the (missing) n+ 1 external leaves.

The result is a binary tree with n− 1 internal nodes. It is easy to verify that
this procedure is bijective (compare with the example given in Figure 3.3).

A second interpretation of the relation pn = bn−1 comes from an alternate
recursive description of planted plane trees. If a planted plane tree has more
than one node then we can delete the left-most edge of the root and obtain
two planted plane trees, the original one minus the left-most subtree of the
root and the left-most subtree of the root (see Figure 3.4). Obviously this
description leads to the recursive description

P = ◦+ P2,

which gives
p(x) = x+ p(x)2.

This is equivalent to p(x) = x/(1− p(x)). Setting p(x) = xb(x), this is equiv-
alent to b(x) = 1 + xb(x)2, and consequently we have pn = bn−1. Note that
the recursive description (depicted in Figure 3.4) also leads to the rotation
correspondence.
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Fig. 3.3. Rotation correspondence

= +

Fig. 3.4. Alternative recurrence for planted plane trees

3.1.3 Labelled Trees

A similar counting procedure applies to labelled (rooted and unrooted) trees,
also called Cayley trees, and lead to Cayley’s formula.

Theorem 3.4. The number ln of rooted labelled trees of size n is given by

ln = nn−1.
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Consequently the number of unrooted labelled trees of size n equals nn−2.

Proof. Let L denote the set of labelled rooted trees. Then L can be recursively
described as a root followed by an unordered k-tuple of labelled rooted trees
for some k ≥ 0:

L = ◦+ ◦ ∗ L+
1

2!
◦ ∗L ∗ L+

1

3!
◦ ∗L ∗ L ∗ L+ · · · .

Thus, it is appropriate to use the exponential generating function

l(x) =
∑
n≥0

ln
n!
xn

of ln. The above recursive description is then translated into

l(x) = x+ x l(x) + x
l(x)2

2!
+ x

l(x)3

3!
+ · · · = xel(x).

Finally, by Lagrange’s inversion formula

ln = n!
1

n
[un−1]eun = nn−1.

There is also an explicit formula for the number of different planar em-
beddings.

Theorem 3.5. The number l̂n of different planar embeddings of rooted la-
belled trees of size n is given by

l̂1 = 1 and l̂n = n
(2n− 3)!

(n− 1)!
(n ≥ 2).

Consequently the number of different planar embeddings of unrooted labelled
trees of size n equals (2n− 3)!/(n− 1)! (for n ≥ 2).

Proof. Let p̂(x) denote the exponential generating function of labelled rooted
plane trees. Then due to the recursive structure of these kinds of trees we
have (compare with the proof of Theorem 3.2)

p̂(x) =
x

1− p̂(x)
.

Consequently, the exponential generating function l̂(x) for the numbers l̂n of
different embeddings for labelled rooted trees is given by

l̂(x) = x+ x
∑
k≥1

1

k
p̂(x)k = x+ x log

1

1− p̂(x)
.

Hence, by Lagrange’s inversion formula we obtain (for n ≥ 2)
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l̂n = n![xn−1] log
1

1− p̂(x)

= n!
1

n− 1
[un−2]

1

1− u
1

(1 − u)n−1

= n
(2n− 3)!

(n− 1)!
.

3.1.4 Simply Generated Trees – Galton-Watson Trees

We recall that simply generated trees can be considered as weighted planted
plane trees (introduced by Meir and Moon [151]) and are proper generalisa-
tions of several types of rooted trees (compare with Section 1.2.7). Let

Φ(x) = φ0 + φ1x+ φ2x
2 + · · ·

be the generating function of the weight sequence φj , j ≥ 0. Furthermore, we
introduce the generating function y(x) =

∑
n≥1 ynx

n of the weighted numbers
of trees of size n:

yn =
∑
|T |=n

ω(T ).

Recall also that the weight of a rooted tree T is given by ω(T ) =
∏

j≥0 φ
Dj(T )
j ,

where Dj(T ) denotes the number of nodes in T with j successors. Due to the
recursive structure of planted plane trees and the multiplicative structure of
the weights ω(T ) the generating function y(x) satisfies the functional equation

y(x) = xφ0 + xφ1y(x) + xφ2y(x)2 + · · · = xΦ(y(x)).

In view of this observation it is convenient to think of simply generated trees
T as a weighted recursive structure of the form

T = φ0 · ◦+ φ1 · ◦ × T + φ2 · ◦ × T 2 + · · · .

Equivalently we can consider the resulting trees of a Galton-Watson branching
process (see Section 1.2.7). The numbers yn are then the probabilities that a
Galton-Watson trees has size n.

By Lagrange’s inversion formula we get for all simply generated trees (and
for all Galton-Watson trees)

yn =
1

n
[un−1]Φ(u)n. (3.2)

But there are only few cases where we can use this formula to obtain nice
explicit expressions for yn. Nevertheless, there is a quite general asymptotic
result which relies on the fact that (under certain conditions) the generating
function y(x) has a finite radius of convergence r and that y(x) has a singu-
larity of square root type at x0 = r, that is, y(x) has a representation of the
form
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y(x) = g(x)− h(x)

√
1− x

x0

= c0 + c1
√
x− x0 + c2(x− x0) +O

(
|x− x0|3/2

)
,

where g(x) and h(x) are analytic at x0 (compare with Theorem 2.19). For
binary and planted plane trees this has been made explicit, see (2.3) and
(3.1). Such representations can be used to derive asymptotic expansions for
the coefficients yn.

Theorem 3.6. Let R denote the radius of convergence of Φ(x) and suppose
that there exists τ with 0 < τ < R that satisfies τΦ′(τ) = Φ(τ). Set d =
gcd{j > 0 : φj > 0}. Then

yn = d

√
Φ(τ)

2πΦ′′(τ)

Φ′(τ)n

n3/2

(
1 +O(n−1)

)
(n ≡ 1 mod d) (3.3)

and yn = 0 if n ≡ 1 mod d.

Proof. We apply Theorem 2.19 for F (x, y) = xΦ(y) and assume first for sim-
plicity that d = 1. Then all assumptions are satisfied. In particular we have
x0 = 1/Φ′(τ) and y0 = τ .

If d > 1 then it is easy to see that yn = 0 if n ≡ 1 mod d. Consequently we
have y(x) = ỹ(xd)/xd−1 and (of course) Φ(x) = Φ̃(xd) for analytic functions
ỹ(x) and Φ̃(x). They satisfy ỹ(x) = xΦ̃(ỹ(x)) and the corresponding gcd d̃ = 1.
Thus, Theorem 2.19 can be applied to this equation and we obtain (3.3) in
general.

Note that for m-ary trees and for planted plane trees this asymptotic

formula also follows from the explicit formula for b
(m)
n and pn via Stirling’s

formula.

Remark 3.7 Theorem 3.6 remains true in a slightly more general situation.
Suppose that τ > 0 is the radius of convergence of Φ(x) for which we have
τΦ′(τ) = Φ(τ) and Φ′′(τ) <∞. Then yn is asymptotically given by

yn ∼ d
√

Φ(τ)

2πΦ′′(τ)

Φ′(τ)n

n3/2
(n ≡ 1 mod d). (3.4)

The proof of (3.4) is in principle very similar to the proof of (3.3). One also
observes that the generating function y(x) analytically extends to a Δ-region
such that y(x) = c0 + c1

√
x− x0 (1 + o(1)) as x → x0 (in Δ). Thus, the

Transfer Lemma 2.12, or its variant mentioned in Remark 2.13, leads to (3.4)
(for detail see [114]).
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3.1.5 Unrooted Trees

Let T̃ denote the set of unlabelled unrooted trees and T the set of unla-
belled rooted trees (we do not distinguish between different embeddings in
the plane). Sometimes these kinds of trees are called Pólya trees. The corre-
sponding cardinalities of these trees (of size n) are denoted by t̃n and tn, and
the generating functions by

t̃(x) =
∑
n≥1

t̃nx
n and t(x) =

∑
n≥1

tnx
n.

The structure of these trees is much more complex than that of rooted trees,
where the successors have a left-to-right-order. We have to apply Pólya’s the-
ory of counting and an amazing observation (3.6) by Otter [168].

Theorem 3.8. The generating functions t(x) and t̃(x) satisfy the functional
equations

t(x) = x exp

(
t(x) +

1

2
t(x2) +

1

3
t(x3) + · · ·

)
(3.5)

and

t̃(x) = t(x) − 1

2
t(x)2 +

1

2
t(x2). (3.6)

They have a common radius of convergence ρ ≈ 0.338219 which is given by
t(ρ) = 1, that is, t(x) is convergent at x = ρ. They have a local expansion of
the form

t(x) = 1− b(ρ− x)1/2 + c(ρ− x) + d(ρ− x)3/2 +O((ρ− x)2)) (3.7)

and

t̃(x) =
1 + t(ρ2)

2
+
b2 − ρt′(ρ2)

2
(ρ− x) + bc(ρ− x)3/2 +O((ρ − x)2), (3.8)

where b ≈ 2.6811266 and c = b2/3 ≈ 2.3961466 and x = ρ is the only singular-
ity on the circle of convergence |x| = ρ. Finally, tn and t̃n are asymptotically
given by

tn =
b
√
ρ

2
√
π
n−3/2ρ−n

(
1 +O(n−1)

)
(3.9)

and

t̃n =
b3ρ3/2

4
√
π
n−5/2ρ−n

(
1 +O(n−1)

)
. (3.10)

Remark 3.9 In 1937, Pólya [176] already discussed the generating function
t(x) and showed that the radius of convergence ρ satisfies 0 < ρ < 1 and
that x = ρ is the only singularity on the circle of convergence |x| = ρ. Later
Otter [168] showed that t(ρ) = 1 and used the representation (3.7) to deduce
the asymptotics for tn. He also calculated ρ ≈ 0.338219 and b ≈ 2.6811266.
However, his main contribution was to show (3.6). Consequently he derived
(3.8) and (3.10).
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Proof. Firt we derive (3.5). As in the previous cases we can think of rooted
trees in a recursive way, that is, T is a root followed by an unordered sequence
of rooted trees:

T = ◦ ×Mfin(T ).

Thus, we obtain (3.5).
The radius of convergence ρ of t(x) surely satisfies 1

4 ≤ ρ ≤ 1 (this follows
from tn ≤ pn and tn → ∞). Next we show that t(ρ) is finite (although
x = ρ is a singularity of t(x)) and that ρ < 1. From (3.5) it follows that
log(t(x)/x) ≥ t(x) for 0 < x < ρ. Hence,

t(x)/x

log(t(x)/x)
≤ 1

x

and consequently t(ρ) has to be finite. If ρ = 1 then t(ρk) = t(ρ) for all k ≥ 1
and it would follow that

lim
x→ρ−

et(x)+ 1
2 t(x2)+ 1

3 t(x3)+··· = ∞,

which is impossible. Thus, ρ < 1 and consequently the functions t(x2), t(x3), . . .
are regular at x = ρ. Moreover, they are analytic for |x| ≤ ρ + ε (for some
sufficiently small ε > 0) and are also bounded by |t(xk)| ≤ C|xk| in this
range. Hence, t(x) may be considered as the solution of the functional equa-
tion y = F (x, y), where

F (x, y) = x exp

(
y +

1

2
t(x2) +

1

3
t(x3) + · · ·

)
.

This function satisfies the assumptions of Theorem 2.19. In particular, the
singularity x = ρ and η = t(ρ) satisfy the system of equations

η = ρ exp

(
η +

1

2
t(ρ2) +

1

3
t(ρ3) + · · ·

)
,

1 = ρ exp

(
η +

1

2
t(ρ2) +

1

3
t(ρ3) + · · ·

)
that directly gives η = t(ρ) = 1. Now, by using the expansion (3.7) and (3.5)
we also get c = b2/3 by comparing coefficients. In this way we get (3.8) and
(3.9). Note also that Theorem 2.19 implies that x = ρ is the only singularity
on the circle of convergence of t(x).

Next, observe that (3.7) and (3.6) imply (3.8) and (with the help of the
Transfer Lemma 2.12 or its corollary) (3.10). Therefore it remains to prove
(3.6).

We consider three sets of trees, the set T of rooted trees, the set T̃ of
unrooted trees and the set T (p) of (unordered) pairs {T1, T2} of rooted trees
of T with T1 = T2. (It will be convenient to consider the pair {T1, T2} as a
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tree that is rooted by an additional edge joining the roots of T1 and T2.) Let

t
(p)
n denote the number of pairs of that kind with a total number of n nodes,

and let t(p)(x) denote the generating function of t
(p)
n . Then we have

t(p)(x) =
1

2
t(x)2 − 1

2
t(x2). (3.11)

We will now show that there is a bijection between T and T̃ ∪ T (p). In view
of (3.11) such a bijection implies (3.6).

Recall that an arbitrary (finite) tree has either a central node or a central
edge. The central edge e = (v, w) is called symmetry line, if the two subtrees
rooted at the endpoints v and w are equal.

We first divide the set T into 6 subsets:

1. Let T1 denote those rooted trees that are rooted at the central node.
2. Let T2 denote those rooted trees that have a central node that is different

from the root.
3. Let T3 denote those rooted trees that have a central edge which is not a

symmetry line and where one of the two endpoints of the central edge is
the root.

4. Let T4 denote those rooted trees that have a central edge which is not a
symmetry line and where the root is not one of the two endpoints of the
central edge.

5. Let T5 denote those rooted trees that have a central edge which is a
symmetry line and where one of the two endpoints of the central edge is
the root.

6. Let T6 denote those rooted trees that have a central edge which is a
symmetry line and where the root is not one of the two endpoints of the
central edge.

In a similar way we divide the unrooted trees T̃ :

1. Let T̃1 denote those unrooted trees that have a central node.
2. Let T̃2 denote those unrooted trees that have a central edge, that is not a

symmetry line.
3. Let T̃3 denote those unrooted trees that have a symmetry line as a central

edge.

Finally we partition T (p) that we consider as trees rooted at an edge.

1. Let T (p)
1 be the set of pairs {T1, T2} with T1 = T2 with the property that,

if we join the roots of T1 and T2 by an edge then the resulting tree has a
central node.

2. Let T (p)
2 be the set of pairs {T1, T2} with T1 = T2, such that the tree that

results from T1 and T2 by joining the roots by an edge has a central edge
that is not a symmetry line and that is different from the edge joining T1

and T2.



80 3 Advanced Tree Counting

3. Let T (p)
3 be the set of pairs {T1, T2} with T1 = T2, such that the tree that

results from T1 and T2 by joining the roots by an edge has this edge as
the central one, but it is not a symmetry line.

4. Let T (p)
4 be the set of pairs {T1, T2} with T1 = T2, such that the tree that

results from T1 and T2 by joining the roots by an edge has a symmetry
line as a central edge that is different from the edge joining T1 and T2.

There is a natural bijection between T1 and T̃1. We only have to take the
central node as the root.

Next, there is a bijection between T2 and T (p)
1 . We identify the first edge

from the path connecting the root and the central node with the edge joining
T1 and T2.

Next, there is a trivial bijection between the sets T̃2 and T (p)
2 . By marking

one of the two endpoints of the central edge in the trees of T̃2 we obtain T3.

This can be rewritten as a bijection between T3 and T̃2 ∪ T (p)
2 .

Next, there is a bijection between T4 and T (p)
3 . We identify the first edge

from the path connecting the root and the central edge with the edge joining

T1 and T2. Similarly there is a bijection between T6 and T (p)
4 . Finally, there

is a natural bijection between T5 and T̃3.
Putting these parts together provides the proposed bijection between T

and T̃ ∪ T (p).

In a similar way we can deal with unlabelled binary trees B, where we do
not care about the embedding in the plane. In particular this means that with
the only exception of the root (that has degree 2) all nodes have either degree
1 or 3. The corresponding unrooted version B̃ is the set of unlabelled trees,
where every node has either degree 1 or 3. Let the corresponding cardinalities
of these trees (of size n) be denoted by b̃n and bn, and the generating functions
by

b̃(x) =
∑
n≥1

b̃nx
n and b(x) =

∑
n≥1

bnx
n.

Then we have (similarly to the above, compare also with [28]):

Theorem 3.10. The generating functions b(x) and b̃(x) satisfy the functional
equations

b(x) = x+
x

2

(
b(x)2 + b(x2)

)
(3.12)

and

b̃(x) =
x

6

(
b(x)3 + 3b(x)b(x2) + 2b(x3)

)
− 1

2
b(x)2 +

1

2
b(x2). (3.13)

They have a common radius of convergence ρ2 ≈ 0.6345845127 which is given
by ρ2 b(ρ2) = 1 and singular expansions corresponding to (3.7) and (3.8).
Furthermore, bn and b̃n are asymptotically given by

bn = c1n
−3/2ρ−n

2

(
1 +O(n−1)

)
(n ≡ 1 mod 2) (3.14)



3.1 Generating Functions and Combinatorial Trees 81

and
b̃n = c2n

−5/2ρ−n
2

(
1 +O(n−1)

)
(3.15)

with certain positive constants c1, c2.

Proof. We just comment on the combinatorial part, that is, on (3.12) and
(3.13). The first equation can be rewritten as

b(x) = x+ xPS2 (b(x), b(x2))

and is just a rewriting of the definition. Recall that the root vertex is the
only exceptional node that has degree 2. Nevertheless with the help of b(x)
we obtain the generating function r(x) of rooted (unlabelled) trees, where all
vertices (including the root) have either degree 1 or 3:

r(x) = xPS3 (b(x), b(x2), b(x3)).

Finally, we can adapt the above bijection between rooted trees and unrooted
trees plus pairs of rooted trees to the binary case which leads to

r(x) = b̃(x) +
1

2
b(x)2 − 1

2
b(x2).

This completes the proof of (3.13).
The proof of the analytic part runs along the same lines as in the proof of

Theorem 3.8. It is even easier.

3.1.6 Trees Embedded in the Plane

In a similar (but easier) way one can also consider all possible embeddings
P̃ of trees in the plane. We already discussed planted plane trees P and
their generating function p(x) which satisfies p(x) = x/(1 − p(x)). Let p̃(x)
denote the generating function of the numbers p̃n of different embeddings of
(unrooted) trees of size n. Then the following relations hold.

Theorem 3.11. The generating function p̃(x) is given by

p̃(x) = x
∑
k≥0

PCk
(p(x), p(x2), . . . , p(xk))− 1

2
p(x)2 +

1

2
p(x2), (3.16)

where PCk
(x1, x2, . . . , xk) = 1

k

∑
d|k ϕ(d)x

k/d
d denotes the cycle index of the

cyclic group Ck of k elements. The numbers p̃n of different embedding of (un-
rooted) trees of size n are asymptotically given by

p̃n =
1

8
√
π

4nn−5/2
(
1 +O(n−1)

)
. (3.17)
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Proof. First, the generating function r(x) of different embeddings of rooted
trees is given by

r(x) = x
∑
k≥0

PCk
(p(x), p(x2), . . . , p(xk)).

This is due to the fact that the subtrees of the root in planted plane trees have
a left-to-right-order, but rotations around the root are not allowed. Second,
as in the proof of Theorem 3.8 one has

p̃(x) = r(x) − 1

2
p(x)2 +

1

2
p(x2).

Consequently p̃(x) has a local expansion of the form

p̃(x) =
1

6
(1− 4x)3/2 + · · ·

which gives (3.17) by applying Corollary 2.15 of the transfer lemma (Lemma 2.12).

3.2 Additive Parameters in Trees

In this section we will treat more involved enumeration problems. As an in-
troductory example we consider the numbers pn,k of planted plane trees of
size n with exactly k leaves. Again the concept of generating functions is a
valuable tool for deriving explicit and asymptotic results.

Theorem 3.12. The numbers pn,k of planted plane trees of size n with exactly
k leaves are given by

pn,k =
1

n

(
n

k

)(
n− 1

k

)
.

Proof. Let p(x, u) =
∑

n,k pn,kx
nuk denote the bivariate generating function

of the numbers pn,k. Then, following the recursive description of planted plane
trees one gets

p(x, u) = xu + x
∑
k≥1

p(x, u)k = xu +
x p(x, u)

1− p(x, u)
.

For an instance, let x be considered as a parameter. Then we have

p(x, u) =
ux(

1− x
1−p(x,u)

) , (3.18)

and consequently

[uk]p(x, u) =
1

k
[vk−1]

(
x

1− x
1−v

)k

.
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Finally this implies

pn,k = [xnuk]p(x, u)

=
1

k
[xnvk−1]

(
x

1− x
1−v

)k

=
1

k

(
n− 1

k − 1

)
[vk−1](1− v)−n+k

=
1

k

(
n− 1

k − 1

)(
n− 1

k

)
=

1

n

(
n

k

)(
n− 1

k

)
.

By using Stirling’s formula we directly obtain bivariate asymptotic expan-
sions for pn,k of the form

pn,k =
1

2πkn

(n
k

)2k
(

n

n− k

)2(n−k) (
1 +O

(
1

k

)
+O

(
1

n− k

))

=
1

2πn2

n

k

(
1− k

n
k
n

)2k (
1

1− k
n

)2n (
1 +O

(
1

k

)
+O

(
1

n− k

))
.

(3.19)

In particular, if we fix n then pn,k is maximal if k ≈ n/2 and we locally get a
behaviour of the kind

pn,k ∼
4n

πn2
exp

(
− (n− 2k)2

n

)
. (3.20)

This approximation has several implications. First, it shows that it is most
likely that a typical tree of size n has approximately n/2 leaves and the distri-
bution of the number of leaves around n/2 looks like a Gaussian distribution.

We can make this observation more precise. Let n be given and assume
that each of the pn planted plane trees of size n is equally likely. Then the
number of leaves is a random variable on this set of trees which we will denote
by Xn. More precisely, we have

P{Xn = k} =
pn,k

pn
.

Then EXn ∼ n/2 and VarXn ∼ n/8, and (3.20) can be restated as a weak
limit theorem:

Xn − EXn√
VarXn

d−→ N(0, 1).

In view of Theorem 2.23 this result is not unexpected. The generating func-
tion p(x, u) is the solution of the functional equation (3.18) that satisfies all
assumptions of Theorem 2.23. Thus, we directly obtain a central limit theo-
rem.
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3.2.1 Simply Generated Trees – Galton-Watson Trees

In what follows we show that several parameters on trees that have a certain
additive structure satisfy a central limit theorem. The general philosophy is to
find a functional equation for the corresponding bivariate generating function
and then to apply the combinatorial central limit theorem (Theorem 2.23).

We first consider the number of leaves of simply generated trees. This
covers m-ary trees, planted plane trees and labelled rooted trees.

Theorem 3.13. Let R denote the radius of convergence of Φ(t) and suppose
that there exists τ with 0 < τ < R that satisfies τΦ′(τ) = Φ(τ). Let Xn be the
random variable describing the number of leaves in trees of size n, that is

P{Xn = k} =
yn,k

yn
,

where yn,k =
∑

|T |=n,D0(T )=k

ω(T ). Then EXn = μn + O(1) and VarXn =

σ2 n+O(1), where μ = φ0/Φ(τ) and

σ2 =
φ0

Φ(τ)
− φ2

0

Φ(τ)2
− φ2

0

τ2Φ(τ)Φ′′(τ)
.

Furthermore, Xn satisfies a central limit theorem of the form

Xn − EXn√
VarXn

d−→ N(0, 1).

Proof. Set

y(x, u) =
∑
n,k

yn,kx
nuk.

Then y(x, u) satisfies the functional equation

y(x, u) = φ0x(u − 1) + xΦ(y(x, u)).

Thus, we just have to apply Theorem 2.21 and 2.22.

It is easy to extend the above Theorem 3.13 to the numbers of nodes of

given out-degree. Let X
(k)
n denote the number of nodes of out-degree k in a

random simply generated tree of size n. Then the corresponding generating
function yk(x, u) satisfies the function equation

yk(x, u) = x(u − 1)φk yk(x, u)k + xΦ(yk(x, u)).

Hence, it follows that X
(k)
n satisfies a central limit theorem with

EX(k)
n =

φkτ
k

Φ(τ)
n+O(1).
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In particular the probability dk;n that a random node in a random simply
generated tree of size n has out-degree d satisfies

dk;n =
EX

(k)
n

n
→ dk =

φkτ
k

Φ(τ)
(n→∞).

Recall that dk = φkτ
k/Φ(τ) is exactly the offspring distribution of the critical

Galton-Watson branching process that is associated to simply generated trees.
Thus, we can recover this process just by looking at certain tree statistics.

The limiting probabilities dk, k ≥ 0 constitute a probability distribution
that we will call the out-degree distribution of the simply generated tree family.
The generating function

p(w) =
∑
k≥0

dkw
k =

Φ(τw)

Φ(τ)
,

where τ > 0 satisfies τΦ′(τ) = Φ(τ), characterises this distribution.
For example, for planted plane trees and planar embeddings of (labelled

or unlabelled) trees we have

p(w) =
∑
k≥0

1

2k+1
wk =

1

2− w

whereas for labelled trees (where we do not distinguish between different
planar embeddings) we have

p(w) =
∑
k≥0

1

e k!
wk = ew−1.

Remark 3.14 It is also interesting to consider the maximum degree Δn. As a
(heuristic) rule one can say that Δn is concentrated around a value k0 = k0(n)
for which

E

⎛⎝∑
k≥k0

X(k)
n

⎞⎠ ≈ 1 (3.21)

(compare also with Section 6.2.4, in particular the discussion of Theorem 6.12).

Since EX
(k)
n ∼ dkn, where dk = φkτ

k/Φ(τ), one is led to consider the value

δ(n) = max
{
k ≥ 0 :

∑
�≥k

d� ≥
1

n

}
.

Actually, if φk+1/φk → 0 as k → ∞ then we have very strong concentration
(see Meir and Moon [153]):

P{|Δn − δ(n)| ≤ 1} = 1 + o(1).
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In the remaining cases there is probably no such general theorem. Only some
special cases are known. For example, for planted plane trees we have (see
Carr, Goh and Schmutz [32])

P{Δn ≤ k} = exp
(
−2−(k−log2 n+1)

)
+ o(1).

All these results are in accordance with the above mentioned heuristics (3.21).

Next we generalise the method used above to so-called additive parameters.
Let v(T ) denote the value of a parameter of a rooted tree T . We call it additive,
if

v(T ) = v(◦ × T1 × T2 × · · · × Tk) = ck + v(T1) + v(T2) + · · ·+ v(Tk),

where T1, . . . , Tk denote the subtrees of the root of T that are rooted at the
successors of the root and ck is a given sequence of real numbers. Equivalently

v(T ) =
∑
j≥0

cjDj(T ).

For example, if ck = 1 and cj = 0 for j = k then v(T ) is just the number of
nodes of out-degree k. For n ≥ 1 we now set

yn(u) =
∑
|T |=n

ω(T )uv(T )

and
y(x, u) =

∑
n≥1

yn(u)xn.

The definition of v(T ) and the recursive structure of simply generated trees
implies that y(x, u) satisfies the functional equation

y(x, u) = x
∑
k≥0

φku
cky(x, u)k.

If ck are non-negative integers then yk(u) may be interpreted as

yn(u) =
∑
k≥0

yn,ku
k,

where yn,k denotes the (weighted) number of trees T of size n with v(T ) = k.
Let Xn denote the random parameter v, assuming the usual probability

model on trees of size n, that is, Xn describes the distribution of v(T ) on
the set of trees of size n, where these trees are distributed according to their
weights ω(T ). In particular we have

EuXn =
yn(u)

yn
. (3.22)

As above, the distribution of Xn is (usually) Gaussian with mean value and
variance of order n.
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Theorem 3.15. Let R denote the radius of convergence of Φ(t) and suppose
that there exists τ with 0 < τ < R that satisfies τΦ′(τ) = Φ(τ). Furthermore,
let ck (k ≥ 0) be a sequence of real numbers such that the function

F (x, y, u) = x
∑
k≥0

φku
ckyk

is analytic at x = x0 = 1/Φ′(τ), y = y0 = τ , u = 1. Then the random variable
Xn defined by (3.22) has expected value EXn = μn + O(1) and variance
VarXn = σ2 n+ O(1), where μ =

∑
k≥0 ckφkτ

k/Φ(τ) and σ2 ≥ 0. If σ2 > 0
then Xn satisfies a (weak) central limit theorem of the form

Xn − EXn√
VarXn

d−→ N(0, 1).

Proof. We just have to apply Theorems 2.21 and 2.22.

Remark 3.16 By using Theorem 2.23 it would have been possible to provide
an explicit formula for σ2 that is not really elegant. Note that there are also
cases with σ2 = 0. For example, if ck = 1 for all k ≥ 0 then v(T ) = |T | and
consequently Xn is concentrated at n.

3.2.2 Unrooted Trees

If we do not have a recursive structure, for example unrooted trees, it is
still possible to define parameters that are additive with respect to the degree
distribution. Let us consider the class T̃ of unrooted trees and define a additive
parameter v by

v(T̃ ) =
∑
j≥1

cjD̃j(T̃ ), (3.23)

where D̃j(T̃ ) denotes the number of nodes in T̃ of degree j. For example, if

ck = 1 for some k ≥ 1 and cj = 0 for j = k then v(T̃ ) is just the number of
nodes of degree k.

In order to analyse v(T̃ ) we also have to consider the class T of planted
rooted trees and use the two generating functions

t(x, u) =
∑
T∈T

x|T |uv′(T ) =
∑
n≥1

⎛⎝ ∑
|T |=n

uv′(T )

⎞⎠ xn

and

t̃(x, u) =
∑
T̃∈T̃

x|T̃ |uv(T̃ ) =
∑
n≥1

⎛⎝ ∑
|T̃ |=n

uv(T̃ )

⎞⎠ xn,

where v′ is the proper version of v for rooted trees T :
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v′(T ) =
∑
j≥0

cj+1Dj(T ).

Note that both definitions are consistent since the degree of any node in a
planted rooted tree equals the out-degree plus 1 (see Section 1.2.2).

Following the combinatorial constructions of Section 3.1.5 we obtain the
following system of functional equations. In order to make the equations more
transparent we include, too, a function r(x, u) that corresponds to rooted
trees, where the degree of the root equals the out-degree.

t(x, u) = x
∑
k≥0

uck+1PSk
(t(x, u), t(x2, u2), . . . , t(xk, uk)), (3.24)

r(x, u) = x+ x
∑
k≥1

uckPSk
(t(x, u), t(x2, u2), . . . , t(xk, uk)), (3.25)

t̃(x, u) = r(x, u)− 1

2
t(x, u)2 +

1

2
t(x2, u2). (3.26)

Finally, we introduce the random variable Xn (describing the distribution of
v on trees of size n) in the usual way:

EuXn =
1

t̃n

∑
|T̃ |=n

uv(T̃ ). (3.27)

Theorem 3.17. Let (ck)k≥1 be a bounded sequence of real numbers, and let
v(T ) and Xn be defined by (3.23) and (3.27). Then there exist μ and σ2 ≥ 0
with EXn = μn+O(1) and VarXn = σ2 n+O(1). If σ2 > 0 then Xn satisfies
a (weak) central limit theorem of the form

Xn − EXn√
VarXn

d−→ N(0, 1).

Proof. The proof runs as follows. First, we apply Theorem 2.21 to (3.24) which
implies that t(x, u) has a square root singularity of the kind (2.21). Second,
we use this representation and (3.26) to get an expansion for t̃(x, u) of the
form

t̃(x, u) = g(x, u)− h(x, u)

(
1− x

f(u)

)3/2

. (3.28)

Then we apply Theorem 2.25 to obtain a central limit theorem. The last step
is a direct application. So we just have to look at the first two steps.

In order to apply Theorem 2.21 we just have to ensure that the functions
t(x2, u2), t(x3, u3), . . . are analytic if x is close to ρ and u is close to 1. Since
the sequence ck is bounded we have |ck| ≤ M for some M > 0 and thus
|v′(T )| ≤M |T |. Hence, if |u| > 1 and |xuM | < ρ then we have

|t(x, u)| ≤
∑
n≥1

tn|u|Mn|x|n = t(|xuM |, 1).



3.2 Additive Parameters in Trees 89

In particular if |x| ≤ ρ+ η and |u| ≤ (
√
ρ/(ρ + η))1/M (where η > 0 is small

enough that (
√
ρ/(ρ+ η))1/M > 1) we get for k ≥ 2

|t(xk, uk)| ≤ t(|xuM |k, 1) ≤ t(ρk/2, 1) ≤ Cρk/2.

Thus, we can apply Theorem 2.21 with

F (x, y, u) = x
∑
k≥0

uck+1PSk
(y, t(x2, u2), . . . , t(xk, uk))

and obtain a representation of the form

t(x, u) = g(x, u)− h(x, u)

√
1− x

f(u)
, (3.29)

where g1 = g(f(u), u) satisfies the relation

g1 = f(u)
∑
k≥0

uck+1PSk
(g1, t(f(u)2, u2), . . . , t(f(u)k, uk)).

Consequently, from (3.26) and (3.29) we obtain a representation for t̃(x, u) of
the form

t̃(x, u) = g2(x, u)− h2(x, u)

√
1− x

f(u)
, (3.30)

where

h2(x, u) = h(x, u)

(
x
∑
k≥1

uck
∂

∂x1
PSk

(g(x, u), t(x2, u2), . . . , t(xk, uk))

− g(x, u) + (x− f(u))H(x, u)

)
in which H(x, u) denotes an analytic function in x and u. Note that

∂

∂x1
PSk

(x1, . . . , xk) = PSk−1
(x1, . . . , xk−1).

This implies that

h2(f(u), u) = h(f(u), u)f(u)

⎛⎝∑
k≥1

uck
∂

∂x1
PSk

(g1, . . .)−
∑
k≥0

uck+1PSk
(g1, . . .)

⎞⎠
= 0.

Hence, h2(x, u) can be represented as

h2(x, u) = h(x, u)

(
1− x

f(u)

)
.

This implies (3.28) and completes the proof of Theorem 3.17.
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3.3 Patterns in Trees

In the Section 3.2.1 we have shown that a typical tree in the set of unrooted
labelled trees of size n has about μkn nodes of degree k, where

μk =
1

e(k − 1)!
.

(Note that we are now considering the degree and not the out-degree.) More-
over, for any fixed k the total number of nodes of degree k over all trees in
Tn satisfies a central limit theorem with mean and variance asymptotically
equivalent to μkn and σ2

kn, where

σ2
k = μk − μ2

k −
(k − 2)2

e2(k − 1)!(k − 1)!
.

A node of degree k can be interpreted as an occurrence of a star with
k edges. Thus, the number of nodes of degree k is exactly the number of oc-
currences of a star pattern of fixed size. Our aim is to generalise this problem
to general patterns. More precisely we consider a given finite tree, a pattern
M, and want to compute the limiting distribution of the number of occur-
rences of M in Tn as n→∞ (we follow [40]).

In order to make our considerations more transparent, let us consider the
example pattern in Figure 3.5 that can be seen as a chain of three nodes of
degree 3.

Fig. 3.5. Example pattern

We distinguish between internal (filled) nodes and external (empty) ones
and say that a specific pattern M occurs in a tree T if M occurs in T as a
substructure in the sense that the node degrees for the internal (filled) nodes
in the pattern match the degrees of the corresponding nodes in T , while the
external (empty) nodes match nodes of arbitrary degree. For instance, the
example pattern occurs exactly three times in the tree depicted in Figure 3.6.
Note also that there can be overlaps of two or more copies of M, which we
intend to count as separate occurrences.

The goal of this section is to prove the following general theorem that
extends the result of nodes of given degree to pattern occurrences in labelled
(unrooted) trees (see [40]).
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Fig. 3.6. Pattern occurrence

Theorem 3.18. Let M be a given finite tree. Then the limiting distribution
of the number of occurrences of M in a labelled tree of size n is asymptoti-
cally normal with mean and variance asymptotically equivalent to μn and σ2n,
respectively, where μ > 0 and σ2 ≥ 0 depend on the pattern M, are polyno-
mials in 1/e (with rational coefficients) and can be computed explicitly and
algorithmically for each given M.

3.3.1 Planted, Rooted and Unrooted Trees

The counting procedure we use is recursive and based on rooted trees. How-
ever, we have to take care of several node degrees. Therefore it is more trans-
parent to use the following three-step-program that we have already used,
for example, for the proof of Theorem 3.17. We first consider planted rooted
trees, then rooted trees and finally unrooted ones. We recall that a rooted
tree is planted if the root is connected (or planted) to an additional phantom
node that is not taken into account (compare with Section 1.2.2). This has the
advantage that in this case all nodes have the property d(v) = d+(v) + 1. The
only but essential difference between planted rooted trees and rooted trees is
that the degree of the root node is different.

In order to demonstrate the usefulness of the three-step-procedure above
we consider (again) the problem of counting nodes of given degree k (which
is equivalent to count stars with k edges). Let an,m denote the number of
planted rooted (and labelled) trees of size n with exactly m nodes of degree
k. Furthermore, let ln,m and tn,m be the corresponding numbers for rooted
and unrooted (labelled) trees and set
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a(x, u) =
∞∑

n,m=0

an,m
xnum

n!
, l(x, u) =

∞∑
n,m=0

ln,m
xnum

n!
, and

t(x, u) =

∞∑
n,m=0

tn,m
xnum

n!
.

Then we have (compare also with (3.24)–(3.26)):

1. Planted Rooted Trees:

a(x, u) =

∞∑
n=0

n�=k−1

xa(x, u)n

n!
+
xu a(x, u)k−1

(k − 1)!
= xea(x,u)+

x(u− 1)a(x, u)k−1

(k − 1)!
.

2. Rooted Trees:

l(x, u) =

∞∑
n=0
n�=k

xa(x, u)n

n!
+
xu a(x, u)k

k!
= xea(x,u) +

x(u− 1)a(x, u)k

k!
.

3. Unrooted Trees: Since we are considering labelled trees, we simply have
tn,m = ln,m/n. Thus, the statistics on the number of nodes of degree k
are precisely the same. However, it is also possible to express t(x, u) by

t(x, u) = l(x, u)− 1

2
a(x, u)2.

This follows from a natural bijection between rooted trees on the one hand
and unrooted trees and pairs of planted rooted trees (that are joined by
identifying the additional edges at their planted roots and discarding the
phantom nodes) on the other hand.1

We now generalise the counting procedure of Section 3.3.1 to more com-
plicated patterns. For our purpose, a pattern is a given (finite unrooted unla-
belled) tree M. For M we will use the example graph in Figure 3.5 in order
to make the arguments more transparent.

3.3.2 Generating Functions for Planted Rooted Trees

Let an,m denote the number of planted rooted (and labelled) trees with
n nodes and exactly m occurrences of the pattern M, where the additional
(phantom) node is taken into account in the matching procedure. Further-
more, let

1 Consider the class of rooted (labelled) trees. If the root is labelled by 1 then
consider the tree as an unrooted tree. If the root is not labelled by 1 then consider
the first edge of the path between the root and 1 and cut the tree into two planted
rooted trees at this edge.
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a = a(x, u) =
∞∑

n,m=0

an,m
xnum

n!

be the corresponding generating function.

Lemma 3.19. Let M be a pattern. Then there exists a certain number of
auxiliary functions aj(x, u) (0 ≤ j ≤ L) with

a(x, u) =

L∑
j=0

aj(x, u)

and polynomials Pj(y0, . . . , yL, u) (1 ≤ j ≤ L) with non-negative coefficients
such that

a0(x, u) = xea0(x,u)+···+aL(x,u) − x
L∑

j=1

Pj(a0(x, u), . . . , aL(x, u), 1)

a1(x, u) = xP1(a0(x, u), . . . , aL(x, u), u)

...

aL(x, u) = xPL(a0(x, u), . . . , aL(x, u), u).

(3.31)

Furthermore,
L∑

j=1

Pj(y0, . . . , yL, 1) ≤c e
y0+···+yL ,

where f ≤c g means that all Taylor coefficients of the left-hand side are smaller
than or equal to the corresponding coefficients of the right-hand-side. More-
over, the dependency graph of the system (3.31) is strongly connected.

The proof of this lemma is in fact the core of the proof of Theorem 3.18.
As already mentioned we will demonstrate all steps of the proof using the
example pattern in Figure 3.5. At each step we will also indicate how to
make all constructions explicit so that it is possible to generate System (3.31)
effectively.

A B C

Fig. 3.7. Planted pattern matching
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We introduce the notion of a planted pattern . A planted pattern Mp is
just a planted rooted tree where we again distinguish between internal (filled)
and external (empty) nodes. It matches a planted rooted tree from Tn if Mp

occurs starting from the (planted) root, that is, the branch structure and node
degrees of the filled nodes match. Two occurrences may overlap. For example,
in Figure 3.7 the planted pattern Mp on the left matches the planted tree A
twice (following the left or the right edge from the root), but B not at all.
Also remark that, notwithstanding the symmetry of C, the pattern Mp really
matches C twice.

Fig. 3.8. Planted patterns for the pattern in Figure 3.5

We now construct a planted pattern for each internal (filled) node of our
patternM which is adjacent to an external (empty) node. The internal (filled)
node is considered as the planted root and one of the free attached leaves as
the plant. In our example we obtain the two graphs in Figure 3.8.

The next step is to partition all planted trees according to their degree
distribution up to some adequate level. To this end, let D denote the set of
out-degrees of the internal nodes in the planted patterns introduced above and
h be the maximal height of these patterns. In our example we have D = {2}
and h = 3. For obtaining a partition, we more precisely consider all trees of
height less than or equal to h with out-degrees in D. We distinguish two types
of leaves in these trees, depending on the depth at which they appear: leaves
in level h, denoted “◦”, and leaves at levels less than h, denoted “�”. For our
example we get 11 different trees a0, a1, . . . , a10, depicted on Figure 3.9.

These trees induce a natural partition of all planted trees for the following
interpretation of the two types of leaves: We say that a tree T is contained
in class2 aj if it matches the finite tree (or pattern) aj in such a way that a
node of type � has degree not in D, while a node of type ◦ has any degree.
For example, a0 corresponds to those planted trees where the out-degree of
the root is not in D.

2 By abuse of notation the tree class corresponding to the finite tree aj is denoted
by the same symbol aj .
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a a

a

a

aa

a

a a a a
7

65

0

43

21

98 10

Fig. 3.9. Tree partition

It is easy to observe that these (obviously disjoint) classes of trees form
a partition. Indeed, take any rooted tree. For any path from the root to a
leaf, consider the first node with out-degree not in D, and replace the whole
subtree at it with �. Then replace any node at depth h with ◦. The tree
obtained in this way is one in the list.

The above classes can be described recursively. Here it seems to be conve-
nient to introduce a formal notation to describe operations between classes of
trees: ⊕ denotes the disjoint union of classes; \ denotes set difference; recursive
descriptions of tree classes are given in the form ai = xae1

j1
· · ·ae�

j�
, to express

that the class ai is constructed by attaching e1 subtrees from the class aj1 ,
e2 subtrees from the class aj2 , etc, to a root node that we denote by x.

In our example we get the following relations:

a0 = x⊕ x
10⊕

i=0

ai ⊕ x
∞⊕

n=3

( 10⊕
i=0

ai

)n

,

a1 = xa20,

a2 = xa0a1,

a3 = xa0(a2 ⊕ a3 ⊕ a4),

a4 = xa0(a5 ⊕ a6 ⊕ a7 ⊕ a8 ⊕ a9 ⊕ a10),

a5 = xa21,

a6 = xa1(a2 ⊕ a3 ⊕ a4),

a7 = xa1(a5 ⊕ a6 ⊕ a7 ⊕ a8 ⊕ a9 ⊕ a10),
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a8 = x(a2 ⊕ a3 ⊕ a4)2,

a9 = x(a2 ⊕ a3 ⊕ a4)(a5 ⊕ a6 ⊕ a7 ⊕ a8 ⊕ a9 ⊕ a10),

a10 = x(a5 ⊕ a6 ⊕ a7 ⊕ a8 ⊕ a9 ⊕ a10)2.

This is to be interpreted as follows. First, trees in a0 consist of a (planted)
root that is denoted by x and has out-degree j which is not contained in
D = {2}. The successors of the root are arbitrary trees. Next, trees in a1

consist of a root that has out-degree 2, and two successors that are of out-
degree distinct from 2, that is, in a0. Similarly, trees in a3 consist of a root x
with out-degree 2 and subject to the following additional constraints: one
subtree at the root is exactly of type a0; the other subtree, call it T , is of
out-degree 2, either with both subtrees of degree other than 2 (leading to
T in a2), or with one subtree of degree 2 and the other of degree other than 2
(leading to T in a3), or with both of its subtrees of degree 2 (leading to T in
class a4). Summarising: a3 = xa0(a2 ⊕ a3 ⊕ a4). Of course this can also be
interpreted as a3 = xa0a2 ⊕ xa0a3 ⊕ xa0a4. Another more involved example
corresponds to a8; here both subtrees are of the form a2 ⊕ a3 ⊕ a4.

To show that the recursive description can be obtained in general, consider
a tree aj obtained from some planted pattern Mp. Let s1, . . . , sd denote its
subtrees at the root. Then, in each si, leaves of type ◦ can appear only at
level h − 1. Substitute for all such ◦ either � or a node of out-degree chosen
from D and having ◦ for all its subtrees. Do this substitution in all possible
ways. The collection of trees obtained are some of the ak’s, say a

k
(j)
1

, a
k
(j)
2

, etc.

Thus, we obtain the recursive relation aj = x(a
k
(1)
1
⊕ a

k
(1)
2
⊕ · · · ) · · · (a

k
(d)
1
⊕

a
k
(d)
2
⊕ · · · ) for aj .

In general, we obtain a partition of L + 1 classes a0, . . . , aL and corre-
sponding recursive descriptions, where each tree type aj can be expressed as
a disjoint union of tree classes of the kind

xaj1 · · ·ajr = xal0
0 · · ·alL

L , (3.32)

where r denotes the degree of the root of aj and the non-negative integer li
is the number of repetitions of the tree type ai.

We proceed to show that this directly leads to a system of equations of the
form (3.31), where each polynomial relation stems from a recursive equation
between combinatorial classes.

Let Λj be the set of tuples (l0, . . . , lL) with the property that (l0, . . . , lL) ∈
Λj , if and only if the term of type (3.32) is involved in the recursive description
of aj (in expanded form). Further, let k = K(l0, . . . , lL) denote the number
of additional occurrences of the pattern M in (3.32) in the following sense: if
b = xaj1 · · · ajr and T is a labelled tree of b with subtrees T1 ∈ aj1 , T2 ∈ aj2 ,
etc, and M occurs m1 times in T1, m2 times in T2, etc, then T contains M
exactlym1+m2+· · ·+md+k times. The number k corresponds to the number
of occurrences of M in T in which the root of T occurs as internal node of
the pattern. By construction of the classes ai this number only depends on
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b and not on the particular tree T ∈ b. Let us clarify the calculation of k =
K(l0, . . . , lL) with an example. Consider the class a9 of the partition for the
example pattern. Now we have to match the planted patterns of Figure 3.8 at
the root of an arbitrary tree of class a9. The left planted pattern of Figure 3.8
matches three times, the right one matches once. Thus we find that in this case
k = 4. For the other classes we find the following values of k = K(l0, . . . , lL):

Terms of class a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
Value of k 0 0 0 1 2 1 2 3 3 4 5

.

Now define series Pj by

Pj(y0, . . . , yL, u) =
∑

(l0,...,lL)∈Λj

1

l0! · · · lL!
yl0
0 · · · ylL

L u
K(l0,...,lL).

These are in fact polynomials for 1 ≤ j ≤ L by the finiteness of the cor-
responding Λj . All matches of the planted patterns are handled in the Pj ,
1 ≤ j ≤ L, thus

P0(y0, . . . , yL, u) = ey0+···+yL −
L∑

j=1

Pj(y0, . . . , yL, 1)

does not depend on u.
In our pattern we get for example

P8(y0, . . . , y10, u) =
1

2
xy22u

3 + xy2y3u
3 + xy2y4u

3 +
1

2
xy23u

3 + xy3y4u
3 +

1

2
xy24u

3

=
1

2
x(y2 + y3 + y4)2u3.

Finally, let aj;n,m denote the number of planted rooted trees of type aj with
n nodes and m occurrences of the pattern M and set

aj(x, u) =

∞∑
n,m=0

aj;n,m
xnum

n!
.

By this definition it is clear that

aj(x, u) = x · Pj

(
a0(x, u), . . . , aL(x, u), u

)
,

because the number of labelled trees is counted by x (exponential generating
function) and the number of patterns is additive and counted by u. Hence, we
explicitly obtain the proposed structure of the system of functional equations
(3.31).

Concerning the example pattern we reach the following system of equa-
tions, where we denote the generating function of the class ai by the same
symbol ai:
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a0 = a0(x, u) = x+ x
10∑

i=0

ai + x
∞∑

n=3

1

n!

(
10∑

i=0

ai

)n

,

a1 = a1(x, u) =
1

2
xa20,

a2 = a2(x, u) = xa0a1,

a3 = a3(x, u) = xa0(a2 + a3 + a4)u,

a4 = a4(x, u) = xa0(a5 + a6 + a7 + a8 + a9 + a10)u2,

a5 = a5(x, u) =
1

2
xa21u,

a6 = a6(x, u) = xa1(a2 + a3 + a4)u2,

a7 = a7(x, u) = xa1(a5 + a6 + a7 + a8 + a9 + a10)u3,

a8 = a8(x, u) =
1

2
x(a2 + a3 + a4)2u3,

a9 = a9(x, u) = x(a2 + a3 + a4)(a5 + a6 + a7 + a8 + a9 + a10)u4,

a10 = a10(x, u) =
1

2
x(a5 + a6 + a7 + a8 + a9 + a10)2u5.

In order to complete the proof of Lemma 3.19 we just have to show that
the dependency graph is strongly connected. By construction, a0 = a0(x, u)
depends on all functions ai = ai(x, u). Thus, it is sufficient to prove that
every ai (1 ≤ i ≤ L) eventually depends on a0 in the sense that there exists
a sequence of indices i1, i2, . . . , ir such that ai = xPi(a0, . . . , aK) directly
depends on ai1 , ai1 directly depends on ai2 etc, and finally air directly depends
on a0. For this purpose consider the subtree of M that was labelled by ai

and consider a path from its root to an empty node. Each edge of this path
corresponds to another subtree of M corresponding to ai1 , ai2 , . . . , air . Then,
by construction of the system of functional equations above, ai depends on
ai1 , ai1 depends on ai2 , etc. Finally the root of air is adjacent to an empty
node and thus (the corresponding generating function) depends on a0. This
completes the proof of Lemma 3.19.

Note that we obtain a relatively more compact form of this system by
introducing

b0 = b0(x, u) = a0(x, u)

b1 = b1(x, u) = a1(x, u) (3.33)

b2 = b2(x, u) = a2(x, u) + a3(x, u) + a4(x, u)

b3 = b3(x, u) = a5(x, u) + a6(x, u) + a7(x, u) + a8(x, u) + a9(x, u) + a10(x, u),

together with the recursive relations
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b0 = xeb0+b1+b2+b3 − 1

2
x(b0 + b1 + b2 + b3)2

b1 =
1

2
xb20

b2 = xb0b1 + xb0b2u+ xb0b3u
2

b3 =
1

2
xb21u+ xb1b2u

2 + xb1b3u
3 +

1

2
xb22u

3 + +xb2b3u
4 +

1

2
xb23u

5.

The combinatorial classes corresponding to the bi (which we will also denote
by bi) have the interpretation as shown in Figure 3.10. We could have obtained
the classes bi directly by restraining the construction to a maximal depth h−
1 instead of h. In principle, we could then apply the analytic treatment of
Section 3.3.4 to the system of the bi. However we feel that the existence of
a recursive structure of the system of the bi with a well-defined K(l0, .., lL)
for each term in the recursive description is slightly less clear. Therefore we
preferred to work with the ai which has a well-defined K(ai).

b b b b0 1 2 3

Fig. 3.10. The classes corresponding to the bi of the equations (3.33)

3.3.3 Rooted and Unrooted Trees

The next step is to find equations for the exponential generating function of
rooted trees (where occurrences of the pattern are marked with u). As above
we set

l(x, u) =

∞∑
n,m=0

ln,m
xnum

n!
,

where ln,m denotes the number of rooted trees of size n with exactly m oc-
currences of the pattern M. (That is, occurrences of the rooted patterns Mr

deducible from M. Here, a rooted pattern is defined in a very similar way as
a planted pattern.)
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Lemma 3.20. Let M be a pattern and let

a0(x, u), . . . , aL(x, u)

denote the auxiliary functions introduced in Lemma 3.19. Then there ex-
ists a polynomial Q(y0, . . . , yL, u) with non-negative coefficients satisfying
Q(y0, . . . , yL, 1) ≤c e

y0+···+yL, such that

l(x, u) = G(x, u, a0(x, u), . . . , aL(x, u)) (3.34)

for

G(x, u, y0, . . . , yL) = x
(
ey0+···+yL −Q(y0, . . . , yL, 1) +Q(y0, . . . , yL, u)

)
.

(3.35)

Proof. In principle the proof is a direct continuation of the proof of Lemma
3.19. We recall that a rooted tree is just a root with zero, one, two, . . . planted
subtrees, i.e., the class of rooted trees can be described as a disjoint union of
classes c of rooted trees of the form xaj1 · · · ajd

. Let li denote the number of

classes ai in this term such that c = xal0
0 · · · alL

L , and set K̄(l0, . . . , lL) to be
the number of additional occurrences of the pattern M. This number again
corresponds to the number of occurrences of M in a tree T ∈ c in which the
root of T occurs as internal node of the pattern. Set

Qd(y0, . . . , yL, u) =
∑

l0+···+lL=d

1

l0! · · · lL!
yl0
0 · · · ylL

L u
K̄(l0,...,lL).

Then by construction

l(x, u) = x
∑
d≥0

Qd(a0(x, u), . . . , aL(x, u), u).

Note that
∑

d≥0Qd(y0, . . . , yL, 1) = ey0+···+yL . Let D̄ denote the set of degrees

of the internal (filled) nodes of the pattern, that is, D̄ = {d+ 1 : d ∈ D}; then
Qd(y0, . . . , yL, u) does not depend on u if d ∈ D̄. With

Q(y0, . . . , yL, u) :=
∑
d∈D̄

Qd(y0, . . . , yL, u)

we obtain (3.34) and (3.35). The number K̄(l0, . . . , lL) is well-defined for a
similar reason as was K(l0, . . . , lL), and can be calculated similarly.

We again illustrate the proof with our example. In Figure 3.11 the corre-
sponding rooted patterns are shown. For convenience let l0 = l0(x, u) denote
the function

l0 = xea − xa
3

3!
,
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Fig. 3.11. Rooted patterns for the pattern in Figure 3.5

where a = a0 + · · · + a10. The function r0 might also be interpreted as a
catch-all function for the “uninteresting” subtrees – just a root x with an
unspecified number of planted trees attached, except the ones we handle dif-
ferently, namely the cases d ∈ D̄ = {3}. The generating function r = r(x, u)
for rooted trees is then given by

l = l0 +
1

6
xb30 +

1

2
x
∑

1≤i≤3

b20biu
i−1 +

1

2
x
∑

1≤i,j≤3

b0bibju
i+j−1

+
1

6
x
∑

1≤i,j,k≤3

bibj , bku
i+j+k

where the bi are defined in (3.33).
As above we have tn,m = ln,m/n, where tn,m denotes the number of un-

rooted trees with n nodes and exactly m occurrences of the pattern M. This
relation is sufficient for our purposes. It is also possible to express the corre-
sponding generating function t(x, u). In a way similar as before, we can define
the number of additional occurrences K̂(i, j) of the pattern M that appear
by constructing an unrooted tree from two planted trees of the class ai and
aj by identifying the additional edges at their planted roots and discarding
the phantom nodes. For our example we get

t(x, u) = l(x, u)− 1

2
a(x, u)2 − 1

2

∑
1≤i,j≤3

bi(x, u)bj(x, u)(ui+j−2 − 1).

3.3.4 Asymptotic Behaviour

In order to complete the proof of Theorem 3.18 we want to apply Theo-
rem 2.35. Several assumptions have already been checked. The only missing
point is the existence of a non-negative solution (x0, a0) of the system

a = F(x,a, 1), (3.36)

0 = det(I− Fa(x,a, 1)), (3.37)

where (3.36) is the system of functional equations of Lemma 3.19 and Fa is
the Jacobian matrix of F. Since the sum of all unknown functions a(x, u) is
known for u = 1:
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a(x, 1) = a(x) =
∑
n≥1

nn−1x
n

n!
= 1−

√
2
√

1− ex+ · · · ,

it is not unexpected that x0 = 1/e.

Lemma 3.21. There exists a unique non-negative solution (x0, a0) of Sys-
tem (3.36)–(3.37), x0 = 1/e and the components of a0 are polynomials (with
rational coefficients) in 1/e.

Proof. For a proof, set u = 1 and consider the solution a(x, 1) = (a0(x, 1), . . . ,
aL−1(x, 1)). Since the dependency graph is strongly connected, it follows that
all functions aj(x, 1) have the same radius of convergence which has to be x0 =
1/e, and all functions are singular at x = x0. Since 0 ≤ aj(x, 1) ≤ p(x, 1) <∞
for 0 ≤ x ≤ x0, it also follows that aj(x0, 1) is finite, and we have a(x0, 1) =
F(x0, a(x0, 1), 1). If we had the inequality det(I − Fa(x0, a(x0, 1), 1)) = 0
then the implicit function theorem would imply the existence of an analytic
continuation for aj(x, 1) around x = x0, which is, of course, a contradiction.
Thus, the system above has a unique solution.

To see that the components ā0, . . . āL (with āi = ai(1/e, 1)) of a0 are
polynomials in 1/e we will construct the partition A = {a0, a1, . . . , aL} on
which the system of equations (3.36)–(3.37) is based by refining the trivial
partition consisting of only one class p step by step. The recursive description
of this trivial partition is given by the formal equation p = x

∑
i≥0 p

i and
the solution of the corresponding equation p = x exp(p) for the generating
function p (denoted by the same symbol p) is given by (x0, p̄) = (1/e, 1), with
p̄ clearly a (constant) polynomial in 1/e. Now let D = {d1, . . . , ds} (s ∈ N)
again denote the set of out-degrees that occur in the planted patterns. We
will refine p by introducing for each di ∈ D a class ai consisting of all trees
of root out-degree di together with the class a0 of trees with root out-degree
not in D. The partition {a0, a1, . . . , as} has the recursive description

a0 = x
∑

j∈N\D
(a0 ⊕ a1 ⊕ · · · ⊕ as)j

ai = x(a0 ⊕ a1 ⊕ · · · ⊕ as)di (i = 1, . . . , s) (3.38)

and the solution of the corresponding system of equations is given by

x0 =
1

e
,

āi =
1

di!e
(i = 1, . . . , s), (3.39)

ā0 = 1− (ā1 + · · ·+ ās),

thus again polynomials in 1/e. We continue by refining this last partition by
introducing classes c1, . . . , cu (u ∈ N) for each term at the right hand side of

(3.38) after expanding. Such a class cj is of the form cj = xa
l
(j)
0
0 a

l
(j)
1
1 · · ·al(j)s

s
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with natural numbers l
(j)
i , i = 0, . . . , s. We get a new partition {a0, c1, . . . , cu}

which has a recursive description by construction (because we can replace the
ai by disjoint unions of certain cj). The solution of the corresponding system
of equations for the generating functions is given by

x0 =
1

e
,

c̄j =
1

e

1

l
(j)
0 !l

(j)
1 ! · · · l(j)s !

ā
l
(j)
0
0 ā

l
(j)
1
1 · · · āl(j)s

s (j = 1, . . . , u),

ā0 = 1− (ā1 + · · ·+ ās)

with the āi of (3.39). Thus the c̄j are again polynomials in 1/e. By continuing
this procedure until level h (i.e. performing the refinement step h times) we
end up with the partition A and we see that the solution for the corresponding
system of equations consists of polynomials in 1/e, which ends the proof of
Lemma 3.21.

Note that there is a close link to Galton-Watson branching processes. Let
pk = 1

k!e denote the offspring distribution. Now we interpret a class ai as the
class of branching processes for which the (non-plane) branching structure
at the start of the process is the same as the tree structure at the root of
the trees in ai. By arguments of probabilistic independence it follows that
the solution āi, i = 0, . . . , L from the system of equations (3.36) corresponds
to the probabilities qi, i = 0, . . . , L that a branching process is in the class
ai, i = 0, . . . , L. To see this, let the equation of class ai be given by

ai = x
1

l0! . . . lL!
al0
0 · · ·alL

L =
x

n!

n!

l0! . . . lL!
al0
0 · · · alL

L , (n = l0 + · · ·+ lL).

Now the probability that a branching process is in class ai is the probability
x0

n! = 1
en! that the first node has degree n, and that li of the branching processes

starting at the children of this first node are in the class ai (0 ≤ i ≤ L). This
yields a factor al0

0 · · ·alL
L . Since the left-to-right-order of this child-processes is

not relevant, we also get a factor n!
l0!...lL! to discount different embeddings into

the plane. However we can also calculate the qi by elementary probabilistic
considerations. Therefore we consider the probabilities pd1, . . . , pds of the out-
degrees d1, . . . , ds of the pattern nodes and r = 1−pd1−· · ·−pds for the other
out-degrees. Now we get the probabilities qi(= āi) by multiplication of the pdk

and r corresponding to the branching degrees of the processes in each class ai

and discounting different embeddings into the plane by some multiplicative
factors which follow from symmetry considerations. So again we see that a0

consists of polynomials in 1/e.

Consequently, it follows from Theorem 2.35 that the numbers ln,m have a
Gaussian limiting distribution with mean and variance which are proportional
to n. Since tn,m = ln,m/n, we get exactly the same rule for unrooted trees.
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We now solve the system of equations (3.36)–(3.37) for the example pat-
tern, where we apply the relation to Galton-Watson processes as described
above. Recall that x0 = 1/e. We only have to consider the probabilities
p = 1/(2e) for nodes with out-degree 2 and q = 1 − 1/(2e) for the other
nodes. For example we get ā4 = a4(1/e, 1) = 2qp3 = 2e−1

16e5 . The factor 2 comes
from the fact that the two subtrees of the root may be exchanged (see Figure
3.9). The other classes can be treated similarly and we find:

a(1/e, 1) = 1, a5(1/e, 1) = (2e− 1)4/(128e7),

a0(1/e, 1) = (2e− 1)/(2e) a6(1/e, 1) = (2e− 1)3/(32e7),

a1(1/e, 1) = (2e− 1)2/(8e3) a7(1/e, 1) = (2e− 1)2/(64e7),

a2(1/e, 1) = (2e− 1)3/(16e5) a8(1/e, 1) = (2e− 1)2/(32e7),

a3(1/e, 1) = (2e− 1)2/(8e5) a9(1/e, 1) = (2e− 1)/(32e7),

a4(1/e, 1) = (2e− 1)/(16e5) a10(1/e, 1) = 1/(128e7).

(3.40)

We now give a formula for the mean value μ.

Lemma 3.22. Let x0 = 1/e and a0 be given by Lemma 3.21 and let Pj(y, u)
(1 ≤ j ≤ L) be the polynomials of Lemma 3.19, with y = (y0, . . . , yL). Then μ
(of Theorem 3.18) is a polynomial in 1/e with rational coefficients and given
by

μ =
1

e

L∑
j=1

∂Pj

∂u
(a0, 1). (3.41)

Proof. Let a = F(x,a, u) be the system of functional equations of Lemma 3.19.
We recall that (2.56) provides a formula for the mean constant:

μ =
1

x0

bTFu(x0, a0, 1)

bTFx(x0, a0, 1)
. (3.42)

Here bT denotes a positive left eigenvector of I− Fa, which is unique up to
scaling.

Since

F(x,a, u) =

⎛⎜⎜⎜⎜⎜⎜⎝
x
(
ea0+···+aL −∑L

j=1 Pj(a, 1)
)

xP1(a, u)
xP2(a, u)

...
xPL(a, u)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

we get, after denoting ∂Pi

∂aj
with Pi,aj ,

Fa = x

⎛⎜⎜⎜⎝
ea0+···+aL −

∑L
j=1 Pj,a0 · · · ea0+···+aL −

∑L
j=1 Pj,aL

P1,a0 · · · P1,aL

...
...

PL,a0 · · · PL,aL

⎞⎟⎟⎟⎠ .
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Since a0(x0, 1)+· · ·+aL(x0, 1) = a(x0, 1) = 1, we have x0e
a0(x0,1)+···aL(x0,1) =

1. Consequently the sum of all rows of Fa equals (1, 1, . . . , 1) for x = x0 = 1/e.
Thus, denoting the transpose of a vector v by vT, the vector bT = (1, 1, . . . , 1)
is the unique positive left eigenvector of I− Fa, up to scaling.

It is now easy to check that

x0b
TFx(x0, a0, 1) =

1

e
ea0(x0,1)+···aL(x0,1) = 1

and that

bTFu(x0, a0, 1) =
1

e

L∑
j=1

Pj,u(a0, 1).

The fact that μ is a polynomial in 1/e is now a direct consequence from
the observation that a0 consists of polynomials in 1/e, and the fact that the
coefficients are rational follows from the property that F(x,a, u) has rational
coefficients.

This completes the proof of Theorem 3.18. We point out here that it is also
possible to prove that the constant σ2 can be represented as a polynomial in
1/e with rational coefficients. However, the proof is very involved (see [40]).





4

The Shape of Galton-Watson Trees and Pólya

Trees

Galton-Watson trees or simply generated trees are random trees that are
obtained by Galton-Watson branching processes conditioned on the total
progeny.1 This is in fact a very natural and general concept of random trees
that includes several kinds of combinatorial tree models like binary trees,
planted plane trees, labelled rooted trees, etc. (compare with Section 1.2.7).

One important point is that Galton-Watson trees have a continuous lim-
iting object, the so-called continuum random tree, by scaling the distances to
the root by 1/

√
n. This concept has been introduced by Aldous [2, 3, 4] and

further developed by Duquesne and Le Gall [72, 73, 74].
First we present an introduction to these limiting objects (for more details

we refer to the recent surveys by Le Gall [135, 136]).
The main focus of this chapter is to characterise the so-called profile of

Galton-Watson trees, that is, the number of nodes of given distance to the
root. It is a very natural measure of the shape of a tree. Interestingly, the
profile process can be approximated by the total local time of a Brownian
excursion of duration 1. Since the profile is not a continuous functional of
a random tree (more precisely of its depth-first search process), its limiting
behaviour cannot be deduced from the structure of the continuum random
tree.

The approach that we present here – that is based on combinatorics with
the help of generating functions – is probably not the most elegant one, since
it is quite technical. However, it can be generalised to unlabelled rooted trees
(Pólya trees) that cannot be represented as conditioned Galton-Watson trees.

We also comment on the height of conditioned Galton-Watson trees and
Pólya trees that are of order

√
n.

1 The notion Galton-Watson tree (or more precisely, conditioned Galton-Watson
tree) has become standard in the literature. Therefore we restrict ourselves to this
notion throughout this chapter and do not use the equivalent notion of simply
generated trees.
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4.1 The Continuum Random Tree

4.1.1 Depth-First Search of a Rooted Tree

In order to analyse a plane rooted tree T we consider the so-called depth-first
search. It can be described as a walk (v(i), 0 ≤ i ≤ 2n) around the vertices
V (T ). For convenience we add a planted node where we start and terminate:
v(0) = v(2n). Next let v(1) be the root. Now we proceed inductively. Given
v(i) choose (if possible) the first edge at v(i) (in the ordering) leading away
from the root which has not already been traversed, and let (v(i), v(i + 1))
be that edge. If this is not possible, let (v(i), v(i + 1)) be the edge from v(i)
leading towards the root. This walk terminates with v(2n − 1), that equals
(again) the root, and with v(2n), that is the planted node.

The search depth x(i) is now defined as the distance of v(i) to the planted
node which is precisely the distance to the root plus 1, x(0) = x(2n) = 0. For
non-integer i we use linear interpolation and thus x(t), 0 ≤ t ≤ 2n, can be
considered as a continuous excursion (see Figure 4.1).

i

x(i)

Fig. 4.1. Depth-first search of a rooted tree

Note that the height h and the path length I (that is the sum of all
distances to the root) can be expressed with help of x(i):

h = max
0≤i≤2n

x(i)− 1 and I =
1

2

2n∑
i=0

x(i)− n
2
. (4.1)

Observe that the above procedure provides also a bijection between planted
plane trees and so-called Dyck paths, that is, discrete excursions starting and
terminating at 0 and being positive in-between, where each step is either up
or down. In particular, trees of size n correspond to paths of length 2n.

In the uniform random model every tree of size n and also every Dyck path
of length 2n is equally likely. This also corresponds to the standard random
walk with probability 1

2 going one step up resp. one step down conditioned on
x(0) = x(2n) = 0 and x(j) > 0 for 1 ≤ j ≤ 2n− 1.
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4.1.2 Real Trees

Suppose that a (rooted or unrooted) tree T is embedded into the plane such
that the edges are straight lines (or rectifiable curves) that only intersect at
their incident vertices. Let T ⊆ R2 denote the actually embedded set. Then
T can be considered as a (compact) metric space (T , d), where the distance
d(x, y) between two points x, y ∈ T is defined as the shortest length of a curve
γ ⊆ T that connects x and y. Actually, the range of every curve of length
d(x, y) that connects x and y coincides with γ.

These properties motivate the definition of an (abstract) real tree.

Definition 4.1. A metric space (T , d) is a real tree if the following two prop-
erties hold for every x, y ∈ T .

1. There is a unique isometric map hx,y : [0, d(x, y)] → T such that hx,y(0) =
x and hx,y(d(x, y)) = y.

2. If q is a continuous injective map from [0, 1] into T with q(0) = x and
q(1) = y then

q([0, 1]) = hx,y([0, d(x, y)]).

A rooted real tree (T , d) is a real tree with a distinguished vertex r = r(T )
called the root.

Of course, the embedded tree from above is a real tree in this sense. If
we interpret combinatorial trees as real trees it is convenient to choose the
embedding in a way that adjacent vertices are connected by lines of length 1
so that the usual distance of nodes is preserved.

Next we deal with the problem of equivalent real trees resp. with the
problem of measuring the difference between real trees. For simplicity we
assume now that all real trees that we consider are compact and rooted.

We say that two real trees (T1, d1), (T2, d2) are equivalent if there is a
root-preserving isometry that maps T1 onto T2. We denote by T the set of all
equivalence classes of rooted compact real trees.

It is easy to measure the difference of two real trees (if they are both
contained in the same metric space) by using the Hausdorff distance

δHaus(X,Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
.

Thus, it is natural to define the so-called Gromov-Hausdorff distance dGH(T1, T2)
of two real trees (T1, d1), (T2, d2) by

dGH(T1, T2) = inf
(

max
{
δHaus(φ1(T1), φ2(T2)), δ(φ1(r(T1)), φ2(r(T2)))

})
,

where the infimum is taken over all isometric embeddings φ1 : T1 → E and
φ2 : T2 → E of T1 and T2 into a common metric space (E, δ). It is immediately
clear that this distance only depends on the equivalence classes of T1 resp. T2.
Moreover, dGH defines a metric on T and we have the following important
properties (see [76]):
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Theorem 4.2. The metric space (T, dGH) is complete and separable, that is,
it is a Polish space.

Real trees are closely related to continuous functions that represent excur-
sions. Let g : [0,∞) → [0,∞) be a non-zero continuous function with compact
support such that g(0) = 0. For every s, t ≥ 0 set

dg(s, t) = g(s) + g(t)− 2 inf
min{s,t}≤u≤max{s,t}

g(u)

(compare with Figure 4.2). Then dg is non-negative, symmetric and satisfies
the triangle inequality. If we define an equivalence relation by

s ∼ t ⇐⇒ dg(s, t) = 0

and if Tg = [0,∞)/ ∼ denotes the system of equivalence classes then the space

(Tg, dg)

is a metric space.

s t

d  (s,t)=1+2-2=1g

Fig. 4.2. Distance dg

Actually we have the following property (see [74]):

Theorem 4.3. The metric space (Tg, dg) is a compact real tree.

Usually the equivalence class corresponding to t = 0 is considered as the
root so that Tg becomes a rooted real tree.

For example, let g be the excursion x(t) given in Figure 4.1. Then this
identification process can be seen as the inverse process of the depth-first
search (compare with Figure 4.3).

Intuitively it is clear that the real trees Tg1 and Tg2 are close if g1 and g2
are close. This is actually true in a strong sense (see [135]).

Lemma 4.4. The mapping g �→ Tg is continuous. More precisely, if g1, g2 are
two functions from [0,∞) → [0,∞) with compact support and g1(0) = g2(0)
then

dGH(Tg1 , Tg2) ≤ ‖g1 − g2‖∞,
where ‖ · ‖∞ denotes the supremum norm.
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Fig. 4.3. Construction of a real tree Tg

4.1.3 Galton-Watson Trees and the Continuum Random Tree

The space (Tg, dg) is a Polish space, that is, a complete separable metric space
and therefore perfectly equipped for applying standard probability theory, in
particular, weak convergence of measures (see [17, 18]).

Suppose that (S, d) is a Polish space and let Xn : Ω → S be a sequence of
S-valued random variables. Then Xn converges weakly to a random variable
X : Ω → S, if and only if

lim
n→∞

EF (Xn) = EF (X) (4.2)

holds for all continuous bounded functions F : S → R. As usual we will denote
this by Xn

d−→ X .
Using this definition it is immediately clear that if G : S → S ′ is a con-

tinuous function between Polish spaces and if we know that Xn
d−→ X for

S-valued random variables then we automatically obtain G(Xn)
d−→ G(X).

We now introduce special random real trees. First we use the standard
Brownian excursion (e(t), 0 ≤ t ≤ 1) of duration 1 that is a stochastic process
on non-negative continuous functions of support [0, 1] and zeros at t = 0 and
t = 1 (see Figure 4.42).

There are several possibilities to define the Brownian excursion. For ex-
ample, it can be seen as a (rescaled) Brownian motion between two zeros.
Alternatively it can be defined as a Markov process with P{e(0) = 0} =
P{e(1) = 0} = 1 that is uniquely given by the densities of the one- and
two-dimensional distributions:

2 This figure was produced by Jean-François Marckert.
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Fig. 4.4. Brownian excursion

P{e(t) = x} =
2x2√

2πt3(1 − t)3
exp

(
− x2

2t(1− t)

)
dx, (4.3)

P{e(t1) = x, e(t2) = y} =
xy

π
√
t31(t2 − t1)t32

exp

(
− x

2

2t1
− y2

2(1− t2)

)
(4.4)

×
(

exp

(
− (x − y)2

2(t2 − t1)

)
− exp

(
− (x+ y)2

2(t2 − t1)

))
dx dy.

Anyway it is a probability distribution on non-negative continuous functions
g of compact support. Hence, the mapping g �→ Tg induces a corresponding
probability distribution on real trees.

Definition 4.5. Let (e(t), 0 ≤ t ≤ 1) denote the standard Brownian excursion
of duration 1. Then the random real tree T2e is called Continuum Random
Tree.3

Next we consider Galton-Watson trees defined by their offspring distribu-
tion ξ and let Tn denote a random Galton-Watson tree of size n. For simplicity
we assume that the offspring distribution is aperiodic, that is

gcd{j : P{ξ = j} > 0} = 1

or equivalently, the distribution is not concentrated on dZ for some d > 1.
This condition assures that trees of arbitrary size will evolve. By using the
depth-first search procedure these random trees induce random excursions
(Xn(t), 0 ≤ t ≤ 2n) of length 2n. These excursions are again non-negative
continuous functions g with compact support. Thus, the mapping g �→ Tg

induces a class of random real trees that we denote by TXn . If we assume
that the variance σ2 := Var ξ of the offspring distribution is finite then the

3 The factor 2 in the 2e is just a convenient scaling factor.
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expected height of a Galton-Watson tree is of order
√
n (see Section 4.4).

Hence it is natural to scale Xn(t) and consequently the corresponding real
trees by the factor 1/

√
n so that the resulting trees are of comparable size.

The main result in this context is an invariance principle by Aldous [4].

Theorem 4.6. Suppose that the offspring distribution ξ of a Galton-Watson
branching process is aperiodic and critical with finite variance σ2 = Var ξ.
Then the scaled real trees

σ√
n
TXn

corresponding to Galton-Watson trees of size n converge weakly to the contin-
uum random tree T2e.

There are also several extensions of Theorem 4.6, for example by Duquesne
and Le Gall [72, 73, 74] if the variance Var ξ is infinite but ξ is in the domain
of attraction of a stable law. However, for this purpose one has to introduce
random real trees based on a stable Lévy process.

A natural way to prove Theorem 4.6 is to consider the depth-first search
process Xn(t) corresponding to Galton-Watson trees and to prove the follow-
ing property that is also due to Aldous [4].

Theorem 4.7. Suppose that the offspring distribution ξ of a Galton-Watson
branching process is aperiodic and critical with finite variance σ2 = Var ξ.
Then the depth-first search process Xn(t) satisfies(

σ

2
√
n
Xn(2nt), 0 ≤ t ≤ 1

)
d−→ (e(t), 0 ≤ t ≤ 1). (4.5)

In other words, the normalised depth-first search process is approximated by
the Brownian excursion Obviously, Theorem 4.7 implies Theorem 4.6, since
the mapping g �→ Tg is continuous.

We do not supply the original proof of this theorem here. There are several
recent surveys on this subject (see [135, 136]). Nevertheless, in Section 4.2.8
we comment on an alternative approach that is based on generating functions
and analytic methods.

One important issue of Theorems 4.6 and 4.7 is that they can be used to
derive the limiting distribution of several parameters of trees. For example,
let us consider the height Hn, the maximal distance between a node and the
root.

Theorem 4.8. Suppose that the offspring distribution ξ of a Galton-Watson
branching process satisfies the assumptions of Theorem 4.6 and let Hn denote
the height of the corresponding Galton-Watson trees. Then we have

1√
n
Hn

d−→ 2

σ
max
0≤t≤1

e(t).
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This theorem was first proved by Flajolet and Odlyzko [82]. A local version
is due to Flajolet, Gao, Odlyzko, and Richmond [80].

It is well known that the distribution function of M = max
0≤t≤1

e(t) is given

by

P{M ≤ x} = 1− 2

∞∑
k=1

(4x2k2 − 1)e−2x2k2

and the moments by

E(M r) = 2−r/2r(r − 1)Γ (r/2)ζ(r),

where ζ(s) denotes the Riemann ζ-function (and where we make the conven-
tion (r − 1)ζ(r) = 1 for r = 1).

Thus, one might expect that

E(Hr
n) ∼
(

2

σ

)r

E(M r)nr/2

for r ≥ 0. In fact this is true if we additionally assume that the exponential
moment Eeηξ is finite for some η > 0. One possible way is to apply The-
orem 4.15 (the assumptions can be verified by Proposition 4.41) or to use
analytic methods (see Theorem 4.29).

Another corollary concerns the path length In of Galton-Watson trees,
that is the sum of all distances to the root. Here the limiting relation (4.5)
and the second part of (4.1) provide the following result.

Theorem 4.9. Suppose that the offspring distribution ξ of a Galton-Watson
branching process satisfies the assumptions of Theorem 4.6 and let In denote
the path length of the corresponding Galton-Watson trees. Then we have

1

n3/2
In

d−→ 2

σ

∫ 1

0

e(t) dt.

The moments of I =
∫ 1
0
e(t) dt are determined by

E(Ir) = Kr
4
√
πr!

Γ
(

3r−1
2

)
2r/2

,

where Kr is recursively given by

Kr =
3r − 4

4
Kr−1 +

r−1∑
j=1

KjKr−j, (r ≥ 2),

with initial values K0 = − 1
2 and K1 = 1

8 . The convergence of moments was
first proved by Takács [200]. Louchard [140] identified then the relation of the
limiting distribution to the Brownian excursion area.
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4.2 The Profile of Galton-Watson Trees

Let T be a rooted tree. We denote by LT (k) the number of nodes at distance
k from the root. The sequence (LT (k))k≥0 is called the profile of T . If T is
a random tree of size n, for example a conditioned Galton-Watson tree (or
equivalently a simply generated tree) then we denote the profile by (Ln(k))k≥0,
which is now a sequence of random variables (see Figure 4.5, where y-axis is
used as the time axis).

k

L(k)

Fig. 4.5. Profile of a rooted tree

It is convenient to view this random sequence as a stochastic process. For
non-integer arguments we define the values by linear interpolation, that is, we
have

Ln(t) = (�t�+ 1− t)Ln(�t�) + (t− �t�)Ln(�t�+ 1), t ≥ 0.

(Ln(t), t ≥ 0) is then a stochastic process and is called the profile process of
a random tree. By definition, the sample paths of the profile are continuous
functions on [0,∞).

There is a close relation between the profile Ln(t) and the depth first
search process Xn(t). For integers k we have by definition

1

2

∫ 2n

0

1[0,k](Xn(t)) dt =
∑
�<k

Ln(�).

Moreover, suppose that f is (uniformly) continuous and bounded on [0,∞),
then (4.5) implies
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1

n

∑
�≥0

f

(
σ�

2
√
n

)
Ln(�) =

1

2n

∫ 2n

0

f

(
σ

2
√
n
Xn(t)

)
dt+ o(1)

=

∫ 1

0

f

(
σ

2
√
n
Xn(2nt)

)
dt+ o(1) (4.6)

d−→
∫ 1

0

f(e(t)) dt.

In other words, the occupation measure of the scaled depth-first search con-
verges to the occupation measure of e(t).

It is natural to ask whether the occupation measure of e(t) has a (random)
density. Actually such a density

l(t) = lim
ε→0

1

ε

1∫
0

1[t,t+ε](e(s)) ds

exists (almost surely) and constitutes a continuous stochastic process (l(t), t ≥
0) that is also called local time local time of a stochastic process of the Brow-
nian excursion (of duration 1).

One also expects that the (normalised) profile process is approximated
by l(t). Since the mapping that assigns the local time l to an excursion e is
not continuous, we cannot apply (4.5) resp. Theorem 4.6 to obtain a weak
limit theorem for the profile process. Nevertheless, such a property still holds
(compare also with the discussion following Theorem 4.17).

Theorem 4.10. Suppose that the offspring distribution ξ of a Galton-Watson
branching process is aperiodic and critical with finite variance σ2 = Var ξ.
Then we have (in C[0,∞))

(ln(t), t ≥ 0)
d−→
(σ

2
l
(σ

2
t
)
, t ≥ 0
)
,

where

ln(t) =
1√
n
Ln(t

√
n), t ≥ 0,

denotes the profile process scaled by
√
n.

Theorem 4.10 was conjectured by Aldous [3, Conjecture 4], and then proved
by Drmota and Gittenberger [66], by Kersting [124] and Pitman [170]. In
what follows we present a detailed proof of Theorem 4.10 that is based on the
methods of [66]. The proof is analytically very involved and not as elegant
as, for example, Pitman’s approach that is based on stochastic differential
equations. However, it seems that this analytic approach is, at the moment,
the only way to generalise to Pólya trees that we discuss in Section 4.3.

By the way, originally Aldous [3] formulated his conjecture in terms of the
step function process 1√

n
Ln(�t√n�) (in the space D[0,∞)). However, it is not
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difficult to show that both properties are equivalent. The setting in C[0,∞)
is technically easier. Therefore we will only work with continuous processes.

Historically the first investigations of the profile of random trees seem to
go back to [193], who derived explicit formulas for the distribution of the
size of one level. Further papers mainly deal with simply generated trees as
defined by [151]. Kolchin (see [131, 132]) related the level size distributions to
distributions occurring in particle allocation schemes.

Another interesting tree parameter is the width

W = max
k≥0

L(k) = max
t≥0

L(t),

that is the maximal number of nodes in a level. Since the maximum is a
continuous functional, Theorem 4.10 provides a distributional result for the
width Wn of Galton-Watson trees.

Theorem 4.11. Under the assumption of Theorem 4.10 we have

1√
n
Wn

d−→ σ

2
sup

0≤t≤1
l(t).

A corresponding result for convergence of moments seems to be more difficult
to obtain. Nevertheless first results on the expected width are due Odlyzko
and Wilf [166], later Chassaing and Marckert [34, 33] and Drmota and Git-
tenberger [67] settled the general case.

Note that the distribution of supt≥0 l(t) is the same as that of 2 sup0≤t≤1 e(t)
(see [15] or [3]).

There are several extensions of Theorem 4.10. We just state one that is
related to the leaves of Galton-Watson trees. Let L̂T (k) denote the number of
leaves at distance k from the root and L̂n(k) the random variable we get, if T is
a random Galton-Watson tree. As above L̂n(t) denotes the linear interpolated
function of the sequence L̂n(k). Then we have in C[0,∞)

(l̂n(t), t ≥ 0)
d−→
(
φ0

φ(τ)

σ

2
l
(σ

2
t
)
, t ≥ 0

)
,

where

l̂n(t) =
1√
n
L̂n(

√
n t).

Interestingly, a limiting result of the form given in Theorem 4.10 seems
to be quite universal. The property for L̂n(t) is only a first indication in the
framework of Galton-Watson trees. However, there are also other kinds of trees
that have such a limiting shape. In what follows we will in particular discuss
unlabelled rooted trees (Pólya trees). The natural approach to unlabelled
rooted trees is to use generating functions; and the proof that the profile of
unlabelled rooted trees is approximated by l(t) is based on the analysis of
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properly defined generating functions. Therefore we have decided to present
also a generating function proof of Theorem 4.10, although it is not the most
general one. In particular, we assume here that the offspring distribution has
finite exponential moments (which makes the analysis easier, compare with
Remark 3.7). Nevertheless, we need a proper probabilistic framework in order
to prove weak convergence of stochastic processes (see Theorem 4.14).

4.2.1 The Distribution of the Local Time

There are several interesting integral representations of densities and distri-
bution functions of the local time l(t) that we collect here. Some of them will
be actually used in the proof of Theorem 4.10.

The one dimensional density of (l(t); t ≥ 0) at t = ρ is well studied. There
are several representations available in the literature: Using the theory of
branching processes Kennedy [123] and Kolchin [132, Theorem 2.5.6] obtained

fρ(x) =
x

4

1∫
0

(1− s)− 3
2 e−

x2ρ2

8(1−s) g2ρ

(x
2
, s
)
ds, (4.7)

where gr(z, s) is the density of a distribution given by its characteristic func-
tion:

ψr(ϑ1, ϑ2) =

⎡⎣sinh(r
√
−2iϑ2)

r
√
−2iϑ2

− iϑ1

(
sinh(r
√
−iϑ2/2)

r
√
−iϑ2/2

)2
⎤⎦−1

.

Takács [200] calculated this density by means of a generating function ap-
proach

fρ(x) = 2
∑
j≥1

j∑
k=1

(
j

k

)
e−(x+2ρj)2/2 (−x)k

(k − 1)!
Hk+2(x + 2ρj). (4.8)

Hk(z) are the Hermite polynomials defined by

Hk(z) = (−1)kez
2/2 d

k

dzk
e−z2/2.

Knight [127] worked with the Brownian excursion and obtained

fρ(x) = 2−1/2π5/2ρ−3

1∫
0

f∗
(
π2(1− s)

2ρ2

)
h(s, x) ds (4.9)

with

f∗(z) = 4
√

2π3
∑
k≥1

k2 d

dz

(
e−k2π2/z

√
2πz3

)
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and

h(s, x) = − 1

2ρ
√

2πs

∑
i≥0

1

i!

di−1

dxi−1

(
xi d

2

dx2
e−2ρ2(x+i)2/s

)
,

where d−1

dx−1 =
(

d
dx

)−1
.

Getoor and Sharpe [90] also used a direct approach and derived a double
Laplace transform of the density:

∞∫
0

e−αt

t∫
0

1√
2πs

∞∫
t−s

1√
2πr3

E

(
e−βl(ρ/

√
r)
√

r
)
dr ds dt = ϕρ(α, β) (4.10)

where

ϕρ(α, β) =
1

α

√
2α+ β(1 + e−2ρ

√
2α)√

2α+ β(1 − e−2ρ
√

2α)
− β

√
2

(1 + 2ρβ)α3/2
.

This formula was also shown by Louchard [141] who found a considerably
shorter proof via Kac’s formula for Brownian functionals.

When studying M/M/1-queues Cohen and Hooghiemstra [42] got an in-
tegral representation for the above density:

fρ(x) =
1

i
√

2π

∫
γ

−se−s

sinh2(ρ
√
−2s)

exp

(
− x√

2

√
−seρ

√
−2s

sinh(ρ
√
−2s)

)
ds, (4.11)

where γ is the straight line {z ∈ C : �z = −1}. They also derived the
Laplace transform of the two dimensional densities of local and occupation
time (compare also with the general result in Theorem 4.13).

Finally it should be mentioned that Hooghiemstra [103] found a direct
proof for the equivalence of (4.9) and (4.11).

Remark 4.12 Note that the expressions (4.7)–(4.11) are only representa-
tions of the continuous part of the local density. Obviously the local time den-
sity has a jump of magnitude P

{
sup0≤t≤1 e(t) < ρ

}
at 0. This quantity is

given by

P

{
sup

0≤t≤1
e(t) ≤ ρ

}
= 1− 2

∑
k≥1

(4ρ2k2 − 1)e−2ρ2k2

. (4.12)

The proof of Theorem 4.10 is based on a precise analysis of finite di-
mensional projections (and on tightness estimates). For this purpose we need
proper representations of the characteristic function of finite dimensional pro-
jections of l(t) (compare with [66]).

Theorem 4.13. Suppose that 0 < κ1 < κ2 < · · · < κd are positive real
number and let fκ1,...,κd

be defined by

fκ1,...,κd
(s, t1, . . . , td) = (4.13)

Ψκ1(s, it1 + Ψκ2−κ1(. . . Ψκd−1−κd−2
(s, itd−1 + Ψκd−κd−1

(s, itd)) · · · )



120 4 The Shape of Galton-Watson Trees and Pólya Trees

with

Ψκ(s, t) =
t
√
−2s e−κ

√
−2s

√
−2s eκ

√
−2s − 2t sinh

(
κ
√
−2s
) . (4.14)

Then the characteristic function of the random vector (l(κ1), . . . , l(κd)) is
given by

E et1 l(κ1)+···+td l(κd) = 1 +

√
2

i
√
π

∫
γ

fκ1,...,κd
(s, t1, . . . , td) e−s ds, (4.15)

where γ is the straight line {s ∈ C : �s = −1}.

4.2.2 Weak Convergence of Continuous Stochastic Processes

Let S = C[0, 1] be the Polish space of continuous functions on [0, 1]. An S-
valued random variable X (where the measure on S is defined on the Borel
sets of S) is just a stochastic process (X(t), 0 ≤ t ≤ 1). It is well known that
the distribution of (X(t), 0 ≤ t ≤ 1) is characterised by the finite dimensional
distributions of the random vectors

(X(κ1), . . . , X(κd)),

where d ≥ 1 and 0 ≤ κ1 < κ2 < · · · < κd.

However, weak convergenceXn
d−→ X of a sequence of stochastic processes

cannot be characterised just by finite dimensional convergence. In particular,
if

(Xn(κ1), . . . , Xn(κd))
d−→ (X(κ1), . . . , X(κd))

for all d ≥ 1 and 0 ≤ κ1 < κ2 < · · · < κd then this does not guarantee that

Xn
d−→ X . One has to assume additionally that Xn is tight. Recall that a

sequence (Xn) of random variables in a metric space S is tight if for every
ε > 0, there exists a compact subset K ⊆ S such that P{Xn ∈ K} > 1 − ε
for every n. In a Polish space, a complete separable metric space, tightness
is equivalent to relative compactness (of the corresponding distributions) by
Prohorov’s theorem [18, Theorems 6.1 and 6.2], [119, Theorem 16.3].

In our special case of S = C[0, 1] (with the supremum norm) tightness
means that

lim
a→0

lim sup
n→∞

P{|Xn(0)| > a} = 0 (4.16)

and

lim
δ→0

lim sup
n→∞

P

{
sup

|s−t|≤δ

|Xn(s)−Xn(t)| ≥ ε
}

= 0 (4.17)

for all ε > 0. Informally, this says that, with high probability,Xn(s) and Xn(t)
do not differ too much if s and t are close.

Property (4.17) cannot be checked easily in a direct way. However, there
are sufficient moment conditions (4.19) so that we have the following theorem
(compare with [18]).
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Theorem 4.14. Suppose that (Xn(t), 0 ≤ t ≤ 1) is a sequence of stochastic
processes and (X(t), 0 ≤ t ≤ 1) a stochastic process on C[0, 1] that satisfies
the following conditions.

1. For every d ≥ 1 and 0 ≤ κ1 < κ2 < · · · < κd we have

(Xn(κ1), . . . , Xn(κd))
d−→ (X(κ1), . . . , X(κd)).

2. There exists a constant C > 0 and an exponent β > 0 such that

E
(
|Xn(0)|β

)
≤ C (4.18)

for all n.
3. There exists a constant C > 0 and exponents α > 1 and β > 0 such that

E
(
|Xn(t)−Xn(s)|β

)
≤ C|t− s|α for all s, t ∈ [0, 1]. (4.19)

Then
(Xn(t), 0 ≤ t ≤ 1)

d−→ (X(t), 0 ≤ t ≤ 1).

By Markov’s inequality it is clear that (4.18) implies (4.16). However, it is
a non-trivial task to show that (4.19) is sufficient to prove (4.17). Actually,
(4.19) implies

P

{
sup

|t−s|≤δ

|Xn(t)−Xn(s)| ≥ ε
}
≤ Kδ

α−1

εβ
(4.20)

for some constant K (see [18]). Note that the condition α > 1 is essential for
deducing (4.17).

Theorem 4.14 does not apply directly to processes in C[0,∞). However,
weak convergence in C[0,∞) holds, if and only if we have weak convergence of
the restrictions to the compact interval [0, T ] for all T <∞ (see [18]). Hence,
we can work with Theorem 4.14 in both cases.

Finally we want to mention that a condition of the kind (4.19) is actually
quite strong. It is sufficient (but not necessary) to prove tightness, and it
can also be used to prove convergence of moments. The problem is that the

function F (x) = xr is unbounded so that Xn
d−→ X not necessarily implies

EXr
n → EXr even if the expected values exist.

Theorem 4.15. Suppose that a sequence of stochastic processes Xn = Xn(t),
defined on C[0, 1], converges weakly to X = X(t). Furthermore suppose that
there exists s0 ∈ [0, 1] such that for all r ≥ 0

sup
n≥0

E (|Xn(s0)|r) <∞, (4.21)

and that for every α > 1 there are β > 0 and C > 0 with (4.19).
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Let F : C[0, 1] → R be a continuous functional of polynomial growth, that
is, there exists r ≥ 0 with

|F (y)| ≤ (1 + ‖y‖∞)r

for all y ∈ C[0, 1]. Then

lim
n→∞

EF (Xn) = EF (X). (4.22)

For example, Theorem 4.15 implies that all finite dimensional moments of
Xn(t) converge to that of X(t), that is, for all fixed 0 ≤ κ1 < κ2 < · · · < κp

and r1, r2, . . . , rp ≥ 0

lim
n→∞

E (Xn(κ1)r1Xn(κ2)r2 · · ·Xn(κp)rp) = E (X(κ1)r1X(κ2)r2 · · ·X(κp)rp) .

Furthermore, we have

lim
n→∞

E

(
max
0≤t≤1

Xn(t)

)r

= E

(
max
0≤t≤1

X(t)

)r

and similarly for the integral
∫ 1
0 Xn(t) dt.

We present a short proof of Theorem 4.15 since it also sheds some light on
the tightness condition (4.19).

The key of the proof of Theorem 4.15 is the following observation.

Lemma 4.16. Suppose that Xn(t) and X(t) are stochastic processes satisfying
the assumptions of Theorem 4.15. Then for every α > 1 there exists a constant
K > 0 such that for ε > 0 and 0 < δ < 1

P

{
sup

|s−t|≤δ

|Xn(s)−Xn(t)| ≥ ε
}
≤ Kδ

α−1

εβ
(4.23)

and consequently

E

(
sup

|s−t|≤δ

|Xn(s)−Xn(t)|r
)

= O
(
δr

α−1
β

)
(4.24)

for every fixed r < β.

Note that if (4.19) holds for all α > 1, then β = β(α) is unbounded as a
function in α. Thus, the restriction r < β is not that serious. Actually we
necessarily have β ≥ α, except in the trivial case Xn(t) = Xn(0) for all t and
n.

Proof. We already mentioned that (4.20) follows from (4.19) by using the
methods of Billingsley [18, pp. 95]. Finally, (4.24) is an easy consequence of
(4.20).
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Using these preliminaries it is easy to complete the proof of Theorem 4.15.

Proof. By combining (4.21) and (4.19) it follows that for every s0 ∈ [0, 1]

sup
n≥0

E (|Xn(s0)|r) <∞.

Next, by a direct combination of (4.21) with s0 = 1
2 and (4.24) with δ = 1

2 we
obtain (for all r ≥ 0)

sup
n≥0

E

(
max
0≤t≤1

|Xn(t)|r
)
<∞

and consequently (for any ε > 0)

sup
n≥0

E
(
F (Xn)1+ε

)
<∞.

By weak convergence we also have F (Xn)
d−→ F (X). Thus, by [17, p. 348]

the expected value EF (X) exists and

lim
n→∞

EF (Xn) = EF (X).

Again this theorem does not apply to stochastic processes Xn in C[0,∞).
However, it is easy to adapt the above theorem to cover this case, too.

For example, suppose that for any choice of fixed positive integers r and
α there exist positive constants c0, c1, c2, c3 such that

sup
n≥0

E (|Xn(t)|r) ≤ f1(t) for all t ≥ 0, (4.25)

and

sup
n≥0

E
(
|Xn(t+ s)−Xn(t)|2α

)
≤ f2(t)sα for all s, t ≥ 0, (4.26)

where f1(t) and f2(t) are bounded functions with f1(t) → 0 and f2(t) → 0
as t → ∞. Then for all continuous functions F : C[0,∞) → R of polynomial
growth (in C0([0,∞))) we have

lim
n→∞

EF (Xn) = EF (X),

(compare with [67]).
For example, Theorem 4.15 (and its adaption to C[0,∞)) can be applied

to the height and width of Galton-Watson trees (compare with [67, 69]).

We finally give another useful application of tightness that could lead to a
shortcut in the proof of Theorem 4.10 provided that Theorem 4.7 is already
known. The basis is the following observation due to Bousquet-Mélou and
Janson [24].
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Theorem 4.17. Let S1 and S2 be two Polish spaces, and let ϕ : S1 → S2 be
an injective continuous map. If (Wn) is a tight sequence of random elements

of S1 such that ϕ(Wn)
d−→ Z in S2 for some random Z ∈ S2 then Wn

d−→W

in S1 for some W with ϕ(W )
d
= Z.

Proof. By Prohorov’s theorem, each subsequence of (Wn) has a subsequence
that converges in distribution to some limit. Let W ′ and W ′′ be limits in
distribution of two such subsequences Wn′i and Wn′′i . Since ϕ is continuous,

ϕ(Wn′i )
d−→ ϕ(W ′) and ϕ(Wn′′i )

d−→ ϕ(W ′′). Hence, ϕ(W ′)
d
= Z

d
= ϕ(W ′′).

Let A be a (Borel) measurable subset of S1. By the Souslin–Lusin theorem
[45, Theorem III.21, see also III.16–17], ϕ(A) ⊆ S2 is measurable. Thus, using
the injectivity of ϕ,

P{W ′ ∈ A} = P{ϕ(W ′) ∈ ϕ(A)} = P{ϕ(W ′′) ∈ ϕ(A)} = P{W ′′ ∈ A}.

Consequently, W ′ d
= W ′′.

In other words, there is a unique distribution of the subsequence limits.
Thus, ifW is one such limit, then every subsequence of (Wn) has a subsequence

that converges in distribution to W ; this is equivalent to Wn
d−→ W (recall

that by (4.2), weak convergence can be reduced to convergence of sequences
of real numbers).

This theorem applies in the following situation. Let S1 = {f ∈ C0(R) :
f ≥ 0}, with the uniform topology inherited from C0(R); let S2 be the space
of locally finite measures on R with the vague topology (see Kallenberg [119,
Appendix A2]) and let ϕ map a function f to the corresponding measure
f dx, that is, ϕ(f) is the measure with density f . Then S1 is a closed subset
of the separable Banach space C0(R), and is thus Polish, and so is S2 by [119,
Theorem A2.3]. Further, ϕ is continuous and injective.

In particular, let

ln(t) =
1√
n
Ln(t

√
n) ∈ S1

be the normalised profile of Galton-Watson trees. Then ϕ(ln) is precisely the
measure

1

n

∑
j≥0

Ln(j)νjn−1/2,n−1/2 ,

where νy,h denotes the measure with (triangular) density function

f(x) =
1

h
max

{
1− |x− y|

h
, 0

}
that is centred at y and has support [y−h, y+h]. Note that νy,h approximates
the delta distribution δy, if h → ∞. It also follows easily that the difference
of ϕ(ln) and the normalised occupation measure
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μn =
1

n

∑
j≥0

Ln(j)δjn−1/2

converge to 0 in probability.
It follows from Theorem 4.7 that μn converges weakly to the occupation

measure μ of 2
σ e(t). Hence, the same is true for ϕ(ln). Thus, in order to prove

Theorem 4.10, that is, ln(t)
d−→ σ

2 l
(

σ
2 t
)
, it is sufficient to prove Theorem 4.7

and tightness of ln(t).

4.2.3 Combinatorics on the Profile of Galton-Watson Trees

In Sections 4.2.3–4.2.6 we present a proof of Theorem 4.10 that deals with the
limiting behaviour of the profile of Galton-Watson trees. We start with some
combinatorics.

Recall that the generating function y(x) =
∑

n≥1 ynx
n for the weighted

numbers yn =
∑
|T |=n ω(T ) of Galton-Watson trees of size n satisfies the

functional equation
y(x) = xΦ(y(x)),

where Φ(x) = Exξ = φ0 + φ1x + φ2x
2 + · · · is the probability generating

function of the offspring distribution ξ (or equivalently the generating function
of the weights φj).

In order to compute the distribution of the number of nodes in some given
levels in a tree of size n we have to calculate the weighted number

yk1,m1,k2,m2,···kd,md;n =
∑

|T |=n, LT (k1)=m1,..., LT (kd)=md

ω(T )

of trees of size n with mi nodes in level ki, i = 1, . . . , d. Then the finite
dimensional distribution of the profile of Galton-Watson trees of size n is
given by

P{Ln(k1) = m1, . . . , Ln(kd) = md} =
yk1,m1,k2,m2,···kd,md;n

yn
.

For this purpose we introduce the generating functions

yk1,...,kd
(x, u1, . . . , ud) =

∑
m1,...,md,n

yk1,m1,k2,m2,···kd,md;nu
m1
1 · · ·umd

d xn

=
∑
n≥1

yn E

(
uLnk1

1 · · ·uLnkd

d

)
xn.

These functions can be recursively calculated.

Lemma 4.18. For d = 1 we have

y0(x, u) = uy(x) (4.27)

yk+1(x, u) = xΦ (yk(x, u)) k ≥ 0 (4.28)
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and for d > 1 with integers 0 ≤ k1 < k2 < k3 < · · · < kd

y0,k2,...,kd
(x, u1, . . . , ud) = u1yk2,...,kd

(x, u2, . . . , ud) (4.29)

yk1+1,k2+1,...,kd+1(x, u1, . . . , ud) = xΦ (yk1,k2,...,kd
(x, u1, u2, . . . , ud)) . (4.30)

Proof. The initial equation (4.27) is obvious, since there is always one node
at level 0. Next, if we want to count the nodes at level k+ 1 this is equivalent
to counting the nodes at level k of all subtrees of the root. This gives (4.28).
Similarly we obtain (4.29) and (4.30).

Remark 4.19 In order to make the structure of the generating functions
yk1,...,kd

(x, u1, . . . , ud) more transparent we introduce the functions Yk(x, u)
by the recurrence

Y0(x, u) = u,

Yk+1(x, u) = xΦ(Yk(x, u)), k ≥ 0. (4.31)

For example, the function Yk(x, 0) is the generating function of Galton-
Watson trees of height < k. However, their main property is that

yk1,...,kd
(x, u1, . . . , ud) (4.32)

= Yk1

(
x, u1Yk2−k1

(
x, u2Yk3−k2(x, . . . , ud−1Ykd−kd−1

(x, uy(x)) · · · )
))
.

Hence, all generating functions of interest can be expressed in terms of Yk(x, u)
and y(x).

4.2.4 Asymptotic Analysis of the Main Recurrence

In order to get an impression of our problem we first consider a special
case, namely planted plane trees that are determined by the generating se-
ries Φ(x) = 1/(1 − x). The corresponding generating function that satisfies
y(x) = xΦ(y(x)) is explicitly given by

y(x) =
1−

√
1− 4x

2
.

In this special case the recurrence (4.31) can be explicitly solved. Here we
have

Yk(x, u) = y(x) +
(u− y(x))α(x)k

1− u−y(x)√
1−4x

+ u−y(x)√
1−4x

α(x)k
,

where α(x) abbreviates

α(x) =
x

(1− y(x))2
=

1− 2x−
√

1− 4x

2x
.
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In fact, this kind of property is generally true, at least from an asymptotic
point of view (compare with Lemma 4.20). However, here and in what follows
we assume that there exists η > 0 such that E eηξ is finite, where ξ denotes
the offspring distribution of the underlying Galton-Watson branching process.
Equivalently there exists τ > 0 that is strictly smaller than the radius of
convergence of Φ(x) with τΦ′(τ) = Φ(τ).4

We recall that – under this technical assumption – the generating function
y(x) has a local expansion of the form

y(x) = τ − τ
√

2

σ

√
1− x

x0
+O

(∣∣∣∣1− x

x0

∣∣∣∣) (4.33)

around its singularity x0 = 1/Φ′(τ). The assumption d = gcd{j > 0 : φj >
0} = 1 ensures that |xφ′(y(x))| < 1 for |x| = x0, x = x0 (compare with the
proof of Theorems 2.19 and 3.6). Hence, by the implicit function theorem y(x)
has an analytic continuation to the region |x| < x0 + δ, arg(x − x0) = 0 for
some δ > 0. It also follows that α = α(x) = xΦ′(y(x)) has similar analytic
properties, especially it has the local expansion

α(x) = 1− σ
√

2

√
1− x

x0
+O

(∣∣∣∣1− x

x0

∣∣∣∣) . (4.34)

In what follows we also use the abbreviation β = β(x) = xΦ′′(y(x))/2.

Lemma 4.20. There exists a constant c > 0 such that we uniformly have

Yk(x, u) = y(x) (4.35)

+
(u− y(x))αk

1− (u− y(x)) β
α(1−α) + (u− y(x)) β

α(1−α)α
k +O
(
|u− y(x)|2 1−|α|2k

1−|α|

)
as long as

k|u− y(x)| ≤ c, |x− x0| ≤ c, and | arg(x− x0)| ≥ c.

Proof. Set wk = wk(x, u) = Yk(x, u)− y(x). In a first step we show that there
exists a constant C > 0 such that

|w0| |α|k
1 + Ck|w0|

≤ |wk| ≤
|w0| |α|k

1− Ck|w0|
(4.36)

as long as k|w0| ≤ 1/(2C).

4 This technical assumption makes the analysis easier but it is not necessary. It
would be sufficient to assume that the second moment E ξ2 is finite or equivalently

that Φ′′(τ ) is finite. We would have y(x) = τ − τ
√

2
σ

p
1 − x/x0 (1 + o(1)) and

α(x) = 1 − σ
√

2
p

1 − x/x0 (1 + o(1)) instead of (4.33) and (4.34) and would not
get error terms (compare again with Remark 3.7).
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We proceed by induction. Note that we always assume that wk is suf-
ficiently small, say |wk| ≤ c0 so that the estimates in the following local
expansions are uniform and that we are within the region of convergence of
Φ(x).

By using the local expansions we obtain

Yk+1(x, u) = xΦ(Yk(x, u)) = xΦ(y(x) + wk)

= y(x) + xΦ′(y(x))wk + xΦ′′(y(x) + ϑk)w2
k/2

= y(x) + αwk + O(|wk|2).

Hence, there exists a constant C such that

|α| |wk|
1 + C|wk|

≤ |wk+1| ≤ |α|
|wk|

1− C|wk|

and consequently

1

|α| |wk|
− C

|α| ≤
1

|wk+1|
≤ 1

|α| |wk|
+
C

|α| .

Inductively this leads to

1

|α|k|w0|
− C

1− |α|

(
1

|α|k − 1

)
≤ 1

|wk|
≤ 1

|α|k|w0|
+

C

1− |α|

(
1

|α|k − 1

)
which is equivalent to

|w0| |α|k

1 + C|w0|1−|α|
k

1−|α|
≤ |wk| ≤

|w0| |α|k

1− C|w0| 1−|α|
k

1−|α|
.

Observe that |x − x0| ≤ c and | arg(x − x0)| ≥ c imply that |α| ≤ 1. Hence
(1− |α|k)/(1− |α|) ≤ k and we get (4.36).

Note that the condition k|w0| ≤ 1/(2C) ensures that all estimates remain
non-negative and also that the a priori assumption |wk| ≤ c0 can be verified
step by step, where we have to choose c0 appropriately.

The asymptotic relation (4.35) follows now from a slightly more precise
derivation. Similarly to the above we have

wk+1 = αwk + βw2
k +O
(
|wk|3
)
.

This can be rewritten to

1

wk+1
=

1

αwk

1

1 + βwk/α+O (|wk|2)

=
1

αwk
− β

α2
+O

( |wk|
|α|

)
.
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If we set qk = αk/wk then

qk+1 = qk − βαk−1 +O
(
|wk||α|k

)
which, with help of the a priori estimate, provides wk = O(w0α

k)

qk =
1

w0
− β
α

1− αk

1− α +O

(
|w0|
∣∣∣∣1− α2k

1− α2

∣∣∣∣)
and consequently (4.35).

4.2.5 Finite Dimensional Limiting Distributions

We will use the results of the previous section to prove finite dimensional
convergence. For simplicity we only discuss the cases d = 1 and d = 2 in
detail. It will then be clear how to deal with the general case.

Let us start with d = 1. Recall that the characteristic function of the local
time l at level κ is given by

E eit l(κ) = 1 +

√
2√
π

−1+i∞∫
−1−i∞

t
√
−2s exp(−κ

√
−2s )√

−2s exp(κ
√
−2s )− 2it sinh

(
κ
√
−2s
)e−s ds.

(4.37)

Proposition 4.21. Let κ ≥ 0 be given. Then we have for |t| ≤ c/(τκ)

lim
n→∞

Ee
it 1√

n
Ln(κ

√
n)

= E eit
σ
2 l( σ

2 κ). (4.38)

Consequently
1√
n
Ln(κ

√
n)

d−→ σ

2
l
(σ

2
κ
)
.

Proof. Recall that the generating function yk(x, u) = Yk(x, uy(x)) can be
interpreted as

yk(x, u) =
∑
n≥1

yn EuLn(k) xn

and is, thus, related to the characteristic function of Ln(k). In particular, we
have

EeitLn(k)/
√

n =
1

yn
[xn]yk

(
x, eit/

√
n
)
.

In order to get asymptotics for this characteristic function we will use the local
representation of Yk(x, u) from Lemma 4.20 and a properly chosen contour
integration applied to Cauchy’s formula.

Let Γ = γ′ ∪ Γ ′ consist of a line

γ′ =
{
x = x0

(
1 +

s

n

)
: �(s) = −1, |�(s)| ≤ C log2 n

}
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with an arbitrarily chosen fixed constant C > 0, and Γ ′ be a circular arc
centred at the origin and making Γ a closed curve. Then

EeitLn(k)/
√

n =
1

yn

1

2πi

∫
Γ

yk

(
x, eit/

√
n
) dx

xn+1
. (4.39)

The contribution of Γ ′ is exponentially small, since for x ∈ Γ ′ we have

|x−n−1| ∼ x−n
0 e−C log2 n, whereas

∣∣∣yk

(
x, eit/

√
n
)∣∣∣ is bounded.

If x ∈ γ′ then the local expansion (4.35) is valid for a proper range for k.
In particular, we replace k by �κ√n�, u by eit/

√
ny(x) and x by x0

(
1 + s

n

)
.

If we assume that κ > 0 is given then the assumptions of Lemma 4.20 are
satisfied provided that |t| ≤ c/(κτ), where c is the constant from Lemma 4.20:

k|(u− 1)y(x)| ≤ κ
√
n
∣∣∣eit/√n − 1

∣∣∣ |y(x)| ≤ κ|t|τ ≤ c.

Next we use the local expansions

y(x) = τ − τ
√

2

σ

√
− s
n

+O(|s|/n),

α = 1− σ
√

2

√
− s
n

+O(|s|/n),

β =
σ2

2τ
+O

(√
− s
n

)
and

αk = exp
(
−σκ

√
−2s
) (

1 +O(κs/
√
n)
)

to get asymptotically for x ∈ γ ′

(u− 1)y(x)αk

1− (u− 1)y(x) β
α(1−α) + (u− 1)y(x) β

α(1−α)α
k +O
(
|u− 1|2 1−|α|2k

1−|α|

)
=

1√
n

itτe−σκ
√
−2s(1 +O(s/

√
n))

1− itσ
2
√
−2s

+ itσ
2
√
−2s

exp
(
−σκ

√
−2s
)

+O(|s|3/2/
√
n)

=
1√
n

it
√
−2s τ exp

(
−σκ

√
−2s
)

(1 +O(s/
√
n))

√
−2s− itσ

2 + itσ
2 exp
(
−σκ

√
−2s
)

+O(
√
|s|/n)

=
1√
n

it
√
−2s τ exp

(
− 1

2σκ
√
−2s
)

(1 +O(s/
√
n))√

−2s exp
(

1
2σκ

√
−2s
)

(1 +O(1/
√
n))− itσ sinh

(
1
2σκ

√
−2s
) .

Finally, by applying the substitution x = x0(1 + s/n) and the approximation
x−n = x−n

0 e−s(1 +O(|s|2/n)) we notice that the integral

1

2πi

∫
γ′

(u − 1)y(x)αk

1− (u− 1)y(x) β
α(1−α) (1− αk) +O

(
|u− 1|2 1−|α|2k

1−|α|

) dx
xn+1
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is approximated by

τx−n
0

σ
√

2π n3/2

√
2√
π

1+log2 n∫
−1−log2 n

itσ
2

√
−2s exp(− 1

2κσ
√
−2s )√

−2s exp( 1
2κσ

√
−2s )− 2it sinh

(
1
2κσ

√
−2s
) e−s ds.

Since the integral is absolutely convergent, we can safely replace the integral∫ −1+log2 n

−1−log2 n by
∫ −1+∞
−1−∞ . We recall that yn ∼ (τ/(σ

√
2π))x−n

0 n−3/2. Hence,

lim
n→∞

E e
it 1√

n
Ln(�κ√n�)

= E eit
σ
2 l( σ

2 κ)

follows. However, in view of (4.41) (that we will prove independently of the
present proposition)

E e
it 1√

n
Ln(�κ√n�)

and E e
it 1√

n
Ln(κ

√
n)

have the same limit. This completes the proof of (4.38) for a small open
interval for t (that contains t = 0).

Since the characteristic function E eit
σ
2 l( σ

2 κ) represents an analytic function

in t, we thus get weak convergence of 1√
n
Ln(κ

√
n)

d−→ σ
2 l
(

σ
2κ
)

(compare with

[139, pp. 224–225]).

With the help of the same techniques it is also possible to obtain asymp-
totics for moments (compare with [199, 93]). We just demonstrate this for the
expected profile ELn(k).

By definition the partial derivative

γk(x) =

[
∂yk(x, u)

∂u

]
u=1

=
∑
n≥1

ynELn(k) xn

encodes the first moment. By induction it follows that

γk(x) = y(x)α(x)k .

Thus if k = �κ√n� (with some κ > 0) we obtain (by using exactly the same
kind of contour integration as above)

ynELn(k) ∼ τx−n
0

n

1

2πi

∫ −1+i∞

−1−i∞
exp
(
−σκ

√
−2s
)
e−s ds.

In view of Lemma 4.22 we immediately derive

ELn(�κ
√
n�) ∼ σ2κe−

1
2 σ2κ2√

n.

Lemma 4.22. Let r > 0. Then the following formula holds:

1

2πi

∫ −1+i∞

−1−i∞
exp
(
−r
√
−2s
)
e−s ds =

r√
2π
e−

1
2 r2

.
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Proof. We first show that the integral over the line from −1− i∞ to −1 + i∞
can be replaced by the contour that surrounds the positive real axis as a so-
called Hankel contour H (see Figure 2.5). For this purpose we have to show
that the integrals ∫

|s|=R, 0<| arg(s)|≤π/2

exp
(
−r
√
−2s
)
e−s ds

are negligible (as R→∞) which is actually true since∫ π/2

0

∣∣∣e−r
√
−2Reiϕ−Reiϕ

∣∣∣Rdϕ ≤ Rπ

2
max
{
e−r

√
R, e−R/

√
2
}
.

After that we use the substitution s = 1
2 t

2, where t goes from i−∞ to i+∞,
and the resulting integral can be finally calculated. Summing up we have

1

2πi

∫ −1+i∞

−1−i∞
exp
(
−r
√
−2s
)
e−s ds =

1

2πi

∫
H

exp
(
−r
√
−2s
)
e−s ds

=
1

2πi

∫ i+∞

i−∞
eirt− 1

2 t2t dt

=
e−

1
2 r2

2πi

∫ i+∞

i−∞
e−

1
2 (t−ir)2(t− ir + ir) dt

=
re−

1
2 r2

2π

∫ ∞
−∞

e−
1
2 w2

dw

=
r√
2π
e−

1
2 r2

.

Next consider the two dimensional case. The characteristic function of
(l(κ1), l(κ2)) with 0 < κ1 < κ2 is given by

E eit1 l(κ1)+it2 l(κ2) = 1 +

√
2

i
√
π

∫ −1+i∞

−1−i∞
Ψκ1 (s, it1 + Ψκ2−κ1(s, it2)) e−s ds,

with

Ψκ1 (s, it1 + Ψκ2−κ1(s, it2)) =

√
−2s e−κ1

√
−2s

(
it1+

it2
√
−2s e−(κ2−κ1)

√−2s

√
−2se(κ2−κ1)

√−2s−2it2 sinh((κ2−κ1)
√
−2s )

)
√
−2s eκ1

√
−2s −
(
it1+

it2
√
−2se−(κ2−κ1)

√−2s
√
−2s e(κ2−κ1)

√−2s−2it2 sinh((κ2−κ1)
√
−2s )

)
sinh
(
κ1

√
−2s
) .

Proposition 4.23. Let 0 ≤ κ1 < κ2 be given. Then we have for real t1 and
t2 with sufficiently small absolute value
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lim
n→∞

Ee
it1

1√
n

Ln(κ1
√

n)+it2
1√
n

Ln(κ2
√

n)
= E eit1

σ
2 l( σ

2 κ1)+it2
σ
2 l( σ

2 κ2). (4.40)

Consequently(
1√
n
Ln(κ1

√
n),

1√
n
Ln(κ2

√
n)

)
d−→
(σ

2
l
(σ

2
κ1

)
,
σ

2
l
(σ

2
κ2

))
.

Proof. By definition we have for k1 < k2

E eit1Ln(k1)/
√

n+it2Ln(k2)/
√

n

=
1

yn
[xn]Yk1

(
x, eit1/

√
nYk2−k1

(
x, eit2/

√
ny(x)
))

=
1

yn

1

2πi

∫
Γ

Yk1

(
x, eit1/

√
nYk2−k1

(
x, eit2/

√
ny(x)
)) dx

xn+1

with the same path of integration Γ = Γ ′ ∪ γ′ as in the proof of Proposi-
tion 4.21.

If x ∈ γ′ then substitute x = x0

(
1 + s

n

)
and set α = xφ′(y(x)). We also

use the abbreviations u1 = eit1/
√

n, u2 = eit2/
√

n, and h = k2 − k1 resp.
η = κ2 − κ1 where k1 = �κ1

√
n� and k2 = �κ1

√
n�. Now, applying Lemma

4.20 yields
Yh(x, u2y(x)) = y(x) + wh(u2, x)

where

wh(u2, x) ∼ (u2 − 1)y(x)αh

1− (u2 − 1)y(x) β
α(1−α) + (u2 − 1)y(x) β

α(1−α)α
h

∼ 1√
n

it2
√
−2s τ exp

(
− 1

2ση
√
−2s
)

√
−2s exp

(
1
2ση

√
−2s
)
− it2σ sinh

(
1
2ση

√
−2s
)

=
1√
n

2τ

σ
Ψησ/2

(
s,
it2σ

2

)
and

Yk1(x, u1Yh(x, u2y(x))) = y(x) + w̃k1(u1, u2, x)

where (wh = wh(u2, x))

w̃k1(u1, u2, x)

∼ ((u1 − 1)y(x) + u1wh)αk1

1− ((u1 − 1)y(x) + u1wh) β
α(1−α) + ((u1 − 1)y(x) + u1wh) β

α(1−α)α
k1

∼ 1√
n

(
it1 + 2

σΨησ/2

(
s, it2σ

2

))√
−2s τ exp

(
− 1

2σκ1

√
−2s
)

√
−2s exp

(
1
2σκ1

√
−2s
)
−
(
it1σ + 2Ψησ/2

(
s, it2σ

2

))
sinh
(

1
2σκ1

√
−2s
)

=
1√
n

2τ

σ
Ψκ1σ/2

(
s,
it1σ

2
+ Ψησ/2

(
s,
it2σ

2

))
.
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Consequently, the integral

1

2πi

∫
γ′

w̃k1(u1, u2, x)
dx

xn+1

is approximated by

τx−n
0

σ
√

2π n3/2

√
2√
π

−1+log2 n∫
−1−log2 n

Ψκ1σ/2

(
s,
it1σ

2
+ Ψησ/2

(
s,
it2σ

2

))
e−s ds.

Since the integral on Γ ′ is negligible (as in the proof of Proposition 4.21),
we obtain (4.40) and, thus, weak convergence of the corresponding random
vectors.

By inspecting the proofs of Propositions 4.21 and 4.23 it is clear that finite
dimensional convergence follows by iterating the procedure. Thus, for every
d-tuple κj with 0 ≤ κ1 < κ2 < · · · < κd we get(

1√
n
Ln(κ1

√
n), . . . ,

1√
n
Ln(κd

√
n)

)
d−→
(σ

2
l
(σ

2
κ1

)
, . . . ,

σ

2
l
(σ

2
κd

))
.

4.2.6 Tightness

In this section we will show that the sequence of random variables ln(t) =
n−1/2Ln(t

√
n), t ≥ 0, is tight in C[0,∞) by checking the second and

third assumption of Theorem 4.14. Since a sequence of stochastic processes
(Xn(t), t ≥ 0) is tight in C[0,∞), if and only if (Xn(t), 0 ≤ t ≤ T ) is tight in
C[0, T ] for all T > 0 (see [120, p. 63]) we may restrict ourselves to finite in-
tervals. Note that Theorem 4.14 is only formulated for the unit interval [0, 1].
But this extends to arbitrary intervals [0, T ] by scaling.

The second condition of Theorem 4.14 is trivially true, since L(0) = 0.
The third condition will be verified for α = 2 > 1 and β = 4. In particular we
show the following property.

Theorem 4.24. There exists a constant C > 0 such that

E (Ln(k)− Ln(k + h))4 ≤ C h2n (4.41)

holds for all non-negative integers n, k, h.

Obviously (4.41) proves (4.19) (for α = 2 and β = 4), if k = κ1
√
n and

h = η
√
n = (κ2 − κ2)

√
n are non-negative integers, since it rewrites to

E

∣∣∣∣ 1√
n
Ln(κ1

√
n)− 1√

n
Ln(κ2

√
n)

∣∣∣∣4 ≤ C |κ2 − κ1|2 . (4.42)
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However, in the case of linear interpolation it is an easy exercise to extend
(4.41) to arbitrary κ1, κ2 ≥ 0 (compare with [92]). Namely if k ≤ s < t ≤ k+1
for some non-negative integer k then

E (Ln(t)− Ln(s))
4

= (t− s)4 E (Ln(r)− Ln(r ± 1))
4

≤ C (t− s)4n
≤ C (t− s)2n.

Also with help of this upper bound we get for the remaining case, where
s ≤ k ≤ t (for some non-negative integer k)

E (Ln(t)− Ln(s))4 ≤ 34E (Ln(t)− Ln(�t�))4

+ 34E (Ln(�t�)− Ln(�s�))4

+ 34E (Ln(�s�)− Ln(s))
4

≤ 34C
(
(t− �t�)2 + (�s� − �t�)2 + (s− �s�)2

)
n

≤ 34C (t− s)2n.

This proves (4.42) for general κ1 and κ2.

Remark 4.25 It should be mentioned that it is not sufficient to consider the
second moment E (Ln(r) − Ln(r + h))

2
. The optimal upper bound is given by

E (Ln(r) − Ln(r + h))2 ≤ C h
√
n

which provides (4.19) just for α = 1.

By using the combinatorial approach we get

P{Ln(k)− Ln(k + h) = m} =
1

yn
[xnum]Yk(x, uYh(x, u−1y(x)))

and consequently

E (Ln(k)− Ln(k + h))4 =
1

yn
[xn]Hkh(x), (4.43)

in which

Hkh(x) =

[(
∂

∂u
+ 7

∂2

∂u2
+ 6

∂3

∂u3
+
∂4

∂u4

)
Yk(x, uYh(x, u−1y(x)))

]
u=1

.

(4.44)
In order to prove Theorem 4.24 we have to estimate Hkh(x) in a proper way.
For this purpose we use the following representation.

Proposition 4.26. Set α = xΦ′(y(x)) and

Δ = {x : |x| < x0 + η, | arg(x − x0)| > θ}, (4.45)
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in which η > 0 is sufficiently small and 0 < θ < π/2. Then Hkh(x) can be
represented as

Hkh(x) = G1,kh(x)
(1 − αh)2

(1− α)3
+G2,kh(x)

1− αh

(1− α)2
+G3,kh(x)

1

1 − α +G4,kh(x),

(4.46)
in which Gj,kh(x), 1 ≤ j ≤ 4, are functions that are uniformly bounded for
x ∈ Δ and k, h ≥ 0.

The proof of Proposition 4.26 requires the following formulas.

Lemma 4.27. Let α = xΦ′(y(x)), β = xΦ′′(y(x)), γ = xΦ′′′(y(x)), and δ =
xΦ′′′′(y(x)). Then we have

∂Yk

∂u
(x, 1) = αk,

∂2Yk

∂u2
(x, 1) =

β

α
αk 1− αk

1− α ,

∂3Yk

∂u3
(x, 1) =

γ

α
αk 1− α2k

1− α2
+ 3

β2

α
αk (1− αk)(1 − αk−1)

(1 − α)(1 − α2)
,

∂4Yk

∂u4
(x, 1) =

δ

α
αk 1− α3k

1− α3

+
(
2βγ(2 + 5α+ 5αk + 3αk+1) + 3β3/α

)
αk (1− αk)(1− αk−1)

(1− α2)(1 − α3)

+ 3β3(1 + 5α)αk (1− αk)(1 − αk−1)(1 − αk−2)

(1− α)(1 − α2)(1− α3)
.

Proof. From Yk+1(x, u) = xΦ(Yk(x, u)) we obtain the recurrence relations

∂Yk+1

∂u
= xΦ′(Yk)

∂Yk

∂u
,

∂2Yk+1

∂u2
= xΦ′′(Yk)

(
∂Yk

∂u

)2

+ xΦ′(Yk)
∂2Yk

∂u2
,

∂3Yk+1

∂u3
= xΦ′′′(Yk)

(
∂Yk

∂u

)3

+ 3xΦ′′(Yk)
∂Yk

∂u

∂2Yk

∂u2
+ xΦ′(Yk)

∂3Yk

∂u3
,

∂4Yk+1

∂u4
= xΦ′′′′(Yk)

(
∂Yk

∂u

)4

+ 6xΦ′′′(Yk)

(
∂Yk

∂u

)2
∂2Yk

∂u2

+ 3xΦ′′(Yk)

(
∂2Yk

∂u2

)2

+ 4xΦ′′(Yk)
∂Yk

∂u

∂3Yk

∂u3
+ xΦ′(Yk)

∂4Yk

∂u4
.

Since Yk(x, 1) = y(x) for all k ≥ 0, this system of recurrence relations has the
explicit solutions stated in Lemma 4.27 for u = 1.
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Proof. (Proposition 4.26) First we can use Lemma 4.27 to make (4.44) more
explicit. Since

∂

∂u
Yk(x, uYh(x, u−1y(x))) =

∂Yk

∂u
(x, uYh(x, u−1y(x)))

×
(
Yh(x, u−1y(x))− u−1y(x)

∂Yh

∂u
(x, u−1y(x))

)
,

we obtain [
∂

∂u
Yk(x, uYh(x, u−1y(x)))

]
u=1

= y(x)αk(1 − αh).

Similarly[
∂2

∂u2
Yk(x, uYh(x, u−1y(x)))

]
u=1

= y(x)2
∂2Yk

∂u2
(x, 1)(1 − αh)2 + y(x)2αk ∂

2Yh

∂u2
(x, 1),[

∂3

∂u3
Yk(x, uYh(x, u−1y(x)))

]
u=1

= y(x)3
∂3Yk

∂u3
(x, 1)(1 − αh)3 + 3y(x)3

∂2Yk

∂u2
(x, 1)

∂2Yh

∂u2
(x, 1)(1 − αh),

− 3y(x)2αk ∂
2Yh

∂u2
(x, 1)− y(x)3αk ∂

3Yh

∂u3
(x, 1),

and[
∂4

∂u4
Yk(x, uYh(x, u−1y(x)))

]
u=1

= y(x)4
∂4Yk

∂u4
(x, 1)(1− αh)4 + 7y(x)4

∂3Yk

∂u3
(x, 1)

∂2Yh

∂u2
(x, 1)(1− αh)2

− 12y(x)4
∂2Yk

∂u2
(x, 1)

∂2Yh

∂u2
(x, 1)(1 − αh)

+ 3y(x)4
∂2Yk

∂u2
(x, 1)

(
∂2Yh

∂u2
(x, 1)

)2

− 4y(x)4
∂2Yk

∂u2
(x, 1)

∂3Yh

∂u3
(x, 1)(1− αh) + 12y(x)2αk ∂

2Yh

∂u2
(x, 1)

+ 8y(x)3αk ∂
3Yh

∂u3
(x, 1) + y(x)4αk ∂

4Yh

∂u4
(x, 1),

yielding an explicit expression of Hkh(x) in terms of y(x).
Now notice that

sup
x∈Δ

|α| = 1, (4.47)
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since α = xΦ′(y(x)) has the local expansion (4.34). Hence, a representation
of the form (4.46) follows immediately with functions Gj,kh(x), 1 ≤ j ≤ 4,
which are uniformly bounded for x ∈ Δ.

The final step of the proof of Theorem 4.24 is to use (4.46) and the Transfer
Lemma 2.12.

Proof. (Theorem 4.24) Since yn ∼ (τ/
√

2πσ2)x−n
0 n−3/2, Theorem 4.24 is

equivalent to

[xn]Hkh(x) = O

(
x−n

0

h2

√
n

)
(4.48)

uniformly for all k, h ≥ 0. Note that Hk0(x) ≡ 0. So we may assume that
h ≥ 1.

First, let us consider the first term ofHkh(x) (in the representation (4.46)):

G1,kh(x)
(1 − αh)2

(1− α)3
= G1,kh(x)

1

1 − α

h−1∑
i=0

αi
h−1∑
j=0

αj

=

h−1∑
i,j=0

G1,kh(x)
αi+j

1− α = O

(
h2 1

|1− α|

)
.

Since
1

1− α = O
(

(1− x/x0)−1/2
)
,

we can apply Lemma 2.12 (with β = 1/2) and obtain

G1,kh(x)
(1 − αh)2

(1− α)3
= O
(
x−n

0 h2n−1/2
)
.

The coefficient of the second term is even smaller:

[xn]G2,kh(x)
(1 − αh)

(1 − α)2
= [xn]G2,kh(x)

1

1 − α

h−1∑
i=0

αi

= O
(
x−n

0 hn−1/2
)

= O
(
x−n

0 h2n−1/2
)
.

Similarly we can handle the remaining terms:

[xn]G3,kh(x)
1

1 − α = O
(
x−n

0 n−1/2
)

= O
(
x−n

0 h2n−1/2
)

and
[xn]G4,kh(x) = O

(
x−n

0 n−1
)

= O
(
x−n

0 h2n−1/2
)
.

Thus we have proved (4.48) which is equivalent to (4.41).

This also completes the proof of Theorem 4.10 in the case that the offspring
distribution ξ has finite exponential moments.
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4.2.7 The Height of Galton-Watson Trees

We have already mentioned that the limiting distribution of the height Hn of
Galton-Watson trees is asymptotically given by

1√
n
Hn

d−→ 2

σ
max
0≤t≤1

e(t),

where e(t) denotes the Brownian excursion of duration 1 (compare with The-
orem 4.8).

In what follows we will shortly present a combinatorial proof of this lim-
iting relation that goes back to Flajolet and Odlyko [82] who derived asymp-
totics for all moments EHr

n in the binary case.
The generating functions yk(x, u) that describe the profile of Galton-

Watson trees are closely related to the height distribution. Let yk(x) denote
the generating function of trees with height < k, that is,

yk(x) =
∑
n≥1

⎛⎝ ∑
|T |=n, h(T )<k

ω(T )

⎞⎠ xn.

Then we have
yk(x) = yk(x, 0),

since LT (k) = 0, if and only if h(T ) < k. In particular we have

y0(x) = 0,

yk+1(x) = xΦ(yk(x)).

In the case of planted plane trees, that is Φ(x) = 1/(1−x), this recurrence
can be explicitly solved and is given by

yk(x) = y(x) − y(x)α(x)k

1 + y(x)√
1−4x

(1− α(x)k)
,

where y(x) = (1 −
√

1− 4x)/2 and α(x) = x/(1 − y(x))2. As we did in the
case of the profile we will show that such a relation holds asymptotically in
the general case. For convenience we set

ek(x) = y(x)− yk(x),

which is the generating function of the (weighted) numbers of trees of size n
of height ≥ k.

We will also make use of a properly chosen Δ-region

Δ = Δ(x0, η, δ) = {x : |x| < x0 + η, | arg(x/x0 − 1)| > δ},

where η > 0 and 0 < δ < π
2 . In particular we will choose η sufficiently small

and δ very close to π
2 .
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Proposition 4.28. We have uniformly for x ∈ Δ and k ≥ 0

ek(x) =
α(x)k

β(x)
α(x)

1−α(x)k

1−α(x) +O
(

min{log k, log 1
1−|α(x)|}

) ,
where α(x) = xΦ′(y(x)) and β(x) = 1

2xΦ
′′(y(x)).

With the help of these representations it is relatively easy to derive the
corresponding limiting result for the height.

Theorem 4.29. For every κ > 0 we have

P{Hn ≥ κ
√
n} =

σ

i
√

2π

∫ −1+i∞

−1−i∞

√
−2s e−s

exp
(
σκ
√
−2s
)
− 1

ds+ o(1). (4.49)

Furthermore, for all integers r ≥ 1

EHr
n ∼
(

2

σ

)r

2−r/2r(r − 1)Γ (r/2)ζ(r)nr/2, (4.50)

(where we make the convention (r − 1)ζ(r) = 1 for r = 1).

The integral representation (4.49) of the distribution of M = max0≤t≤1 e(t)
is unusual; however, it perfectly fits into our asymptotic frame.

The proof of Proposition 4.28 relies on a precise analysis of the recurrence

ek+1(x) = y(x)− xΦ(y(x) − ek(x)). (4.51)

We start with some preliminary properties.

Lemma 4.30. Let h(x, v) be defined by

α(x)v

y(x)− xΦ(y(x) − v) = 1 +
β(x)

α(x)
v + v2h(x, v),

where α(x) = xΦ′(y(x)) and β(x) = 1
2xΦ

′′(y(x)). Then the functions ek(x)
satisfy the recurrence

ek(x) =
e0(x)α(x)k

1 + e0(x) β(x)
α(x)

1−α(x)k

1−α(x) + e0(x)
∑

�<k α(x)�e�(x)h(x, e�(x))
. (4.52)

Note that h(x, v) is actually an analytic function in v, since the Taylor series
expansion of y(x)− xΦ(y(x) − v) is given by

y(x)− xΦ(y(x) − v) = α(x)v + β(x)v2 +O(v3) =
α(x)v

1− β(x)
α(x)v +O(v2)

.
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Proof. By definition we have

ek+1 = y − xΦ(y − ek) =
αek

1 + β
αek + e2kh

or equivalently

α

ek+1
=

1

ek

(
1 +

β

α
ek + e2kh

)
=

1

ek
+
β

α
+ ekh.

By multiplying by αk we obtain

αk+1

ek+1
=
αk

ek
+
β

α
αk + αkekh,

which gives
αk

ek
=

1

e0
+
β

α

1− αk

1− α +
∑
�<k

α�e�h(x, e�).

This proves the lemma.

Lemma 4.31. For |x| ≤ x0 we have

|ek(x)| ≤ ek(x0) ∼ 1

βk
.

Proof. The inequality |ek(x)| ≤ ek(x0) is obvious, since the coefficients of
ek are non-negative. Since y(x) is convergent at x = x0, it follows that
limk→∞ ek(x0) = 0. This implies that∑

�<k

e�(x0)h(x0, e�(x0)) = o(k)

as k →∞. Hence, since α(x0) = 1, by (4.52) we obtain

ek(x0) =
1

βk + o(k)
∼ 1

βk
.

Lemma 4.32. There exists a constant C with the property that if x ∈ Δ and

|ek(x)| < 1

C

(
1

|α(x)| − 1

)
(4.53)

then we have
|ek+1(x)| < |ek(x)|.

In particular, if there exists some k with (4.53) then ek(x) = O(α(x)k) as
k →∞.
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Proof. By Taylor’s expansion we have

y(x)− xΦ(y(x) − v) = α(x)v(1 +O(v))

and consequently

|y(x)− xΦ(y(x) − v)| < |α(x)| |v| (1 + C|v|)

for a properly chosen constant C > 0. Hence, if (4.53) is satisfied then

|ek+1(x)| = |y(x) − xΦ(y(x) − ek(x))|
< |α(x)| |ek(x)| (1 + C|ek(x)|)
≤ |ek(x)|.

Finally, if (4.53) is satisfied for some k = k0 then we can apply (4.53) recur-
sively and consequently ek(x) stays bounded. We now use a shifted variant of
(4.52), namely

ek(x) =
α(x)k−k0

1
ek0

+ β
α

1−αk−k0

1−α +
∑

�<k−k0
α�ek0+�h(x, ek0+�)

, (4.54)

in order to prove that ek = O(αk). We only have to check that∣∣∣∣βα 1− αk

1− α

∣∣∣∣ ≤ 1

4

C|α|
1− |α| , (4.55)

and that∣∣∣∣∣ ∑
�<k−k0

α�ek0+�h(x, ek0+�)

∣∣∣∣∣ ≤ ‖h‖∞ 1− |α|
C|α|

1− |αk|
1− |α| ≤

1

4

C|α|
1− |α| , (4.56)

so that (4.54) implies ek = O(αk). However, (4.55) and (4.56) are certainly
satisfied, if C is chosen sufficiently large, since x ∈ Δ implies |1−α| ≥ c(1−|α|)
for some constant c > 0.

Remark 4.33 The value of the constant C can be made more precise, if we
assume, for example, that we already know that ek(x) is sufficiently small. In
this case we can assume that C is arbitrarily close to β(x0).

With the help of these preliminaries we obtain a first approximation for
ek(x), if x is far-off from the singularity.

Lemma 4.34. For every ε > 0 there exists δ > 0 such that

ek(x) = E(x)α(x)k +O(α(x)2k) (4.57)

uniformly for |x| ≤ x0+δ and |x−x0| ≥ ε, where E(x) = α(x)(1−α(x))/β(x).
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Proof. If |x− x0| ≥ ε and |x| ≤ x0 + δ then we have uniformly |α(x)| ≤ 1− η
for some η > 0. Now fix k0 such that

ek0(x0) <
1

2C

η

1− η

where C is the constant given in Lemma 4.32. By continuity there exists δ > 0
such that

|ek0(x)| < 1

C

η

1− η
uniformly for |x− x0| ≥ ε and |x| ≤ x0 + δ. Without loss of generality we can
assume that δ ≤ ε. Hence, we also get

|ek0(x)| < 1

C

η

1− η ≤
1

C

(
1

|α| − 1

)
.

Thus, the assumptions of Lemma 4.32 are satisfied and we have ek(x) =
O(α(x)k). Now with help of this a priori bound and (4.52) it follows that
ek(x) can be represented in the form (4.57).

It is also quite easy to discuss the case |x− x0| ≤ ε but |x| ≤ x0.

Lemma 4.35. Suppose that |x−x0| ≤ ε but |x| ≤ x0. Then we have uniformly
in this range

ek(x) =
α(x)k

β(x)
α(x)

1−α(x)k

1−α(x) +O
(

min{log k, log 1
1−|α(x)|}

) .
Proof. Since we know a priori, that |ek(x)| ≤ ek(x0) ∼ α/(βk),∑

�<k

αle�h(x, e�) = O (min{log k, log 1/(1− |α|)}) ,

as k → ∞. Hence, a direct application of (4.52) completes the proof of the
lemma.

It remains to discuss the asymptotic behaviour of ek(x), if x ∈ Δ but
|x| ≥ x0. The problem is that it is not immediately clear that ek(x) → 0.
Note, however, that ek(x0) ∼ 1/(βk). Thus, by continuity for every fixed k0

there is definitely ε > 0 such that |ek0(x)| ≤ (2α)/(βk0) for |x − x0| ≤ ε and
x ∈ Δ. However, this does not guarantee that Lemma 4.32 can be applied.
We have to use a different argument.

Lemma 4.36. There exists ε > 0 and a constant c1 > 0 such that for all
x ∈ Δ with |x− x0| ≤ ε we have

|ek(x)| ≤ 1

C

(
1

|α(x)| − 1

)
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for

k = K(x) =

⌊
c1

| arg(α(x))|

⌋
,

where C is the constant from Lemma 4.32.

Proof. The idea of the proof is to use formula (4.54), where k0 is chosen in
a way that ek0(x) is sufficiently small and k is approximately c1/| arg(α(x))|,
where c1 has to be chosen in a proper way. Suppose that we already know
that

|ek0+�(x)| ≤ |ek0(x)| for � ≤ k − k0, (4.58)

then ∣∣∣∣∣ ∑
�<k−k0

αlek0+�h(x, ek0+�)

∣∣∣∣∣ ≤ |ek0(x)| ‖h‖∞
1− |α|k−k0

1− |α| .

Since |1 − α| ≤ c(1 − |α|) for x ∈ Δ (with a suitable constant c > 0) and
|1 − αk−k0 | ≥ 1 − |α|k−k0 , it follows that this term can be made arbitrarily
small compared to (β/α)(1−αk−k0 )/(1−α). Furthermore, if we assume that
arg(x0−x) = ϑ ∈

[
−π

2 − ε′, π
2 + ε′
]

(for some ε′ > 0 that has to be sufficiently

small) and r = σ
√

2|
√

1− x/x0|, then

|α| = 1− r cos
ϑ

2
+O(r2),

log |α| = −r cos
ϑ

2
+O(r2),

arg(α) = −r sin
ϑ

2
+O(r2).

Hence with k = K(x) = �c1/| arg(α)|� we have

|αk−k0 | ∼ e−c1 cot(ϑ/2)+O(r2) ≤ e−c1 cot( π
4 + ε′

2 )+O(r2) ≤ e−c1(1−ε′′)

for some arbitrarily small ε′′ > 0 (depending on ε′). Consequently∣∣∣∣βα 1− αk−k0

1− α

∣∣∣∣ ≥ ∣∣∣∣βα
∣∣∣∣ 1− e−c1(1−ε′′)

r
.

Thus, if r is sufficiently small (that we can assume without loss of generality)
then this term is actually much larger than 1/ek0.

In other words, if (4.58) holds then for k = K(x) = �c1/| arg(α)|� we have

|α|k−k0

|ek|
≥
∣∣∣∣βα 1− αk−k0

1− α

∣∣∣∣ (1− ε′′′),
where ε′′′ > 0 can be chosen arbitrarily small, provided that k0 and ε are
properly chosen. Hence, if we want to conclude that |ek| ≤ (1/C)(1/|α| − 1),
or equivalently, that
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|α|k−k0

|ek|
≥ C|α|k−k0+1

1− |α|
then we just have to show that∣∣∣∣βα 1− αk−k0

1− α

∣∣∣∣ (1− ε′′′) ≥ C|α|k−k0+1

1− |α| (4.59)

for some ε′′′ > 0. Note that C is a constant that can be chosen arbitrarily
close to β. Hence, if k = K(x) = �c1/| arg(α)|� then (4.59) is implied by the
relation

e−c1 <
1

1 + 1/
√

2
. (4.60)

Namely, if (4.60) is satisfied then there exists ε′ > 0, ε′′′ > 0 and some C > β/α
such that ∣∣∣∣βα

∣∣∣∣ 1− e−c1 cot( π
4 + ε′

2 )

r
(1− ε′′′) ≥ C e

−c1 cot( π
4 + ε′

2 )

r cos(π
4 + ε′

2 )

which is asymptotically equivalent to (4.59).
It remains to be shown that (4.58) is satisfied for k = K(x) = �c1/| arg(α)|�

with c1 > log(1 + 1/
√

2) = 0.534799...
For this purpose we show that the argument of ek(x) can be controlled.

In particular, we show that | arg(e�)| < π
4 = 0.78539... for � ≤ k. If this

condition is satisfied, it is clear that for x ∈ Δ and |x− x0| ≤ ε we have (if e�
is sufficiently small, too) ∣∣∣∣1− βαe� +O(e2� )

∣∣∣∣ ≤ 1,

and consequently

|e�+1| = |α| |e�|
∣∣∣∣1− βαe� +O(e2� )

∣∣∣∣ ≤ |e�|.
Moreover, the argument of e�+1 is given by

arg(e�+1) = arg(α) + arg(e�) + arg

(
1− β

α
e�(1 +O(e�))

)
= arg(α) + arg(e�)

−
∣∣∣∣βαe�
∣∣∣∣ sin(c′′r sin

ϑ

2
+O(r2) + arg(e�) +O(e�)

)
for some real number c′′ and ϑ = arg(x0−x). Suppose that arg(e�) ≥ ε′′′′ > 0
is large enough so that

c′′r sin
ϑ

2
+O(r2) + arg(e�) +O(e�) > 0.
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Then it follows that

arg(e�+1) ≤ arg(α) + arg(e�).

In particular, it follows by induction

arg(e�) ≤ arg(ek0) + (�− k0) arg(α) + ε′′′′.

We can adapt ε such that | arg(ek0)| ≤ ε′′′′. Hence, if we apply this inequality
for k − k0 = �c1/| arg(α)|� with c1 = π

4 − 2ε′′′′ then it follows that

| arg(e�)| ≤
π

4

for k0 ≤ � ≤ k. Consequently we actually have |e�+1| ≤ |e�| and the induction
works.

This also completes the proof of the lemma.

It is now easy to complete the proof of Proposition 4.28. Lemma 4.34 and
Lemma 4.35 cover the range |x| ≤ x0 + η and |x − x0| ≥ ε resp. the range
|x| ≤ x0 and |x− x0| ≤ ε. In the remaining range x ∈ Δ, x ≥ x0, |x− x0| ≤ ε
we use Lemma 4.36 and Lemma 4.32 to show that ek(x) → 0. From that it
follows that ∑

�<k

α�e�h(x, e�) = o

(
1− |α|k
1− |α|

)
and consequently (by applying Lemma 4.30)

ek =
αk

β
α

1−αk

1−α (1 + o(1))
.

This implies the upper bound

ek = O

(
min

{
1

k
, (1− |α|)αk

})
,

and consequently∑
�<k

α�e�h(x, e�) = O

(
min

{
log k, log

1

1− |α|

})
.

Hence a second application of Lemma 4.30 completes the proof of Proposi-
tion 4.28.

The proof of Theorem 4.29 is based on the asymptotic formula for ek(x)
that is given in Proposition 4.28. Recall that

P{Hn ≥ k} =
1

yn
[xn]ek(x) =

1

yn

1

2πi

∫
Γ

ek(x)
dx

xn+1
,
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where we use the same contour Γ = γ ′∪Γ ′ as in the proof of Proposition 4.21.
Again it is sufficient to concentrate on the integral over

γ′ =
{
x = x0

(
1 +

s

n

)
: �(s) = −1, |�(s)| ≤ C log2 n

}
.

For x ∈ Γ ′ the functions ek(x) are uniformly bounded and hence the integral

over Γ ′ is bounded above by O(x−n
0 e−C log2 n). On the other hand, if k =

�κ√n� the integral over γ ′ is asymptotically given by

1

2πi

∫
γ′
ek(x)

dx

xn+1
∼ x−n

0 n−3/2 1

2πi

∫ −1+i∞

−1−i∞

exp
(
−σκ

√
−2s
)

β
1−exp(−σκ

√
−2s)

σ
√
−2s

e−s ds

= x−n
0 n−3/2 τ

2πi

∫ −1+i∞

−1−i∞

√
−2se−s

exp
(
σκ
√
−2s
)
− 1

ds.

Note that β(x0) = σ/τ . Since yn ∼ τ/(σ
√

2π)x−n
0 n−3/2, we obtain the pro-

posed asymptotic representation (4.49).
In order to obtain the asymptotics for the moments (4.50) we observe that

the generating function of the r-th moment EHr
n is given by∑

n≥1

EHr
n ynx

n =
∑
k≥1

(kr − (k − 1)r) ek(x).

Since kr − (k − 1)r ∼ rkr−1 and ek ∼ (α/β)(1 − α)αk/(1 − αk), we have (as
x→ x0 in Δ)

∑
n≥1

EHr
n ynx

n ∼ rα
β

(1 − α)
∑
k≥1

kr−1 αk

1− αk
.

This kind of sum can be analysed with help of the following lemma.

Lemma 4.37. Let R ≥ 0 be a fixed real number. Then the function

DR(z) =
∑
k≥1

kR zk

1− zk

has radius of convergence 1 and we have, as z → 1 with | arg(1− z)| ≤ φ (for
some φ < π/2),

DR(z) ∼

⎧⎪⎪⎨⎪⎪⎩
1

1− z log
1

1− z for R = 0,

R!ζ(R + 1)

(1− z)R+1
for R > 0.

Proof. We use the substitution z = e−x. Then the Mellin transform of the
function
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FR(x) =
∑
k≥1

kR e−kx

1− e−kx

is given by

F ∗R(s) =

∫ ∞
0

FR(x)xs−1 dx = Γ (s)ζ(s)ζ(s −R), (�(s) > R+ 1).

Hence, a standard inversion by using a shift of the line of integration in the
inversion formula

FR(x) =
1

2πi

∫ σ+i∞

σ−i∞
F ∗R(s)xs ds

to σ < R + 1 and collecting the contributions of the polar singularity at
s = R + 1 leads to the asymptotic leading term for the behaviour x → 0+.
For R = 0 we have a double pole corresponding to (1/x) log(1/x), whereas for
R > 0 there is a single pole with residue Γ (R + 1)ζ(R + 1)xR+1 (for details
see [81]).

Note further that this procedure also works, if x→ 0 in the complex plane,
provided that | arg(x)| ≤ φ with φ < π/2.

This implies that for r = 1 we obtain∑
n≥1

EHn ynx
n ∼ 1

2β
log

1

1− x/x0

and consequently

ynEHn ∼
x−n

0

2β

1

n
.

Since β = σ2/(2τ) and yn ∼ τ/(σ
√

2π)x−n
0 n−3/2, we get

EHn ∼
√

2π

σ

√
n

as proposed.
Finally, for r > 1 we have

∑
n≥1

EHr
n ynx

n ∼ r!ζ(r)

β(σ
√

2)r−1

(
1− x

x0

) r−1
2

which leads to

EHr
n ∼

2r!ζ(r)
√

2π

σr2(r−1)/2Γ ( r−1
2 )

nr/2.

In view of the duplication formula for the Gamma function this is equivalent
to (4.50).

Remark 4.38 With slightly more case it is also possible to derive a local
version of Theorem 4.29, that is, an asymptotic expansion for P{Hn = k} if
k is of order

√
n (see [80]).
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4.2.8 Depth-First Search

Aldous’ result on the normalised depth-first search process of Galton-Watson
trees (Theorem 4.7), saying that(

σ

2
√
n
Xn(2nt), 0 ≤ 1 ≤ t

)
d−→ (e(t), 0 ≤ t ≤ 1)

is a fundamental observation in the framework of Galton-Watson trees. It
implies convergence to the continuum random tree (Theorem 4.6) and also
proves that the normalised occupation measure μn converges to the occupation
measure of the Brownian excursion. Recall that Theorem 4.10 is a local version
of the latter observation.

Theorem 4.7 was first proved in the framework of the continuum random
tree [4]. One major step in Aldous’ method is to consider, for every fixed
integer k ≥ 1, random subtrees of Galton-Watson trees of size n that are
spanned by k random vertices and the root and to show that there is a proper
limiting object Rk.5 These limiting objects characterise then the limit of the
depth-first search process. Aldous shows that (up to a scaling factor 1/σ) all
Galton-Watson trees have the same limiting object Rk. Since the normalised
depth-first search process for planted plane trees (Φ(x) = 1/(2− x)) is known
to be the Brownian excursion, we obtain the same result for all Galton-Watson
trees. However, in order to check the existence of the limiting objects Rk one
has to invest several precise asymptotic properties of Galton-Watson trees,
in particular of the height distribution (compare with [4] and [132]). The
advantage of that approach is its universality, since it is not restricted to
Galton-Watson trees.

In what follows we indicate an alternative proof with the help of combina-
torial and analytic methods. As in the case of the profile we first prove finite
dimensional convergence and then tightness (compare with [92]).

Lemma 4.39. Let x(·) denote the depth-first search process of a rooted tree
and set

ak,m,n =
∑

|T |=n, x(m)=k

ω(T ) = yn P{Xn(m) = k}.

Then the generating function Ak(x, u) =
∑

m,n ak,m,nx
nuk is given by

Ak(x, u) = A(x, u)Φ1(x, u, 1)k−1, (4.61)

where

A(x, u) = xu
y(xu2)Φ(y(xu2))− y(x)Φ(y(x))

y(xu2)− y(x)

and

Φ1(x, u, v) = xuv
Φ(y(xu2))− Φ(y(xv2))

y(xu2)− y(xv2)
.

5 We do not give a precise definition of these objects. For detail we refer to [4]).
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Proof. Suppose that k = 1, that is, the depth-first search process passes the
root. Recall that a Galton-Watson tree can be described as a root with i ≥ 0
subtrees. Thus, there exists j with 0 ≤ j ≤ i such that the first j subtrees
have been already traversed but not the (j + 1)-st one. The corresponding
generating function is then given by

A1(x, u) = xu
∑
i≥0

φi

i∑
j=0

y(xu2)jy(x)i−j

= A(x, u).

If k > 1 then there exists a subtree of the root, in which the depth-first search
process passes a corresponding node at level k − 1. Hence, we get

Ak(x, u) = xu
∑
i≥0

φi

i−1∑
j=0

y(xu2)jAk−1(x, u)y(x)i−j−1

= Ak−1(x, u)Φ1(x, u, 1).

By induction this completes the proof of the lemma.

The explicit representation of Ak(x, u) leads to an asymptotic expansion
for ak,m,n

Proposition 4.40. Suppose that κ > 0 and 0 < t < 1 are fixed real numbers.
Then for k = �κ√n� and m = �2tn� we have, as n→∞,

ak,m,n

yn
∼ 1

4
√

2πn

σ3κ2

(t(1− t))3/2
exp

(
− σ2κ2

8t(1− t)

)
. (4.62)

Proof. By Cauchy’s formula

ak,m,n =
1

(2πi)2

∫
Γ

∫
Γ̃

Ak(x, u)
du

um+1

dx

xn+1
,

where Γ and Γ̃ a properly chosen contours around the origin. Here we use (as
in the proof of Proposition 4.21) Γ = γ ′ ∪ Γ ′, where

γ′ =
{
x = x0

(
1 +

s

n

)
: �(s) = −1, |�(s)| ≤ C log2 n

}
with an arbitrarily chosen fixed constant C > 0 and Γ ′ is a circular arc centred
at the origin and making Γ a closed curve. Similarly, Γ̃ = γ̃′ ∪ Γ̃ ′ with

γ̃′ =
{
u = 1 +

s1
m

: �(s1) = −1, |�(s1)| ≤ C̃ log2m
}

with a properly chosen constant C̃ and a circular arc Γ̃ ′ making Γ̃ a closed
curve.
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We will only concentrate on γ ′ resp. on γ̃′. The remaining parts of the
integral are negligible (similarly to the proof of Proposition 4.21).

For x ∈ γ′ and u ∈ γ̃′ we use the approximations

y(x) = τ − τ
√

2

σ

√
− s
n

+O

( |s|
n

)
,

y(xu2) = τ − τ
√

2

σ

√
− s
n
− 2s1
m

+O

( |s|
n

+
|s1|
m

)
,

A(x, u) = 2τ +O

(√
|s|
n

+

√
|s1|
m

)
,

Φ1(x, u, 1) = 1− σ√
2

(√
− s
n

+

√
− s
n
− 2s1
m

)
+O

( |s|
n

+
|s1|
m

)
.

We fix κ > 0 and 0 < t < 1 and set k = �κ√n� and m = �2tn�. Thus, we
obtain the integral approximation

1

(2πi)2

∫
γ′

∫
γ̃′
Ak(x, u)

dx

xn+1

du

um+1

∼ x−n
0

mn

1

(2πi)2

∫ −1+iC log2 n

−1−iC log2 n

∫ −1+iC̃ log2 m

−1−iC̃ log2 m

2τ exp

(
− σκ√

2

(
√
−s+

√
−s− 2n

m
s1

))
e−s−s1 ds1 ds

∼ x−n
0

mn

1

(2πi)2

∫ −1+i∞

−1−i∞

∫ −1+i∞

−1−i∞

2τ exp

(
− σκ√

2

(
√
−s+

√
−s− 1

t
s1

))
e−s−s1 ds1 ds.

By using the substitution s1 = w − ts, a proper shift of integration and by
Lemma 4.22 we can evaluate the double integral:

1

(2πi)2

∫ −1+i∞

−1−i∞

∫ −1+i∞

−1−i∞
exp

(
− σκ√

2

(
√
−s+

√
−s− 1

t
s1

))
e−s−s1 ds1 ds

=
1

(2πi)2

∫ −1+i∞

−1−i∞
exp

(
− σκ√

2

√
−s
)
e−s(1−t)

×
∫ −1+ts+i∞

−1+ts−i∞
exp

(
− σκ√

2t

√
−w
)
e−w dw ds

=
1

(2πi)2

∫ −1+i∞

−1−i∞
exp

(
− σκ√

2

√
−s
)
e−s(1−t)

×
∫ −1+i∞

−1−i∞
exp

(
− σκ√

2t

√
−w
)
e−w dw ds
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=
1

4π

σ2κ2

t1/2(1− t)3/2
exp

(
− σ2κ2

8(1− t) −
σ2κ2

8t

)
.

Hence, (4.62) follows.

Note that (4.62) is in accordance with the density of the one dimensional
density of 2

σ e(t) (compare with (4.3)). By inspecting the above proof it is
clear that all estimates are also uniform, if κ varies in a compact interval
(contained in the positive real line). Hence, we also get weak convergence for
every 0 < t < 1:

σ

2
√
n
Xn(2nt)

d−→ e(t).

Similarly one can work out the finite dimensional case. For example, set

bk1,m1,k2,m2,n =
∑

|T |=n, x(m1)=k1, x(m2)=k2

ω(T )

= ynP{Xn(m1) = k1, Xn(m2) = k2}.
Then we have

Bk1,k2(x, u1, u2) =
∑

m1,m2,n≥0

bk1,m1,k2,m2,nx
num1

1 um2
2

= A(x(u1u2)2, 1)A(x, u)Φ2(x, u1u2, u2)

×
min{k1,k2}−1∑

r=0

Φ1(x, u1u2, u2)k1−1−rΦ1(x, u2, 1)k2−1−rΦ1(x, u1u2, 1)r,

where

Φ2(x, u, v) = x
∑
i≥2

φi

∑
j1+j2+j3=i−2

y(xu2)j1y(xv2)j2y(x)j3 .

With the help of these explicit representations one obtains two dimensional
convergence for 0 < t1 < t2 < 1:(

σ

2
√
n
Xn(2nt1),

σ

2
√
n
Xn(2nt2)

)
d−→ (e(t1), e(t2)) .

The general case is even more involved (compare with [58, 92]).
Finally, with the help of Bk1,k2(x, u1, u2) it is also possible to prove tight-

ness (see [92]).

Proposition 4.41. Set

en(t) :=
σ

2
√
n
Xn(2nt).

Then there exist constants C,D > 0 such that for all s, t ∈ [0, 1] and ε > 0,

P{|en(s)− en(t)| ≥ ε} ≤ C√
|s− t|

exp

(
−D ε√

|s− t|

)
. (4.63)
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Hence it follows that

P{|en(s)− en(t)| ≥ ε} ≤ C |s− t|
α− 1

2

ε2α

for every α > 3/2. Thus, by [18, Theorem 12.3] the sequence of processes en(t)
is tight.

Proof. The proof of Proposition 4.41 uses the explicit representation for

C�(x, u1, u2) =
∑

|k1−k2|≥�

Bk1k2(x, u1, u2)

=
A(x(u1u2)2, 1)A(x, u2)Φ2(x, u1u2, u2)

(1 − Φ1(x, u1u2, u2)Φ1(x, u2, 1))(1 − Φ1(x, u1u2, 1))

×
(
Φ1(x, u1u2, u2)�

1− Φ1(x, u1u2, u2)
+

Φ1(x, u2, 1)�

1− Φ1(x, u2, 1)

)
.

Since um1
1 um2

2 = (u1u2)m1um2−m1
2 and we are interested in the dependence of

the difference d = m2−m1, it is appropriate to use the substitution u = u1u2

and to estimate the coefficient of xnum1ud
2.

For this purpose one uses Cauchy’s formula for each variable, where we
use the same kind of integration as in the proof of Proposition 4.40, that is
x ∈ Γ and u, u2 ∈ Γ ′. By using the local expansion of

Φ1(x, u, v) = 1− σ√
2

⎛⎝√1− xu
2

x0
+

√
1− xv

2

x0

⎞⎠+O

(∣∣∣∣1− xu2

x0

∣∣∣∣+ ∣∣∣∣1− xv2x0

∣∣∣∣)
one obtains for x ∈ Γ and u, u2 ∈ Γ ′ the bounds

|(1− Φ1(x, u, u2)Φ1(x, u2, 1))(1− Φ1(x, u, 1))(1 − Φ1(x, u, u2))| ≥ C1

m1

√
d
,

|(1− Φ1(x, u, u2)Φ1(x, u2, 1))(1− Φ1(x, u, 1))(1 − Φ1(x, u2, 1))| ≥ C1

m1

√
d
,

and
max{|Φ1(x, u, u2)| , |Φ1(x, u2, 1)|} ≤ e−C2

√
|u2|/d

for some constants C1, C2 > 0. Hence it follows that

[xnum1ud]C�(x, u/u2, u2) = O

(
x−n

0

m1

√
d

nm1d
e−C3�/

√
d

)
for some constant C3 > 0. Consequently

P{|Xn(m1)−Xn(m1 + d)| ≥ �} =
[xnum1ud

2]C�(x, u/u2, u2)

yn

= O
(√

n/de−C3�/
√

d
)
.
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This proves (4.63), if m1 = 2t1n and m2 = 2t2n are integers. However, it is
an easy exercise to extend this estimate for the interpolated process for all
0 < t1 < t2 < 1 (compare with the comments following Theorem 4.24). This
completes the proof of Proposition 4.41.

4.3 The Profile of Pólya Trees

We analyse next the profile of unlabelled rooted random trees, also called
Pólya trees. In Section 3.1.5 we have already shown that the analysis of this
kind of trees is quite similar to that of Galton-Watson trees. Moreover, the
shape of Pólya trees has the same asymptotic behaviour as that of Galton-
Watson trees. The height is of order

√
n and – this is the main focus of this

section – the profile Ln(k) can be approximated by the local time of Brownian
excursion, too, although the uniform probability model cannot be realised on
Pólya trees as Galton-Watson trees. (We follow Drmota and Gittenberger
[65].)

Theorem 4.42. Let Ln(k) denote the number of nodes at distance k to the
root in random Pólya trees of size n and l(t) the local time of a Brownian
excursion of duration 1. Then(

1√
n
Ln

(
t
√
n
)
, t ≥ 0

)
d−→
(
b
√
ρ

2
√

2
· l
(
b
√
ρ

2
√

2
· t
)
, t ≥ 0

)
in C[0,∞), as n→∞, where b ≈ 2.6811266 is the constant and ρ ≈ 0.3383219
the singularity appearing in equation (3.7).

The structure of the proof of Theorem 4.42 is very similar to that of Theo-
rem 4.10. Following Theorem 4.14 we prove convergence of finite dimensional
distributions and tightness. We start with the combinatorial setup that is
based on an involved recurrence; then we asymptotically solve this recurrence
which leads to the proof of weak convergence of the finite dimensional dis-
tributions. Finally, we check tightness according to the moment conditions of
Theorem 4.14.

We will also consider the height of Pólya trees in Section 4.3.5.

4.3.1 Combinatorial Setup

First we recall some facts on unlabelled rooted trees T . Let tn denote the
number of these trees of size n. Then the generating function

t(x) =
∑
n≥1

tnx
n

satisfies the functional equation
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t(x) = x exp

(
t(x) +

1

2
t(x2) +

1

3
t(x3) + · · ·

)
. (4.64)

It has radius of convergence ρ ≈ 0.3383219 and a local singular expansion of
the form t(x) = 1 − b(ρ − x)1/2 + c(ρ − x) + · · · , where b ≈ 2.6811266, and
c = b2/3 ≈ 2.3961466. Recall, too, that this singular expansion can be used
to obtain an asymptotic formula for tn (compare with (3.9)).

In order to compute the distribution of the number of nodes in some given
levels k1 < k2 < · · · < kd in a tree of size n we have to calculate the number
tk1,m1,k2,m2,···kd,md;n of trees of size n with mi nodes in level ki, i = 1, . . . , d
and normalise by tn. As in the case of Galton-Watson trees we introduce the
generating functions

tk1,k2,...,kd
(x, u1, . . . , ud) =

∑
m1,...,md,n

tk1,m1,k2,m2,···kd,md;n u
m1
1 um2

2 · · ·umd

d xn.

They can be recursively calculated. However, the procedure is more involved
than that of Galton-Watson trees.

Lemma 4.43. For d = 1 we have

t0(x, u) = ut(x) (4.65)

tk+1(x, u) = x exp

⎛⎝∑
i≥1

tk(xi, ui)

i

⎞⎠ , (k ≥ 0), (4.66)

and for d > 1 with integers 0 ≤ k1 < k2 < k3 < · · · < kd

t0,k2,...,kd
(x, u1, . . . , ud) = u1tk2,...,kd

(x, u2, . . . , ud) (4.67)

tk1+1,k2+1,...,kd+1(x, u1, . . . , ud) = x exp

⎛⎝∑
i≥1

tk1,k2,...,kd
(xi, ui

1, u
i
2, . . . , u

i
d)

i

⎞⎠ .
(4.68)

Proof. The proof is principally the same as that of Lemma 4.18. The only
difference is that one has to apply the multiset construction for ordinary
generating functions (compare with Section 2.1.1), now applied for several
variables, if we proceed from one level to the next.

There is, however, a slight difference to the Galton-Watson case. There we
could define a function Yk(x, u) (see (4.31)) so that

yk1,...,kd
(x, u1, . . . , ud)

= Yk1

(
x, u1Yk2−k−1

(
x, u2Yk3−k2(x, . . . , ud−1Ykd−kd−1

(x, uy(x)) · · · )
))
.

Such a representation is not present for Pólya trees. Therefore we have to be
more precise in the asymptotic analysis. Even the case d = 1 requires much
more care than in the Galton-Watson case.
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4.3.2 Asymptotic Analysis of the Main Recurrence

The asymptotic structure of tk(x, u) is very similar to that of yk(x, u) (in the
context of Galton-Watson trees).

Proposition 4.44. Let x = ρ
(
1 + s

n

)
, where �(s) = −1, u = eiτ/

√
n, and

k = �κ√n�. Moreover, assume that, as n → ∞, we have s = O
(
log2 n
)

whereas τ and κ are fixed. Then we have, as n→∞,

tk(x, u)− t(x) ∼ b2ρ

2
√
n
· iτ

√
−s exp

(
− 1

2κb
√−ρs
)

√
−s exp

(
1
2κb
√−ρs
)
− iτb

√
ρ

2 sinh
(

1
2κb
√−ρs
)

=
b
√

2ρ√
n
Ψκb

√
ρ/(2

√
2)

(
s,
iτb
√
ρ

2
√

2

)
. (4.69)

As in the case of Galton-Watson trees we introduce the quantity

wk(x, u) = tk(x, u)− t(x). (4.70)

Obviously, wk(x, 1) = 0. Hence, we expect that wk(x, u) → 0 as k → ∞, if u
is sufficiently close to 1 and x is in the analyticity range of t(x).

We start with a useful property of t(x).

Lemma 4.45. The generating function t(x) has the following properties:

1. For |x| ≤ ρ we have |t(x)| ≤ 1. Equality holds only for x = ρ.
2. Let x = ρ

(
1 + s

n

)
with �(s) = −1 and |s| ≤ C log2 n for some fixed C > 0.

Then there is a c > 0 such that

|t(x)| ≤ 1− c
√
|s|
n
.

Proof. The first statement follows from the fact that t(x) has only positive
coefficients (except t0 = 0), t(ρ) = 1 and there are no periodicities. The second
statement is an immediate consequence of the singular expansion (3.7) of t(x).

Next let us consider the derivative

γk(x, u) =
∂

∂u
tk(x, u).

Lemma 4.46. For |x| < ρ+ η and arg(x− ρ) = 0 (where η > 0 is sufficiently
small) the functions γk(x, 1) can be represented as

γk(x, 1) = Ck(x)t(x)k+1 , (4.71)

where Ck(x) are analytic and converge uniformly to an analytic limit function
C(x) (for |x| < ρ+ η and arg(x− ρ) = 0) with convergence rate

Ck(x) = C(x) +O(Lk),
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for some L with 0 < L < 1. Furthermore we have C(ρ) = 1
2 b

2ρ.
There also exist constants c1, c2, c3 > 0 with c3 <

π
2 such that

|γk(x, u)| = O(|t(x)|k) (4.72)

uniformly for |u| ≤ 1, k|u− 1| ≤ c1, |x− ρ| < c2 and | arg(x− ρ)| ≥ c3.

Proof. A tree that has nodes at level k must have a size larger than k. Thus
[xr]tk(x, u) does not depend on u for r ≤ k. Consequently, the lowest order
non-vanishing term in the power series expansion of γk(x) = γk(x, 1) is of
order k+ 1. The power series expansion of t(x) starts with x. Hence Ck(x) =
γk(x)t(x)−k−1 is analytic for |x| < ρ + η and arg(x − ρ) = 0. We will show
that the sequence (Ck(x))k≥0 has a uniform limit C(x) which has the required
properties.

Using the recurrence relation of tk(x, u) we get

γk+1(x, u) =
∂

∂u
x exp

⎛⎝∑
i≥1

tk(xi, ui)

i

⎞⎠
= x exp

⎛⎝∑
i≥1

tk(xi, ui)

i

⎞⎠∑
i≥1

∂

∂u
tk(xi, ui)ui−1

= tk+1(x, u)
∑
i≥1

γk(xi, ui)ui−1. (4.73)

Setting u = 1 this rewrites to

Ck+1(x)t(x)k+2 = Ck(x)t(x)k+2+t(x)
(
Ck(x2)t(x2)k+1 + Ck(x3)t(x3)k+1 + . . .

)
,

(4.74)
resp. to

Ck+1(x) =
∑
i≥1

Ck(xi)
t(xi)k+1

t(x)k+1
. (4.75)

Set

Lk := sup
|x|<ρ+η, arg(x−ρ) �=0

∑
i≥2

|t(xi)|k+1

|t(x)|k+1
.

If η > 0 is sufficiently small then

sup
|x|<ρ+η, arg(x−ρ) �=0

|t(xi)|
|t(x)| < 1

for all i ≥ 2 and

sup
|x|<ρ+η, arg(x−ρ) �=0

|t(xi)|
|t(x)| = O(L

i
)

for some L with 0 < L < 1. Consequently we also get
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Lk = O(Lk)

for some L with 0 < L < 1. Thus, if we use the notation

‖f‖ = sup
|x|<ρ+η, arg(x−ρ) �=0

|f(x)|

then (4.75) implies
‖Ck+1‖ ≤ ‖Ck‖(1 + Lk) (4.76)

and also
‖Ck+1 − Ck‖ ≤ ‖Ck‖Lk. (4.77)

Now (4.76) implies that the functions Ck(x) are uniformly bounded in Δ by

‖Ck‖ ≤ c0 :=
∏
�≥1

(1 + L�).

Furthermore, (4.77) implies that there exists a limit limk→∞ Ck(x) = C(x)
that is analytic for |x| < ρ+η, arg(x−ρ) = 0; and we have uniform exponential
convergence rate

‖Ck − C‖ ≤ c0
∑
�≥k

L� = O(Lk).

Hence, we get (4.71).
Finally, note that (for |x| ≤ ρ)∑

k≥0

γk(x, 1) =
∑
n≥1

ntnx
n.

However, if we use (4.71) we get uniformly for |x| < ρ+ η and arg(x− ρ) = 0∑
k≥0

γk(x, 1) =
∑
k≥0

(C(x) + Lk)t(x)k+1

= C(x)
t(x)

1 − t(x)
+O(1)

which leads to an asymptotic expansion of the n-th coefficient of the form

ntn ∼
C(ρ)

b
√
πρ
n−

1
2 ρ−n.

Note that here we have used the fact that C(x) is a continuous function
as the uniform limit of continuous functions Ck(x), where x = ρ is also a
point of continuity. By comparing this with the (known) expansion for tn ∼
1
2b
√
ρ/πn−3/2ρ−n we obtain C(ρ) = 1

2b
2ρ.

In order to obtain the upper bound (4.72) we set for � ≤ k

C� = sup |γ�(x, u)t(x)−�−1|,
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where the supremum is over (x, u) with |u| ≤ 1, k|u − 1| ≤ c1, |x − ρ| < c2
and | arg(x− ρ)| ≥ c3, where the constants c1, c2, c3 > 0 (with c3 <

π
2 ) will be

chosen in the sequel. From (4.73) we get (as above) the inequality

C�+1 ≤ C� e
c1C�/k (1 +O(L�)), (4.78)

where we have implicitly used the inequality

|t�+1| ≤ |t(x)| exp

⎛⎝∑
i≥1

|w�(x
i, ui)|
i

⎞⎠
≤ |t(x)|eC�|u−1|+O(L�).

Set
c0 =
∏
j≥0

(1 +O(Lj))

and choose c1 > 0 such that e2c0c1 ≤ 2. We also choose c2 ≤ η and 0 < c3 <
π
2

such that |t(x)| ≤ 1 for |x − ρ| < c2 and | arg(x − ρ)| ≥ c3. Now if k > 0 is
fixed, it follows by induction that if |u− 1| ≤ c1/k

C� ≤
∏
j<�

(1 +O(Lj)) · e2c0c1�/k ≤ 2c0 (� ≤ k).

This completes the proof of the lemma.

The representation (4.71) from Lemma 4.46 gives us a first indication of
the behaviour of wk(x, u) for u close to 1. We expect that

wk(x, u) ≈ (u − 1)γk(x, 1) ∼ (u − 1)C(x)t(x)k . (4.79)

This actually holds (up to constants) in a proper range for u and x, although
it is only partially true in the range of interest (see Proposition 4.44).

In order to make this more precise we derive estimates for the second
derivative

γ
[2]
k (x, u) =

∂2

∂u2
tk(x, u).

Lemma 4.47. Suppose that |x| ≤ ρ − η for some η > 0 and |u| ≤ 1. Then
uniformly

γ
[2]
k (x, u) = O(t(|x|)k+1). (4.80)

There also exist constants c1, c2, c3 > 0 with c3 <
π
2 such that

γ
[2]
k (x, u) = O(k |t(x)|k+1) (4.81)

uniformly for |u| ≤ 1, k|u− 1| ≤ c1, |x− ρ| < c2 and | arg(x− ρ)| ≥ c3.
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Proof. By definition we have the recurrence

γ
[2]
k+1(x, u) = tk+1(x, u)

∑
i≥1

iγ
[2]
k (xi, ui)u2i−2

+ tk+1(x, u)

⎛⎝∑
i≥1

γk(xi, ui)ui−1

⎞⎠2

(4.82)

+ tk+1(x, u)
∑
i≥2

(i− 1)γk(xi, ui)ui−2

with initial condition γ
[2]
0 (x) = 0.

First suppose that |x| ≤ ρ− η for some η > 0 and |u| ≤ 1. Then we have

|γ[2]
k (x, u)| ≤ γ

[2]
k (|x|, 1). Thus, in this case it is sufficient to consider non-

negative real x ≤ ρ − η. We proceed by induction. Suppose that we already

know that γ
[2]
k (x) = γ

[2]
k (x, 1) ≤ Dkt(x)k+1 (where D0 = 0). Then we get from

(4.82) and the already known bound γk(x, 1) ≤ Ct(x)k the upper bound

γ
[2]
k+1(x) ≤ Dkt(x)k+2 +Dkt(x)k+2

∑
i≥2

i
t(xi)k+1

t(x)k+1

+ C2t(x)2k−1 + Ct(x)k+2
∑
i≥2

(i− 1)
t(xi)k+1

t(x)k+1

≤ t(x)k+2
(
Dk(1 +O(Lk)) + C2t(ρ− η)k +O(Lk)

)
.

Consequently we can set

Dk+1 = Dk(1 +O(Lk)) + C2t(ρ− η)k +O(Lk)

and obtain that Dk = O (1) as k →∞ which proves (4.80).
Next set (for � ≤ k)

D� = sup
∣∣∣γ[2]

� (x, u)t(x)−�−1
∣∣∣ ,

where the supremum is taken over |u| ≤ 1, k|u − 1| ≤ c1, |x − ρ| < c2 and
| arg(x − ρ)| ≥ c3 and where c1, c2, c3 > 0 are chosen as in the proof of
Lemma 4.46. By the same reasoning as in the proof of Lemma 4.46, where we
use the already proved bound |γ�(x, u) ≤ C|t(x)|�+1 we obtain

D�+1 ≤ D� e
c1C/k(1 +O(L�)) + C2 ec1C/k +O(L�),

that is, we have
D�+1 ≤ α�D� + β�

with α� = ec1C/k(1 +O(L�)) and β� = C2 ec1C/k +O(L�). Hence we get
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Dk ≤
k−1∑
j=0

βj

k−1∏
i=j+1

αi

≤ k max
j
βj e

c1C
∏
�≥0

(1 +O(L�))

= O(k).

This completes the proof of (4.81).

Using the estimates for γk(x, u) and γ
[2]
k (x, u) we derive the following rep-

resentations (4.83) for wk and Σk(x, u), where

Σk(x, u) =
∑
i≥2

wk(xi, ui)

i
.

Lemma 4.48. There exist c1, c2, c3 > 0 with c3 <
π
2 such that

wk(x, u) = Ck(x)(u − 1)t(x)k+1 (1 +O(k|u− 1|)) (4.83)

uniformly for |u| ≤ 1, k|u− 1| ≤ c1, |x− ρ| < c2 and | arg(x− ρ)| ≥ c2, where
Ck(x) = γk(x, 1)/t(x)k+1 is given in Lemma 4.46.

Furthermore we have for |x| ≤ ρ+ η (for some η > 0) and |u| ≤ 1

Σk(x, u) = C̃k(x)(u − 1)t(x2)k+1 +O
(
|u− 1|2t(|x|2)k

)
, (4.84)

where the analytic functions C̃k(x) are given by

C̃k(x) =
∑
i≥2

Ck(xi)

(
t(xi)

t(x2)

)k+1

. (4.85)

They have a uniform limit C̃(x) with convergence rate

C̃k(x) = C̃(x) +O(Lk)

for some constant L with 0 < L < 1.

Proof. The first relation (4.83) follows from Lemma 4.46, Lemma 4.47 and
Taylor’s theorem.

In order to prove (4.84) we first note that |xi| ≤ ρ − η for i ≥ 2 and
|x| ≤ ρ+ η (if η > 0 is sufficiently small). Hence, by a second use of Taylor’s
theorem we get uniformly

wk(xi, ui) = Ck(xi)(ui − 1)t(xi)k+1 +O
(
|ui − 1|2t(|xi|)k+1

)
and consequently
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Σk(x, u) =
∑
i≥2

1

i
Ck(xi)(ui − 1)t(xi)k+1 +O

(
|u− 1|2t(|x|2)k

)
= (u− 1)C̃k(x)t(x2)k+1 +O

(
|u− 1|2t(|x|2)k

)
.

Here we have used the property that the sum

∑
i≥2

Ck(xi)
ui − 1

i(u − 1)

t(xi)k+1

t(x2)k+1

represents an analytic function in x and u. Finally, since Ck(x) = C(x) +
O(Lk), it also follows that C̃k(x) has a limit C̃(x) and the same order of
convergence.

With these auxiliary results we are able to get a precise result for wk(x, u).

Lemma 4.49. There exists positive constants c1, c2, c3 with c3 <
π
2 such that

wk(x, u) =
Ck(x)w0(x, u) t(x)k

1− 1
2Ck(x)w0(x, u)1−t(x)k

1−t(x) +O (|u− 1|)

as long as |u| ≤ 1, k|u− 1| ≤ c1, |x− ρ| ≤ c2, and | arg(x− ρ)| ≥ c3.

Proof. Since Σk(x, u) = O(wk(x, u)Lk) = O(wk(x, u)) (see Lemma 4.48), we
observe that wk(x, u) satisfies the recurrence relation (we omit the arguments
now)

wk+1 = t
(
ewk+Σk − 1

)
= t

(
wk +

w2
k

2
+Σk +O(w3

k) +O(Σ2
k)

)
= twk

(
1 +

wk

2
+O
(
w2

k

)
+O (Σk)

)(
1 +

Σk

wk

)
.

Equivalently we have

t

wk+1
+

tΣk

wkwk+1
=

1

wk

(
1− wk

2
+O
(
w2

k

)
+ O (Σk)

)
=

1

wk
− 1

2
+O (wk) +O

(
Σk

wk

)
,

and consequently

tk+1

wk+1
=
tk

wk
− Σkt

k+1

wkwk+1
− 1

2
tk +O

(
wkt

k
)

+O

(
Σkt

k

wk

)
.

Thus we get
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tk

wk
=

1

w0
−

k−1∑
�=0

Σ�

w�w�+1
t�+1 − 1

2

1− tk
1− t +O

(
1− Lk

1− L

)
+O

(
w0

1− t2k

1− t2
)
.

Now we use again Lemma 4.48 to obtain

w0

k−1∑
�=0

Σ�

w�w�+1
t�+1 =

k−1∑
�=0

C̃�(x)t(x2)�+1 +O
(
|u− 1|t(|x|2)�

)
C�(x)C�+1(x)t(x)�+1(1 +O(�|u − 1|))

=

k−1∑
�=0

C̃�(x)

C�(x)C�+1(x)

t(x2)�+1

t(x)�+1
+O(|u − 1|)

= ck(x) +O(u − 1)

with a proper function ck(x). Observe, too, that w0
1−t2k

1−t2 = O(1), if k|u−1| ≤
c1. Hence we obtain the representation

wk =
w0t

k

1− ck(x)− w0

2
1−tk

1−t +O (|u− 1|)
. (4.86)

Thus, it remains to verify that 1 − ck(x) = 1/Ck(x). By using (4.75) and
(4.85) it follows that

C̃k(x) =
∑
i≥2

Ck(xi)

(
t(xi)

t(x2)

)k+1

= (Ck+1(x)− Ck(x))

(
t(x)

t(x2)

)k+1

(4.87)

and consequently by telescoping

ck(x) =

k−1∑
�=0

C�+1(x)− C�(x)

C�(x)C�+1(x)
=

1

C0(x)
− 1

Ck(x)
= 1− 1

Ck(x)
.

Alternatively we can compare (4.86) with (4.83) for u → 1 which also shows
1− ck(x) = 1/Ck(x). This completes the proof of the lemma.

The proof of Proposition 4.44 is now immediate. We substitute x =
ρ
(
1 + s

n

)
(where �(s) = −1), u = eiτ/

√
n and set k = κ

√
n. We also use

the local expansion t(x) = 1− b√ρ
√

1− x/ρ+O(|x − ρ|). That leads to

t(x)k = exp
(
−κb√−ρs

)(
1 +O

(
κ√
n

))
.

Finally, since the functions Ck(x) are continuous and uniformly convergent to
C(x), they are also uniformly continuous and, thus, Ck(x) ∼ C(ρ) = 1

2b
2ρ.

Altogether this leads to
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w0(x, u) t(x)k

1
Ck(x) −

w0(x,u)
2

1−t(x)k

1−t(x) +O (|u− 1|)

=
Ck(x)(u − 1)(1− t(x)) t(x)k+1

1− t(x) − Ck(x)w0(x,u)
2 (1− t(x)k) +O (|u− 1| · |1− t(x)|)

∼ b2ρ

2
√
n
· iτ

√
−s exp

(
− 1

2κb
√−ρs
)

√
−s exp

(
1
2κb
√−ρs
)
− iτb

√
ρ

2 sinh
(

1
2κb
√−ρs
)

as proposed.

4.3.3 Finite Dimensional Limiting Distributions

We will use the results of the previous section to prove finite dimensional
convergence. We only discuss the cases d = 1 and d = 2 in detail. As above,
(l(t), t ≥ 0) denotes the local time of the Brownian excursion.

Proposition 4.50. Let κ > 0 and τ be given with |κτ | ≤ c. Then we have

lim
n→∞

Ee
iτ 1√

n
Ln(κ

√
n)

= E e
iτ

b
√

ρ

2
√

2
l(

b
√

ρ

2
√

2
κ)
, (4.88)

and consequently

1√
n
Ln(κ

√
n)

d−→ b
√
ρ

2
√

2
· l
(
b
√
ρ

2
√

2
κ

)
.

Proof. By definition the generating function tk(x, u) can be interpreted as

tk(x, u) =
∑
n≥1

tn EuLn(k) xn

and consequently

EeiτLn(k)/
√

n =
1

tn
[xn]tk

(
x, eiτ/

√
n
)
.

In order to get asymptotics for this characteristic function we will use the
local representation for tk(x, u) of Proposition 4.44 and the same contour
integration as in the proof of Proposition 4.21.

Let Γ = γ′ ∪ Γ ′ consist of a line

γ′ =
{
x = ρ
(

1 +
s

n

)
: �(s) = −1, |�(s)| ≤ C log2 n

}
with an arbitrarily chosen fixed constant C > 0 and of Γ ′, a circular arc
centred at the origin and making Γ a closed curve. Then
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EeiτLn(k)/
√

n =
1

tn

1

2πi

∫
Γ

tk

(
x, eiτ/

√
n
) dx

xn+1
(4.89)

= 1 +
1

tn

1

2πi

∫
Γ

wk

(
x, eiτ/

√
n
) dx

xn+1
. (4.90)

The contribution of Γ ′ is exponentially small, since for x ∈ Γ ′ we have

|x−n−1| ∼ ρ−ne−C log2 n, whereas
∣∣∣yk

(
x, eiτ/

√
n
)∣∣∣ is bounded.

If x ∈ γ′ then the local expansion (4.69) is valid for a proper range for
k. In particular, we replace k by �κ√n�, u by eiτ/

√
n and x by x0

(
1 + s

n

)
. If

we assume that κ > 0 is given then the assumptions of Proposition 4.44 are
satisfied, if κτ ≤ c. Finally, by applying the approximation x−n = x−n

0 e−s(1+
O(|s|2/n)) we observe that the integral

1

2πi

∫
γ′
wk

(
x, eiτ/

√
n
) dx

xn+1

is approximated by

b
√
ρ ρ−n

2
√
π n3/2

√
2√
π

1+i∞∫
−1−i∞

iτb
2

√−ρs exp(− 1
2κb
√−ρs )

√
−2s exp( 1

2κb
√−ρs )− iτb

√
ρ√

2
sinh
(

1
2τb
√−ρs
) e−s ds.

Since tn ∼ 1
2b
√
ρ/πρ−nn−3/2 we thus obtain (4.88) for τ ≤ c/κ. But this

is sufficient to prove weak convergence (compare with the proof of Proposi-
tion 4.21).

The corresponding property in the two dimensional case is the following
one.

Proposition 4.51. Let κ2 > κ1 > 0 and τ1, τ2 be given with |κ2τ1| ≤ c and
|κ2τ2| ≤ c. Then we have

lim
n→∞

E e
iτ1

1√
n

Ln(κ1
√

n)+iτ2
1√
n

Ln(κ2
√

n)
= E e

iτ1
b
√

ρ

2
√

2
l(

b
√

ρ

2
√

2
κ1)+iτ2

b
√

ρ

2
√

2
l(

b
√

ρ

2
√

2
κ2)

(4.91)
and consequently(

1√
n
Ln(κ1

√
n),

1√
n
Ln(κ2

√
n)

)
d−→
(
b
√
ρ

2
√

2
· l
(
b
√
ρ

2
√

2
κ1

)
,
b
√
ρ

2
√

2
· l
(
b
√
ρ

2
√

2
κ1

))
.

Proof. In order to prove two dimensional convergence we need precise asymp-
totic properties of tk1,k2(x, u1, u2) for k1 = κ1

√
n, k2 = κ2

√
n, u1 = eiτ1/

√
n

and u2 = eiτ2/
√

n. Similarly to the above we define

wk1,k2(x, u1, u2) = tk1,k2(x, u1, u2)− t(x)

so that wk1,k2(x, 1, 1) = 0. We further have wk1,k2(x, u1, 1) = wk1(x, u1) and
wk1,k2(x, 1, u2) = wk2(x, u2). Thus, the first derivatives are given by
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∂

∂u1
wk1,k2(x, u1, u2)

]
u1=u2=1

= γk1(x, 1),[
∂

∂u2
wk1,k2(x, u1, u2)

]
u1=u2=1

= γk2(x, 1).

It is also possible to get bounds for the second derivatives of the form
O(k2t(x)k1 ), if k1|u1− 1| ≤ c, k2|u2− 1| ≤ c, |x− ρ| < c, and | arg(x− ρ)| ≥ c
. Hence, we can approximate wk1,k2(x, u1, u2) by

wk1,k2(x, u1, u2) = Ck1(x)(u1 − 1)t(x)k1+1 + Ck2(x)(u2 − 1)t(x)k2+1 (4.92)

+O
(
k2t(x)k1 (|u1 − 1|2 + |u2 − 1|2)

)
.

Similarly (and even more easily) we obtain a representation for

Σk1,k2(x, u1, u2) =
∑
i≥2

wk1,k2(xi, ui
1, u

i
2)

i

= C̃k1 (x)(u1 − 1)t(x2)k1+1 + C̃k2(x)(u2 − 1)t(x2)k2+1

+O
(
t(|x|2)k1 |u1 − 1|2 + t(|x|2)k2 |u2 − 1|2)

)
. (4.93)

Since k2−k1 ∼ (κ2−κ1)
√
n and t(x2) < 1 for |x| ≤ ρ+η, the term t(x2)k2+1 is

significantly smaller than t(x2)k1+1. Thus, in what follows it will be sufficient
to consider just the first term C̃k1(x)(u1 − 1)t(x2)k1+1.

We also assume that u1 = eiτ1/
√

n and u2 = eiτ2/
√

n, that is, u1 − 1 and
u2 − 1 are (asymptotically) proportional. Since we have for x = ρ(1 + s/n)

t(x)k2−k1 ∼ exp
(
−(κ2 − κ1)b

√−ρs
)

and since we can shift the line �(s) = −1 of integration to any parallel line
�(s) = σ0 with σ0 < 0, we can always assure that the leading terms of wk1,k2 ,
that is, Ck1 (x)(u1 − 1)t(x)k1+1 and Ck2 (x)(u2 − 1)t(x)k2+1, do not cancel to
lower order terms.

By using the same reasoning as in the proof of Lemma 4.49 we get the
representation

wk1,k2 =
w0,k2−k1t

k1

1− fk1 −
w0,k2−k1

2
1−tk1

1−t + O(|u1 − 1|+ |u2 − 1|)
,

where

fk1 = fk1(x, u1, u2)

= w0,k2−k1(x, u1, u2)

k1−1∑
�=0

Σ�,k2−k1+�(x, u1, u2) t(x)�+1

w�,k2−k1+�(x, u1, u2)w�+1,k2−k1+�+1(x, u1, u2)
.

Note that
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w0,k2−k1 = u1tk2−k1(x, u2)− t(x)

= (u1 − 1)t(x) + u1wk2−k1(x, u2)

= U +W,

where U and W abbreviate U = (u1 − 1)t(x) and W = u1wk2−k1(x, u2). By
the above assumption we can assume that |W | < 1

2 |U | so that there is no
cancellation.

Next by (4.92) and Lemma 4.49 it follows that w�,k2−k1+� can be repre-
sented by

w�,k2−k1+� = (C�(x)U +W ) t(x)� (1 +O(�|u1 − 1|+ (�+ k2 − k1)|u2 − 1|)) .

Hence, fk can be approximated by (for simplicity we omit the error terms)

fk1 ∼ U(U +W )

k1−1∑
�=0

C̃�(x) (t(x2)/t(x))�+1

(C�(x)U +W )(C�+1(x)U +W )

= (U +W )

k1−1∑
�=0

(C�+1(x)U +W )− (C�(x)U +W )

(C�(x)U +W )(C�+1(x)U +W )

= (U +W )

(
1

U +W
− 1

CkU +W

)
= 1− U +W

CkU +W
,

where we have used the formula (4.87) and telescoping. Consequently, it fol-
lows that

wk1,k2 ∼
(U +W )tk1

U+W
CkU+W − U+W

2
1−tk1

1−t

=
(CkU +W )tk1

1− CkU+W
2

1−tk1

1−t

.

Now if we use the approximations

Ck(x) ∼ b2ρ

2
,

U = t(u1 − 1) ∼ iτ1√
n
,

W = u1wk2−k1(x, u2) ∼ b
√

2ρ√
n
Ψ (κ2−κ1)b

√
ρ

2
√

2

(
s,
iτ2b

√
ρ

2
√

2

)
,

tk1 ∼ exp

(
−1

2
κ1b
√−ρs
)
,

1− t ∼ b√ρ
√
s

n
,
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we finally get

wk1,k2 ∼
b
√

2ρ√
n
Ψκ1b

√
ρ

2
√

2

(
s,
iτ1b

√
ρ

2
√

2
+ Ψ (κ2−κ1)b

√
ρ

2
√

2

(
s,
iτ2b

√
ρ

2
√

2

))
.

(Recall, that Ψκ(s, t) is defined in (4.14).)
Using this approximation it follows that the characteristic function of the

random vector
(

1√
n
Ln(k1), 1√

n
Ln(k2)
)

where k1 = �κ1
√
n� and k2 = �κ2

√
n�

is asymptotically given by

E eit1Ln(k1)/
√

n+it2Ln(k2)/
√

n

=
1

tn
[xn]tk1,k2

(
x, eit1/

√
n, eit2/

√
n
)

= 1 +
1

tn

1

2πi

∫
Γ

wk1,k2

(
x, eit1/

√
n, eit2/

√
n
) dx

xn+1

= 1 +

√
2

i
√
π

∫ σ0+i∞

σ0−i∞
Ψκ1b

√
ρ

2
√

2

(
s,
iτ1b

√
ρ

2
√

2
+ Ψ (κ2−κ1)b

√
ρ

2
√

2

(
s,
iτ2b

√
ρ

2
√

2

))
e−s ds

+ o(1).

This completes the proof of the two dimensional case.

The general finite dimensional case now follows from an iterative use of
the above techniques.

4.3.4 Tightness

In this section we will show that the sequence of random variables ln(t) =
n−1/2Ln(t

√
n), t ≥ 0 is tight in C[0,∞). As in the case of Galton-Watson trees

it is sufficient to prove the following property (compare with Theorem 4.24).

Theorem 4.52. There exists a constant C > 0 such that

E (Ln(k)− Ln(k + h))
4 ≤ C h2n (4.94)

holds for all non-negative integers n, k, h.

The fourth moment in the above equation can be expressed as the coeffi-
cient of a suitable generating function. We have

E (Ln(k)− Ln(k + h))4

=
1

tn
[xn]

[(
∂

∂u
+ 7

∂2

∂u2
+ 6

∂3

∂u3
+
∂4

∂u4

)
tk,k+h

(
x, u,

1

u

)]
u=1

where tk,k+h(x, u1, u2) is recursively given in Lemma 4.43. Thus, (4.94) is
equivalent to
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[xn]

[(
∂

∂u
+ 7

∂2

∂u2
+ 6

∂3

∂u3
+
∂4

∂u4

)
tk,k+h

(
x, u,

1

u

)]
u=1

≤ C h2

√
n
ρ−n.

(4.95)
Hence, it is sufficient to show that[(

∂

∂u
+ 7

∂2

∂u2
+ 6

∂3

∂u3
+
∂4

∂u4

)
tk,k+h

(
x, u,

1

u

)]
u=1

= O

(
h2

1− |t(x)|

)
(4.96)

= O

(
h2√

|1− x/ρ|

)

for x ∈ Δ and h ≥ 1. Recall that we have 1− |t(x)| ≥ c
√
|1− x/ρ| for x ∈ Δ

(for some constant c > 0).
For convenience we use the notation6

γ
[j]
k (x) =

[
∂jtk(x, u)

∂uj

]
u=1

and γ
[j]
k,h(x) =

[
∂jtk,k+h

(
x, u, 1

u

)
∂uj

]
u=1

.

The main part of the proof of Theorem 4.52 is to provide upper bounds for
these derivatives. We have already derived upper bounds for γ [1](x) and γ[2](x)
(compare with Lemma 4.46 and Lemma 4.47). However, we have to be more
precise. On the other hand we use the convexity bound |t(x)| ≤ t(|x|) ≤ |x/ρ|
for |x| ≤ ρ in order to simplify the calculations.

Lemma 4.53. We have

γ
[1]
k (x) =

{
O (1) uniformly for x ∈ Δ,
O
(
|x/ρ|k
)

uniformly for |x| ≤ ρ, (4.97)

and

γ
[1]
k,h(x) =

{
O
(

h
k+h

)
uniformly for x ∈ Δ,

O
(
|x/ρ|k
)

uniformly for |x| ≤ ρ,
(4.98)

where L is constant with 0 < L < 1.

Proof. We already know that γ
[1]
k (x) = Ck(x)t(x)k , where Ck(x) = O (1) and

|t(x)| ≤ 1 for x ∈ Δ (see Lemma 4.46). By convexity we also have |t(x)| ≤ |x/ρ|
for |x| ≤ ρ. Hence, we obtain γ

[1]
k (x) = O

(
|x/ρ|k
)

for |x| ≤ ρ.
The functions γ

[1]
k,h(x) are given by the recurrence

γ
[1]
k+1,h(x) = t(x)

∑
i≥1

γ
[1]
k,h(xi)

6 In Section 4.3.3 we already used the notation γ(x, u) for the first derivative and
γ[2](x, u) for the second derivative. There will be no confusion, the only difference
is that we now always have u = 1.
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with initial value γ
[1]
0,h(x) = t(x)− γh(x). Hence, the representation γ

[1]
k,h(x) =

γ
[1]
k (x) − γ[1]

h+k(x) follows by induction. Since γ
[1]
k (x) = (C(x) + O(Lk))t(x)k ,

we thus get that

γ
[1]
k,h(x) = O

(
sup
x∈Δ

|t(x)k(1− t(x)h)|+ Lk

)
.

However, it is an easy exercise to show that

sup
x∈Δ

|t(x)k(1− t(x)h)| = O

(
h

k + h

)
. (4.99)

For this purpose observe that if x ∈ Δ then we either have |t(x)− 1| ≤ 1 and
|t(x)| ≤ 1, or |t(x)| ≤ 1− η for some η > 0. In the second case we surely have

|t(x)k(1 − t(x)h)| ≤ 2(1− η)k = O
(
Lk
)
.

For the first case we set t = 1− ρeiφ and observe that∣∣1− (1 − ρeiφ)h
∣∣ ≤ (1 + ρ)h − 1.

Hence, if k ≥ 3h we thus obtain that

|t(x)k(1− t(x)h)| ≤ max
0≤ρ≤1

(1− ρ)k
(
(1 + ρ)h − 1

)
≤ h

k − h ≤
2h

k + h
.

If k < 3h,we obviously have

|t(x)k(1− t(x)h)| ≤ 2 ≤ 4h

k + h

which completes the proof of (4.99). Of course, we also have Lk = O
(

h
h+k

)
.

This completes the proof of the upper bound of γ
[1]
k,h(x) for x ∈ Δ.

Finally, the upper bound γ
[1]
k,h(x) = O

(
|x/ρ|k
)

follows from (4.97).

Lemma 4.54. We have

γ
[2]
k (x) =

{
O
(

min
{
k, 1

1−|t(x)|

})
uniformly for x ∈ Δ,

O
(
|x/ρ|k
)

uniformly for |x| ≤ ρ− η,
(4.100)

and

γ
[2]
k,h(x) =

{
O
(

min
{
h, 1

1−|t(x)|

})
uniformly for x ∈ Δ,

O
(
|x/ρ|k
)

uniformly for |x| ≤ ρ− η,
(4.101)

for every η > 0.
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Proof. The bound γ
[2]
k (x) = O(|x/ρ|k) (for |x| ≤ ρ − η) and the bound

γ
[2]
k (x) = O(k) follow from Lemma 4.47. In order to complete the analysis

for γ
[2]
k (x) we recall the recurrence

γ
[2]
k+1(x) = t(x)

∑
i≥1

iγ
[2]
k (xi) + t(x)

⎛⎝∑
i≥1

γ
[1]
k (xi)

⎞⎠2

+ t(x)
∑
i≥2

(i− 1)γ
[1]
k (xi)

(4.102)
that we rewrite to

γ
[2]
k+1(x) = t(x)γ

[2]
k (x) + bk(x),

where

bk(x) = t(x)
∑
i≥2

iγ
[2]
k (xi) + t(x)

⎛⎝∑
i≥1

γ
[1]
k (xi)

⎞⎠2

+ t(x)
∑
i≥2

(i− 1)γ
[1]
k (xi).

Since γ
[2]
0 (x) = 0, the solution of this recurrence can be written as

γ
[2]
k (x) = bk−1(x) + t(x)bk−2(x) + · · ·+ t(x)k−1b0(x).

Hence bk(x) = O (1) uniformly for x ∈ Δ and consequently

γ
[2]
k (x) = O

⎛⎝k−1∑
j=0

|t(x)|j
⎞⎠ = O

(
1

1− |t(x)|

)
.

This completes the proof of (4.100).

The recurrence for γ
[2]
h,k(x) is similar to that of γ

[2]
k (x):

γ
[2]
k+1,h(x) = t(x)

∑
i≥1

iγ
[2]
k,h(xi) + t(x)

⎛⎝∑
i≥1

γ
[1]
k,h(xi)

⎞⎠2

+ t(x)
∑
i≥2

(i− 1)γ
[1]
k,h(xi)

(4.103)

with initial value γ
[2]
0,h(x) = γ

[2]
h (x). We again use induction. Assume that we

already know that |γ [2]
k,h(x)| ≤ Dk,h|x/ρ|k for |x| ≤ ρ−η and for some constant

Dk,h. By (4.101) we can set D0,h = Dh which is bounded as h→∞. We also

assume that |γ[1]
k,h(x)| ≤ C|x/ρ|k for |x| ≤ ρ− η. Then by (4.103) we get

|γ[2]
k+1,h(x)| ≤ Dk,h|x/ρ|k+1 +Dk,h|x/ρ|

2|x|2k/ρk

(1− |x|k)2

+ C2|x/ρ|
( |x/ρ|k

1− |x|k
)2

+ C|x/ρ| 2|x|2k/ρk

(1− |x|k)2
.

Thus, we can set
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Dk+1,h = Dk,h

(
1 +

2(ρ− η)k

(1− ρk)2

)
+ C2 (ρ− η)k

(1− ρk)2
+ C

2(ρ− η)k

(1 − ρk)2

which shows that the constants Dk,h are uniformly bounded. Consequently

γ
[1]
k,h(x) = O

(
|x/ρ|k
)

for |x| ≤ ρ− η.
Next we assume that |γ [2]

k,h(x)| ≤ D̄k,h for x ∈ Δ. We already know that

|γ[1]
k,h(x)| ≤ C h

h+k for x ∈ Δ. Hence,

|γ[2]
k+1,h(x)| ≤ D̄k,h +Dk,h

∑
i≥2

i|xi/ρ|k

+ C2

⎛⎝ h

k + h
+
∑
i≥2

|xi/ρ|k
⎞⎠2

+ C
∑
i≥2

(i− 1)|xi/ρ|k

≤ D̄k,h + 8Dk,h(ρ+ η)2k/ρk

+ C2

(
h

k + h
+ 2(ρ+ η)2k/ρk

)2

+ 4C(ρ+ η)2k/ρk.

Thus, we can set

D̄k+1,h = D̄k,h + 8Dk,h(ρ+ η)2k/ρk + C2

(
h

k + h
+ 2(ρ+ η)2k/ρk

)2

+ 4C(ρ+ η)2k/ρk

with initial value D̄0,h = D̄h = O (h) and obtain a uniform upper bound of
the form

D̄k,h = O (h) .

Consequently γ
[2]
k,h(x) = O (h) for x ∈ Δ.

Thus, in order to complete the proof of (4.101) it remains to prove

γ
[2]
k,h(x) = O (1/(1− |t(x)|)) for x ∈ Δ. Similarly to the above we represent

γ
[2]
k,h(x) as

γ
[2]
k,h(x) = γ

[2]
0,h(x) + ck−1,h(x) + t(x)ck−2,h(x) + · · ·+ t(x)k−1c0,h(x), (4.104)

where

cj,h(x) = t(x)
∑
i≥2

iγ
[2]
j,h(xi) + t(x)

⎛⎝∑
i≥1

γ
[1]
j,h(xi)

⎞⎠2

+ t(x)
∑
i≥2

(i− 1)γ
[1]
j,h(xi).

Observe that there exists η > 0 such that |xi| ≤ ρ − η for i ≥ 2 and x ∈ Δ.

Hence it follows that cj,h(x) = O (1) for x ∈ Δ. Since γ
[2]
0,h(x) = γ

[2]
h (x) =

O (1/(1− |t(x)|)), we consequently get

γ
[2]
k,h(x) = γ

[2]
h (x) +O

(
1

1− |t(x)|

)
= O

(
1

1− |t(x)|

)
.
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Remark 4.55 Note that the estimates of Lemma 4.54 already prove that

E (Ln(k)− Ln(k + h))2 = O
(
h
√
n
)
.

Unfortunately, this estimate is not sufficient to prove tightness. We have to
deal with the 4-th moments.

Before we start with bounds for γ
[3]
k (x) and γ

[4]
k (x) we need an auxiliary

bound.

Lemma 4.56. We have uniformly for x ∈ Δ∑
k≥0

|γ[1]
k,h(x)γ

[2]
k,h(x)| = O

(
h2
)
. (4.105)

Proof. We use the representation (4.104), where we can approximate cj,h(x)
by

cj,h(x) = t(x)γ
[1]
j,h(x)2 +O

(
Lj
)

= O

(
h2

(k + h)2

)
uniformly for x ∈ Δ with some constant L that satisfies 0 < L < 1. Further-
more, we use the approximation

γ
[1]
k,h(x) = C(x)t(x)k(1− t(x)h) +O

(
Lk
)

that is uniform for x ∈ Δ. This shows∑
k≥0

|γ[1]
k,h(x)| = |C(x)| |1 − t(x)h|

1− |t(x)| +O (1) .

Now observe that for x ∈ Δ there exists a constant c > 0 with |1 − t(x)| ≥
c(1− |t(x)|). Hence it follows that

|1− t(x)h|
1− |t(x)| = O

(
1− t(x)h

1− t(x)

)
= O (h) ,

and consequently ∑
k≥0

|γ[1]
k,h(x)| = O (h) .

Similarly we get

∑
k≥1

|γ[1]
k,h(x)|

∣∣∣∣∣∣
∑
j<k

t(x)k−j−1cj,h(x)

∣∣∣∣∣∣ ≤
∑
j≥0

|cj,h(x)| |t(x)|−j−1
∑
k>j

|t(x)|k|γ[1]
k,h(x)|

=
∑
j≥0

|cj,h(x)| |t(x)|−j−1

(
|C(x)| |t(x)|2j+2 |1 − t(x)h|

1− |t(x)|2 +O
(
|t(x)|j+1Lj

))

= O

⎛⎝∑
j≥0

h3

(j + h)2

⎞⎠
= O
(
h2
)
.
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Hence, we finally obtain

∑
k≥0

|γ[1]
k,h(x)γ

[2]
k,h(x)| ≤

∑
k≥0

|γ[1]
k,h(x)| |γ[2]

k,h(x)|+
∑
k≥1

|γ[1]
k,h(x)|

∣∣∣∣∣∣
∑
j<k

t(x)k−j−1cj,h(x)

∣∣∣∣∣∣
= O
(
h2
)
.

Lemma 4.57. We have

γ
[3]
k (x) =

{
O
(

min{k2, k
1−|t(x)|}

)
uniformly for x ∈ Δ,

O
(
|x/ρ|k
)

uniformly for |x| ≤ ρ− η,
(4.106)

and

γ
[3]
k,h(x) =

{
O
(

min{h2, h
1−|t(x)|}

)
uniformly for x ∈ Δ,

O
(
|x/ρ|k
)

uniformly for |x| ≤ ρ− η,
(4.107)

for every η > 0.

Proof. The recurrence for γ
[3]
k (x) is given by

γ
[3]
k+1(x) = t(x)

∑
i≥1

i3γ
[3]
k (xi) + t(x)

⎛⎝∑
i≥i

γ
[1]
k (xi)

⎞⎠3

+ 3t(x)

⎛⎝∑
i≥1

γ
[1]
k (xi)

⎞⎠⎛⎝∑
i≥1

iγ
[2]
k (xi)

⎞⎠ (4.108)

+ 3t(x)

⎛⎝∑
i≥1

γ
[1]
k (xi)

⎞⎠⎛⎝∑
i≥1

(i− 1)γ
[i]
k (xi)

⎞⎠
+ 3t(x)

∑
i≥1

i(i− 1)γ
[2]
k (xi) + t(x)

∑
i≥1

(i− 1)(i− 2)γ
[1]
k (xi).

By inspecting the proof of Lemmas 4.53 and 4.54 one expects that the only
important part of this recurrence is given by

γ
[3]
k+1(x) = t(x)γ

[3]
k (x) + t(x)γ

[1]
k (x)3 + 3t(x)γ

[1]
k (x)γ

[2]
k (x) +Rk (4.109)

and Rk collects the less important remainder terms that only contribute expo-
nentially small terms. Thus, in order to shorten our presentation we will not

focus on Rk. In particular, it is easy to show the bound γ
[3]
k (x) = O

(
|x/ρ|k
)

for |x| ≤ ρ− η. (We omit the details.)

Next, since t(x)γ
[1]
k (x)3 + 3t(x)γ

[1]
k (x)γ

[2]
k (x) + Rk = O (k), it follows that

γ
[3]
k (x) = O

(
k2
)
.
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Now we proceed by induction and observe that a bound of the form

|γ[3]
k (x)| ≤ Ek/(1− |t(x)|) leads to

|γ[3]
k+1(x)| ≤ Ek

1− |t(x)| +O

(
1

1− |t(x)|

)
+ |Rk|

and consequently to Ek+1 ≤ Ek + O (1). Hence, Ek = O (k) and γ
[3]
k (x) =

O (k/(1− |t(x)|)).
Similarly, the leading part of the recurrence for γ

[3]
k,h(x) is given by

γ
[3]
k+1,h(x) = t(x)γ

[3]
k,h(x) + t(x)γ

[1]
k,h(x)3 + 3t(x)γ

[1]
k,h(x)γ

[2]
k,h(x) + R̄k,h (4.110)

= t(x)γ
[3]
k,h(x) + dk,h(x),

where

dk,h(x) = t(x)γ
[1]
k,h(x)3 + 3t(x)γ

[1]
k,h(x)γ

[2]
k,h(x) + R̄k,h = O (h) ,

and the initial value is given by

γ
[3]
0,h(x) = −γ[3]

h (x)− 3γ
[2]
h (x) = O

(
min

{
h2,

h

1− |t(x)|

})
.

Note that we also assume that γ
[3]
k,h(x) = O

(
|x/ρ|k
)

for |x| ≤ ρ − η (which
can be proved easily). Consequently it follows that

γ
[3]
k,h(x) = γ

[3]
0,h(x) + dk−1,h(x) + t(x)dk−1,h(x) + · · ·+ t(x)k−1d0,h(x)

= O

(
h

1− |t(x)|

)
.

Next observe that Lemmas 4.53–4.56 ensure that∑
j≥0

|dj,h(x)| = O
(
h2
)

uniformly for x ∈ Δ. Hence, we finally get

γ
[3]
k,h(x) = O

(
h2
)
,

which completes the proof of Lemma 4.57.

Lemma 4.58. We have

γ
[4]
k (x) =

{
O
(

k2

1−|t(x)|

)
uniformly for x ∈ Δ,

O
(
|x/ρ|k
)

uniformly for |x| ≤ ρ− η,
(4.111)

and

γ
[4]
k,h(x) =

{
O
(

h2

1−|t(x)|

)
uniformly for x ∈ Δ,

O
(
|x/ρ|k
)

uniformly for |x| ≤ ρ− η,
(4.112)

for every η > 0.
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Proof. The proof is very similar to that of Lemma 4.57. First, the recurrence

for γ
[4]
k (x) is essentially of the form

γ
[4]
k+1(x) = t(x)γ

[4]
k (x) + t(x)γ

[1]
k (x)4 + 4t(x)γ

[1]
k (x)γ

[3]
k (x) (4.113)

+ 6t(x)γ
[1]
k (x)2γ

[2]
k (x) + 3t(x)γ

[2]
k (x)2 +Rk,

where Rk collects all exponentially small terms. We assume that we have al-

ready proved the upper bound γ
[4]
k (x) = O

(
|x/ρ|k
)

for |x| ≤ ρ − η. Now,

by assuming that |γ[4]
k (x)| ≤ Fk/(1 − |t(x)|) and by using the known esti-

mates γ
[1]
k (x) = O (1), γ

[2]
k (x) = O (min{k, 1/(1− |t(x)|)}), and γ

[3]
k (x) =

O (k/(1− |t(x)|)), we get

|γ[4]
k+1(x)| ≤ Fk

1− |t(x)|+O
(
|t(x)|k
)
+O

(
k

1− |t(x)|

)
+O

(
1

1− |t(x)|

)
+|Rk|

≤ Fk+1

1− |t(x)|
with Fk+1 = Fk +O(k). Consequently Fk = O

(
k2
)
.

Finally, the essential part of the recurrence for γ
[4]
k,h(x) is given by

γ
[4]
k+1,h(x) = t(x)γ

[4]
k,h(x) + t(x)γ

[1]
k,h(x)4 + 4t(x)γ

[1]
k,h(x)γ

[3]
k,h(x) (4.114)

+ 6t(x)γ
[1]
k,h(x)2γ

[2]
k,h(x) + 3t(x)γ

[2]
k,h(x)2 + R̄k,h

= t(x)γ
[4]
k,h(x) + ek,h(x),

where

ek,h(x) = t(x)γ
[1]
k,h(x)4 + 4t(x)γ

[1]
k,h(x)γ

[3]
k,h(x)

+ 6t(x)γ
[1]
k,h(x)2γ

[2]
k,h(x) + 3t(x)γ

[2]
k,h(x)2 + R̄k,h.

As above, R̄k,h collects all exponentially small terms. Thus,

γ
[4]
k,h(x) = γ

[4]
0,h(x) + ek−1,h(x) + t(x)ek−1,h(x) + · · ·+ t(x)k−1e0,h(x).

By applying the known estimates γ
[1]
k,h(x) = O (1), γ

[2]
k,h(x) = O (h) and

γ
[3]
k,h(x) = O

(
h2
)

we obtain ek,h = O
(
h2
)
. By combining that with the initial

condition

γ
[4]
0,h(x) = 12γ

[2]
h (x) + 8γ

[3]
h (x) + γ

[4]
h (x) = O

(
h2

1− |t(x)|

)
,

we finally get

γ
[4]
k,h(x) = O

(
h2

1− |t(x)|

)
which completes the proof of Lemma 4.58.

The proof of (4.96) is now immediate. As already noted this implies (4.95)
and proves Theorem 4.52.



4.3 The Profile of Pólya Trees 177

4.3.5 The Height of Pólya Trees

Since the profile of Pólya trees behaves similarly to the profile of conditioned
Galton-Watson trees, there is no doubt that there is a similar correspondence
for the height (compare with [65]).

Theorem 4.59. Let Hn denote the height of an unlabelled rooted random tree
with n vertices. Then we have

1√
n
Hn

d−→ 2
√

2

b
√
ρ

max
0≤t≤1

e(t)

and

EHr
n ∼
(
b
√
ρ

4

)r

r(r − 1)Γ (r/2)ζ(r)nr/2

for every integer r ≥ 1.

A similar theorem was proved by Broutin and Flajolet [28] for binary unla-
belled trees who also provide a local version, that is, asymptotic expansion
for P{Hn = k} (compare with [80]). For the sake of brevity we will not make
this explicit but a local version of Theorem 4.59 still holds.

Let tn,k denote the number of trees with n nodes and height at most k.
Then the generating function tk(x) =

∑
n≥1 tn,kx

n satisfies the recurrence
relation

t0(x) = 0

tk+1(x) = x exp

⎛⎝∑
i≥1

tk(xi)

i

⎞⎠ , (k ≥ 0).

Obviously tk(x) = tk(x, 0) where the function on the right-hand-side is the
generating function of (4.28) which we used to analyse the profile in the
previous sections.

Set
ek(x) = t(x) − tk(x),

that is ek(x) = −wk(x, 0). Then ek satisfies the recurrence

ek+1(x) = t(x)
(

1− e−ek(x)−Ek(x)
)
, (4.115)

where

Ek(x) =
∑
i≥1

ek(xi)

i
= −Σk(x, 0).

The proof follows the same principles as the proof of the corresponding
properties of the height of Galton-Watson trees (see Section 4.2.7). However,
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the term Ek(x) needs some additional considerations. In particular we will
always have to verify that in the range of interest, that is x ∈ Δ and |x−ρ| < ε,
we have an estimate of the kind

|Ek(x)|
|ek(x)|2 = O(Lk) (4.116)

for some L < 1. Suppose for a moment that (4.116) is satisfied and that we
also know that ek = O(1). Then (4.115) rewrites to

ek+1 = tek

(
1− ek

2
+O

(
e2k +

Ek

ek

))
,

resp. to
t

ek+1
=

1

ek
+

1

2
+O

(
ek +

Ek

e2k

)
.

This leads to the representation

tk

ek
=

1

e0
+

1

2

1− tk
1− t +O

(∑
�<k

|e�t�|
)

+O

(∑
�<k

|E�|
|e2� |

|t�|
)
. (4.117)

Now, if (4.116) is satisfied then it follows that

ek =
tk

1
2

1−tk

1−t + +O
(∑

�<k |e�t�|
)

+O(1)

which can be handled as in Section 4.2.7 to obtain

ek(x) =
t(x)k

1
2

1−t(x)k

1−t(x) +O
(

min
{

log k, log 1
1−|t(x)|

}) . (4.118)

If ek(x) has this kind of asymptotic representation Theorem 4.59 follows. We
just have to repeat the corresponding steps from Section 4.2.7.

Note that (4.117) and (4.118) can be made more precise. Set

Sk =
e2k
(
e−Ek − 1

)
(eek − 1) (1− e−ek−Ek)

,

and define a function h(v) by

v

1− e−v
= 1 +

v

2
+ v2h(v).

Then the recurrence ek+1 = t(1− e−ek−Ek) rewrites to

t

ek+1
=

1

ek
+

1

2
+ ekh(ek) +

Sk

e2k
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and leads to the explicit representations

tk

ek
=

1

e0
+

1

2

1− tk
1− t +

∑
�<k

e�h(e�)t
� +
∑
�<k

S�

e2�
t� (4.119)

and

ek =
tk

1
e0

+ 1
2

1−tk

1−t +
∑

�<k e�h(e�)t� +
∑

�<k
S�

e2
�
t�
. (4.120)

Note also that if we just assume ek → 0 and Ek = o(ek) as k→∞ then

Sk ∼ −Ek.

We start our precise analysis with an a priori bound for ek(x).

Lemma 4.60. Let |x| ≤ ρ. Then there is a C > 0 such that

|ek(x)| ≤ C√
k

∣∣∣∣xρ
∣∣∣∣k .

Proof. Obviously, we have

|ek(x)| =
∑
n>k

(tn − tkn)|x|n ≤
∑
n>k

tn|x|n.

The assertion follows now from tn ∼ cρ−nn−3/2 for some constant c > 0.

Lemma 4.60 applies to Ek(x).

Corollary 4.61 Suppose that |x| < √ρ. Then there exists a constant C0 > 0
with

|Ek(x)| ≤ C0√
k

∣∣∣∣x2

ρ

∣∣∣∣k .
The next lemma shows that ek(x) behaves as expected if x is on the positive

real axis.

Lemma 4.62. Suppose that 0 ≤ x ≤ ρ is real. Then (4.118) holds.

Proof. Let ẽk(x) be defined by ẽ0(x) = t(x) and by ẽk+1(x) = t(x)(1−e−ẽk(x))
(for k ≥ 0). Then it follows by the methods of Section 4.2.7 that ẽk(x) behaves
like (4.118), even in a proper Δ-domain.

However, if 0 ≤ x ≤ ρ then we obtain by induction that ek(x) ≥ ẽk(x).
Hence, by combining (4.118) with the upper bound from Lemma 4.60 we have

Ek(x)

ek(x)2
≤ Ek(x)

ẽk(x)2
= O(Lk)

for some L with 0 < L < 1. Thus, (4.116) is satisfied and we are done.
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The analysis of ek(x) for complex x with |x| ≤ ρ is also not too difficult.
The next two lemmas consider the case |x| ≤ ρ and |x − ρ| ≤ ε and the case
|x| ≤ ρ− ε.

Lemma 4.63. There exists ε > 0 such that (4.118) holds for all x with |x| ≤ ρ
and |x− ρ| ≤ ε.

Proof. Recall that |ek(x)| ≤ C/
√
k. Suppose that we can show that |Ek/e

2
k| ≤

1. Then it follows that

|ek+1| ≥ |t| |ek| exp

(
−C1|ek|

(
1 +

|Ek|
|ek|2
))

≥ |t| |ek|e−C2k−1/2

. (4.121)

with C2 = 2C1C.
We now choose k0 sufficiently large that

e−2C2

√
k ≤ 1

k
and C2ρ

k/2e4C0

√
k ≤ 1

hold for all k ≥ k0. We already know that ek(ρ) ∼ 2/k. Hence, by continuity
there exists ε > 0 with |ek0(x)| ≥ 1

k0
and |t(x)| ≥ ρ1/4 for |x| ≤ ρ and

|x− ρ| ≤ ε. These assumptions imply

|ek0(x)| ≥ 1

k0
≥ e−2C2

√
k0 ≥ |t(x)|k0e−2C2

√
k0

and (by Corollary 4.61)

|Ek0 |
|e2k0

| ≤ C0ρ
k|t|−2ke4C2

√
k ≤ C0ρ

k/2e4C2

√
k ≤ 1

The goal is to show by induction that for k ≥ k0 and for |x| ≤ ρ and
|x− ρ| ≤ ε

|ek| ≥ |t|ke−2C2

√
k and

∣∣∣∣Ek

e2k

∣∣∣∣ ≤ 1. (4.122)

By assumption (4.122) is satisfied for k = k0. Now suppose that (4.122) holds
for some k ≥ k0. Then (4.121) implies

|ek+1| ≥ |t| |ek|e−C2k−1/2

≥ |t|k+1e−2C2

√
ke−C2k−1/2

≥ |t|k+1e−2C2

√
k+1.

Furthermore

|Ek+1|
|e2k+1|

≤ C0ρ
k|t|−2k−2e4C2

√
k+1 ≤ C0ρ

(k+1)/2e4C2

√
k+1 ≤ 1.
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Hence, we have proved (4.122) for all k ≥ k0.
In the last step of the induction proof we also obtained the upper bound

|Ek|
|e2k|

≤ C0ρ
k/2e4C2

√
k

which is sufficient to obtain the asymptotic representation (4.118).

Lemma 4.64. Suppose that |x| ≤ ρ − ε for some ε > 0. Then we have uni-
formly

ek(x) = Ck(x)t(x)k = (C(x) + o(1))t(x)k

for some analytic function C(x). Consequently we have uniformly for |x| ≤√
ρ− ε

Ek(x) = C̃k(x)t(x2)k = (C̃(x) + o(1))t(x2)k

with an analytic function C̃(x).

Proof. If |x| ≤ ρ − ε then we have |ek(x)| ≤ ek(ρ − ε) = O(t(ρ − ε)k). Thus,
we can replace the upper bound |ek(x)| ≤ C/

√
k in the proof of Lemma 4.63

by an exponential bound which leads to a lower bound for ek(x) of the form

|ek(x)| ≥ c0|t(x)|k.

Hence, by using (4.120) the result follows with straightforward calculations.

The disadvantage of the previous two lemmas is that they only work for
|x| ≤ ρ. In order to obtain some progress for |x| > ρ we have to find a proper
analogue to Lemma 4.32. We fix a constant C > 0 such that

∣∣∣e−Ek(x) − 1
∣∣∣ ≤ C√

k

( |x|2
ρ

)k

for all k ≥ 1 and for all |x| ≤ √ρ. Furthermore we choose a proper Δ-domain
Δ(ρ, η, δ) with ρ+ η <

√
ρ such that |t(x)| < 1 for all x ∈ Δ.

Lemma 4.65. Suppose that x ∈ Δ such that |t(x)| > |x2/ρ| and that there
exist real numbers D1 and D2 with 0 < D1, D2 < 1 and some integer K ≥ 1
with

|eK(x)| < D1, |t(x)|e
D1 − 1

D1
< D2, D1D2 + eD1

C√
K

( |x|2
ρ

)K

< D1.

(4.123)
Then we have |ek(x)| < D1 for all k ≥ K and

ek(x) = O(t(x)k)

as k →∞, where the implicit constant might depend on x.
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Proof. By definition we have eK+1 = t(1 − e−eK−EK ). Hence, if we write
e−Ek = 1 +Rk we obtain

|eK+1| ≤ |eK | |t|
e|eK | − 1

|eK |
+ e|eK |RK .

If (4.123) is satisfied then it follows that

|eK+1| ≤ D1D2 + eD1
C√
K

( |x|2
ρ

)K

< D1.

Now we can proceed by induction and obtain |ek| < D1 for all k ≥ K. Note
that D2 < 1 and

∑
k Rk = O(1) also imply that

ek = O(Dk
2 ).

If we set ak = t(1− e−ek)/ek and bk = −e−ekRk we obtain the recurrence

ek+1 = ekak + bk

with an explicit solution of the form

ek = eK
∏

K≤i<k

ai +
∑

K≤j<k

bj
∏

j<i<k

ai.

Since ek = O(Dk
2 ), we have ∏

j<i<k

ai = t(x)k−jeO(1)

and consequently

bj
∏

j<i<k

ai = O
(
t(x)k−j |x2/ρ|j

)
= O
(
t(x)kLj

)
for some L with 0 < L < 1. Hence,

ek = eKt(x)k−KeO(1) +O
(
t(x)kLK

)
= O
(
t(x)k
)
. (4.124)

Recall that ek(x) → 0 for |x| ≤ ρ. Using Lemma 4.65 we deduce that
ek → 0 in a certain region that extends the circle |x| ≤ ρ.
Lemma 4.66. For every ε > 0 there exists δ > 0 such that ek(x) → 0,if
|x| ≤ ρ+ δ and |x− ρ| ≥ ε.

Proof. The same arguments as in the proof of Lemma 4.34 show that we can
apply Lemma 4.65.

For the most interesting range, namely for x ∈ Δ and |x− ρ| ≤ ε, we need
a proper variant of Lemma 4.36.
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Lemma 4.67. There exists ε > 0 and a constant c1 > 0 such that for all
x ∈ Δ with x ≥ ρ and |x − ρ| ≤ ε and arg(x) = 0 the conditions (4.123) are
satisfied for

k = K(x) =

⌊
c1

| arg(t(x))|

⌋
and properly chosen real numbers D1, D2. Consequently, ek(x) → 0.

Proof. The arguments are about the same as in Lemma 4.36, but there are
some essential differences.

Suppose that arg(x) and arg(t(x)) are positive and that K(x) =
�c1/| arg(t(x))|�, where c1 = arccos(1/4)− ε1 and ε1 > 0 is arbitrarily small.

The first step is to prove that |ek(x)| ≤ ε2 and arg(ek(x)) ≤ k arg(t(x))+ε3
for k0 ≤ k ≤ K(x), where ε2 > 0 and ε3 > 0 can be chosen arbitrarily
small and k0 is sufficiently large. Here we use the recurrence (4.115) and
proceed inductively as in the proof of Lemma 4.36. Note that 0 < arg(ek(x)) <
arccos(1/4) ensures that |ek+1| ≤ |ek|+|Ek| and consequently, by Lemma 4.64
and the property ek0(ρ) ∼ c/k0 it follows that

|ek(x)| ≤ |ek0 |+
∑

k0≤�<k

|E�| < ε2

provided that k0 is chosen sufficiently large. (We do not repeat the details.)
The second step is to prove a lower bound for ek(x) for k0 ≤ k ≤ K(x) of

the form |ek(x)| ≥ c|t(x)|k/k for some c > 0. By Lemma 4.64 Ek(x) = (C̃(x)+
o(1))t(x2)k behaves nicely, if |x−ρ| ≤ ε. Suppose that |x| ≥ ρ and x ∈ Δ. Since
arg(t(x2)) is of order arg(t(x))2 we deduce that arg(Ek(x)) = O(arg(t(x))) for
k0 ≤ k ≤ K(x). In particular, it follows that (for k0 ≤ k ≤ K(x))

|ek+1(x)| =
∣∣∣t(x)(1 − e−ek(x)−Ek(x))

∣∣∣ ≥ |t(x)|(1 − e−|ek(x)|).

Hence, by applying the methods of Section 4.2.7 it follows that |ek(x)| ≥
c|t(x)|k/k for some c > 0.

Finally we have to check that the conditions (4.123) are satisfied for k =
K(x). First we use the formula

ek =
tk−k0

1
ek0

+ 1
2

1−tk−k0

1−t +
∑

k0≤�<k e�h(e�)t� +
∑

k0≤�<k
S�

e2
�
t�
. (4.125)

to show (as in the proof of Lemma 4.36) that the term

1

2

1− tk−k0

1− t
dominates the denominator on the right-hand-side of the equation. The first
and the third term can be handled as in Lemma 4.36. Finally, due to the
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already obtained bounds |ek(x)| ≥ c|t(x)|k/k, Ek(x) = O(t(x2)k) and the
property S� ∼ −E� the last term∑

k0≤�<k

S�

e2�
t� = O(1)

and does not contribute to the main term, either. Summing up we have

|ek| ≤
|t|k−k0∣∣∣ 12 1−tk−k0

1−t

∣∣∣(1 + ε4)

for an arbitrarily small ε4 > 0.
We set arg(ρ − x) = ϑ, where we assume that ϑ ∈

[
−π

2 − ε5, π
2 + ε5
]

(for

some ε5 > 0 that has to be sufficiently small), and r = b|ρ − x|1/2, where
b ≈ 2.6811266 is the constant appearing in Theorem 3.8. Then we have (as in
the proof of Lemma 4.36)

|t| = 1− r cos
ϑ

2
+O(r2),

log |t| = −r cos
ϑ

2
+O(r2),

arg(t) = −r sin
ϑ

2
+O(r2).

Hence with k = K(x) = �c1/| arg(t)|� we have

|tk−k0 | ∼ e−c1 cot(ϑ/2)+O(r2) ≤ e−c1 cot( π
4 +

ε5
2 )+O(r2) ≤ e−c1(1− ε6)

for some arbitrarily small ε6 > 0 (depending on ε5). Consequently

|ek| < D1 := 2
e− arccos(1/4)

1− e− arccos(1/4)
r(1 + ε7) = c′r,

where ε7 > 0 can be chosen arbitrarily small. Moreover

|t| = 1− r cos
ϑ

2
+O(r2) ≤ 1− r√

2
(1− ε8)

for some (small) ε8 > 0 and consequently

|t|e
D1 − 1

D1
= 1−
(

1√
2
− e− arccos(1/4)

1− e− arccos(1/4)

)
r(1 − ε9) +O(r2).

Thus, we are led to set

D2 := 1− 1

2

(
1√
2
− e− arccos(1/4)

1− e− arccos(1/4)

)
r = 1− c′′r
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and the first two conditions of (4.123) are satisfied if r is sufficiently small.
Since D1 −D1D2 = c′c′′r2 we just have to check whether

eD1
C√
k

∣∣∣∣x2

ρ

∣∣∣∣k < c′c′′r2.
However, since k = K(x) ≥ c1

√
2 r−1 the left hand side of this inequality is

definitely smaller than c′c′′r2 if r is sufficiently small. Hence all conditions of
(4.123) are satisfied for k = K(x).

Lemma 4.68. There exists ε > 0 such that (4.118) holds for all x with x ∈ Δ
with |x| ≥ ρ and |x− ρ| ≤ ε.

Proof. We recall that the properties ek = O(1) and (4.116) imply (4.118).
By Lemma 4.67 we already know that ek → 0. Furthermore, we have upper
bounds for Ek (see Lemma 4.64). Hence, it remains to provide proper lower
bounds for ek.

Since we already know that ek → 0 and |Ek| = O(Lk) (for some L < 1),
the recurrence (4.115) implies

|ek+1| ≥ (1 − δ) (|ek| − |Ek|)

for some δ > 0 provided that x ∈ Δ and |x−ρ| < ε. Without loss of generality
we can assume that L < (1 − δ)2. Hence

|ek| ≥ (1− δ)k −
∑
�<k

|E�|(1 − δ)k−� ≥ c0(1 − δ)k

for some constant c0 > 0. Consequently∣∣∣∣Ek

e2k

∣∣∣∣ = O

((
L

(1 − δ)2
)k
)
.

As noted above, this upper bound is sufficient to deduce (4.118).

As already mentioned the proof of Theorem 4.59 is now a direct copy of
the corresponding parts of the proof of Theorem 4.29 (compare with Sec-
tion 4.2.7).





5

The Vertical Profile of Trees

Chapter 4 was devoted to the horizontal profile of certain classes of trees and
we have observed that this kind of profile can be approximated by the local
time of the Brownian excursion.

However, it is also possible to introduce a vertical profile of trees. For a
binary tree, for example, we can define the vertical position of a vertex by the
difference between the number of steps to the right and to the left on the path
from the root. Then the vertical profile counts the number of nodes of a given
vertical position. Interestingly, this new kind of profile can be approximated
in terms of the ISE, the Integrated Super-Brownian Excursion.

The study of the vertical profile of binary trees is not only interesting
from a probabilistic point of view. The generating functions related to these
problem are interesting by themselves, since they have an explicit form that
is not understood from a combinatorial point of view.

Similar phenomena appear for embedded trees and so-called well balanced
trees. The latter kind of trees is of specific interest, since there is a bijection to
quadrangulations – due to Schaeffer [188] – that transfers the (usual) profile
of a quadrangulation to the profile of the labels of well balanced trees.

After a description of the Schaeffer bijection we survey the relations be-
tween general (vertical) profiles in random trees and the ISE that turns out
to be a universal limiting object. However, the main part of this chapter is
devoted to some special cases of this limit relation which can be worked out
explicitly and lead to integral representations for distribution of certain func-
tionals of the ISE. These results are due to Bousquet-Mélou [23] who extended
previous work of Bouttier, Di Francesco and Guitter [25] considerably. The
general convergence theorem to the ISE is based on the work of Aldous [5],
Janson and Marckert [117], Bousquet-Mélou and Janson [24], and Devroye
and Janson [52].
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5.1 Quadrangulations and Embedded Trees

We (again) consider quadrangulations Q that are embedded in the plane. We
recall that a quadrangulation is a planar map, where each face has valency
4 and where one of the edges on the external face is rooted and directed
(so that the external face is on the left of this edge). We will also consider
quadrangulations, where we additionally mark one vertex v0 (see Figure 5.11).
If we assume that Q has n faces then there are exactly 2n edges and n + 2
vertices (by Euler’s formula).

v
0

Fig. 5.1. Quadrangulations

We now define the profile of a quadrangulation to be the sequence (Hk)k≥1,
where Hk denotes the number of vertices with distance k to the first vertex of
the root edge. Similarly, if we additionally mark a vertex v0 then the profile
(Hv0

k )k≥1 is the sequence of numbers Hv0

k of vertices with distance k from v0
(compare with Figure 5.2)

Our main objective in this introductory section is to present a bijection
between quadrangulations and certain classes of trees that transfers the pro-
file. For this purpose we introduce well-labelled and so-called embedded trees
with increments 0 and ±1.

A well-labelled tree is planted plane tree, where the vertices are labelled by
positive integers such that the root has label 1 and labels of adjacent vertices
differ at most by 1. Similarly, an embedded tree with increments 0 and ±1 is
a planted plane tree, where the vertices are labelled by integers such that the
root has label 0 and, again, labels of adjacent vertices differ by 0 or by ±1
(see Figure 5.3).

1 The example used here is adopted from [26]
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Fig. 5.2. Distances in quadrangulations
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Fig. 5.3. Well-labelled and embedded trees

The label distribution (λk)k≥1 of a well-labelled tree T consists of the
numbers λk of nodes in T with label k. Similarly, the label distribution (Λk)k∈Z

of embedded trees is defined by the numbers Λk of nodes in T with label k.
We start with a bijection between these quadrangulations and well-labelled

trees that is due to Schaeffer [188].

Theorem 5.1. There exists a bijection between edge-rooted quadrangulations
with n faces and well-labelled trees with n edges, such that the profile (Hk)k≥1

of a quadrangulation is mapped onto the label distribution (λk)k≥1 of the cor-
responding well-labelled tree.

Instead of giving a formal proof of this statement we will work out an
explicit example. The first step is to label the vertices of the quadrangulation
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by the distance from the root vertex (the first vertex of the root edge, see
Figure 5.2). By this definition it is clear that there are only two possible
configurations of labels on the boundary of a face, since the labels of adjacent
vertices can only differ by 1 (see Figure 5.4). We will call a face of type 1,if
there are three different labels k, k + 1, k + 2 and of type 2, if there are only
two different labels k, k + 1.

k

+1k +1k

+2k

k

+1k +1k

k

Fig. 5.4. Two types of faces

We now apply to each face (also to the external one where we have to
interchange the orientation) the following rule. If a face is of type 1 we include
a fat edge between k + 1 and k + 2 in counterclockwise direction and if the
face is of type 2 then we connect the two vertices labelled by k + 1 by a fat
edge (see Figure 5.5).

k

+1k +1k

+2k

k

+1k +1k

k

Fig. 5.5. Modifications for the two types of faces

If we apply this rule to all faces of the quadrangulation we obtain the
figure that is depicted on the left-hand-side of Figure 5.6. Finally, we delete
all non-fat edges; however, we keep track of the second vertex of the rooted
edge (that is always labelled by 1).

The observation now is that the resulting figure that contains all vertices
different from the first vertex of the root edge (of the original quadrangulation)
and all remaining fat edges is in fact a well-labelled tree with the second vertex
of the root edge as the root. In this particular example we actually get the well-
labelled tree depicted in Figure 5.3. Note that we have two kinds of fat edges.
The first kind are edges that are also edges of the original quadrangulation.
They connect vertices with different labels. The other kind of fat edges are
new edges and can be recognised easily, since they connect vertices with the
same label.
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Fig. 5.6. Quadrangulations and well-labelled trees

Next we modify the above procedure to obtain a bijection to embedded
trees with increments 0 and ±1 (that is due to Chassaing and Schaeffer [35]).

Theorem 5.2. There exists a bijection between edge-rooted quadrangulations
with n faces, where one of the n + 2 vertices is marked, and two copies2

of the set of embedded trees (with increments 0 and ±1) with n edges, such
that the profile (Hv0

k )k≥1 of a quadrangulation is mapped onto the shifted label
distribution of the corresponding embedded tree with increments 0 and ±1. (By
shifted label distribution we mean the label distribution obtained by translating
all labels so that the minimum label is 0.)

Again we present just an example. We start with the quadrangulation
depicted in Figure 5.1 and label the vertices by the distance from v0. Then we
apply the same procedure as above in order to get fat edges that form a tree
(compare with Figure 5.7). There is, however, a slight modification that has
to be made at the fat edge e that corresponds to the external face. We have
to keep track that the root edge of the quadrangulation can be recovered in
the inverse procedure. Since there are exactly 4 possible cases, we can encode
them by choosing a direction to e and adding a + or − to the resulting tree
(by any rule). The first vertex of the directed edge e will be now the root of
an embedded tree and the second vertex of e the left-most successor of root
in this tree. Finally, we also shift all labels so that the new root gets label 0.
In our example we get precisely the embedded tree of Figure 5.3 with a +.

We can use these bijections to obtain explicit formulas for the number of
quadrangulations and for the number of well-labelled trees. Let un denote the
number of embedded trees (with increments 0 and ±1) with n edges and qn
the number of well-labelled trees (with increments 0 and ±1). Then the above

2 Formally, the notion two copies of a set A means the union (A×{1})∪ (A×{2}).
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Fig. 5.7. Quadrangulations and embedded trees

two bijections show that
2un = (n+ 2)qn,

since there are precisely n + 2 ways to root a quadrangulation with n + 2
vertices. On the other hand it is immediately clear that

un = 3npn+1 =
3n

n+ 1

(
2n

n

)
,

where pn+1 = 1
n+1

(
2n
n

)
denotes the number of planted plane trees with n edges

(or with n+ 1 vertices). Namely, there are precisely 3n different ways to label
a given planted plane tree with n edges to make it an embedded tree. Starting
from the root that gets label 0 we have 3 ways to label an adjacent vertex and
so on. Hence, we get the following remarkable formula.

Theorem 5.3. The number qn of different edge-rooted quadrangulations with
n faces, or the number of well-labelled trees (with increments 0 and ±1) with
n edges, is given by the formula

qn =
2 · 3n

(n+ 1)(n+ 2)

(
2n

n

)
. (5.1)

We also present an alternative proof for this formula by a generating func-
tion approach that counts well-labelled trees.

Proof. We consider variants of well-labelled trees, where the root has a label
not necessarily equal to 1 but again all vertices are labelled by positive integers
and labels of adjacent vertices differ at most by 1. Let Tj(t), j ≥ 1, denote the
(ordinary) generating function of those generalised well-balanced trees where
the root has label j and where the exponent of t counts the number of edges.
Then, by using the convention T0(t) = 0, we immediately get the relation
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Tj(t) =
1

1− t(Tj−1(t) + Tj(t) + Tj+1(t))
, (j ≥ 1). (5.2)

This relation comes from the usual decomposition of a planted plane tree into
the root and its subtrees. If the root has label j then the successors of the root
must have a label in the set {j − 1, j, j + 1} and the subtrees are again well-
balanced trees. This justifies (5.2). Note also that the infinite system (5.2)
uniquely determines the functions Tj(t). In particular, the equations (5.2)
provide a recurrence for the coefficients [tn]Tj(t) that can be solved by using
the initial condition T0(t) = 0. For example we have indeed [t0]T0(t) = 0 and
[t0]Tj(t) = 1 for j ≥ 1. Hence, it follows that [t1]T1(t) = 2 and [t1]Tj(t) = 3
for j ≥ 2. In the same way we can proceed further. If we already know [tk]Tj(t)
for all k ≤ n and all j ≥ 0 then [tn+1]Tj(t) can be computed for all j ≥ 1.
Since [tn+1]T0(t) = 0 the induction works.

Let T (t) = (1−
√

1− 12t)/(6t) be the solution of the equation

T (t) =
1

1− 3tT (t)
, (5.3)

and let Z(t) be defined by

Z(t) +
1

Z(t)
+ 1 =

1

tT (t)2
. (5.4)

Note that one of the two possible choices of Z(t) represents a power series in t
with constant term 0 (and non-negative coefficients) which we will use in the
sequel.

By using the ansatz

Tj(t) = T (t)
ujuj+3

uj+1uj+2

with unknown functions uj , the recurrence (5.2) is equivalent to

ujuj+1uj+2uj+3 =
1

T (t)
u2

j+1u
2
j+2 (5.5)

+ tT (t)
(
uj−1u

2
j+2uj+3 + u2

ju
2
j+3 + uju

2
j+1uj+4

)
.

By using (5.3) and (5.4) it is easy to check that

uj = 1− Z(t)j

satisfies (5.5) which is kind of a mystery. Hence, the functions

Tj(t) = T (t)
(1− Z(t)j)(1 − Z(t)j+3)

(1− Z(t)j+1)(1 − Z(t)j+2)
(5.6)

satisfy the system of equations (5.2) and we also have T0(t) = 0. Since all these
functions Tj(t) are power series in t, we have found the solution of interest of
the system (5.2).
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In particular, we have

T1(t) = T (t)
(1 − Z(t))(1− Z(t)4)

(1− Z(t)2)(1 − Z(t)3)

= T (t)
1 + Z(t)2

1 + Z(t) + Z(t)2

= T (t)(1− tT (t)2),

and it is an easy exercise (by using Lagrange’s inversion formula) to show that

qn = [tn]T1(t) =
2 · 3n

(n+ 1)(n+ 2)

(
2n

n

)
.

This completes the proof of the theorem.

Interestingly enough, there is a similar correspondence between Eulerian
triangulations and well-labelled trees with increments ±1. An Eulerian trian-
gulation is a planar map (with a root edge), where all faces are triangles (that
is, they have valency 3) and with an even number of triangles around each
vertex. These triangulations are characterised by the property that their faces
are bicolourable or that their vertices are tricolourable (compare with [26]).
They can also be seen as the dual maps of the bicubic (that is, bipartite and
trivalent) maps, which were first enumerated by Tutte [204].

0

1

21

3

2

Fig. 5.8. Eulerian triangulation

We will describe the bijection by using the example depicted in Figure 5.8.
First, the orientation of the root edge (that is situated at the infinite face and
oriented clockwise) induces uniquely an orientation of all other edges by re-
quiring that the orientations alternate around each vertex. We (uniquely)
distinguish between black and white faces, with the convention that the infi-
nite face is white. In particular, black faces are then oriented clockwise and
white ones counterclockwise. Then we define a distance between the first root
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vertex and any other vertex by the minimal number of edges in the shortest
oriented path between them. This defines a labelling of the vertices such that
the sequence of labels around all black faces is of the form k, k + 1, k + 2
(see Figure 5.9). This follows from the fact that neighbouring vertices have
labels which differ by at most 2 while the tricolorability of the vertices fixes
the residue modulo 3. We now build a well-labelled tree by a rule which is
similar to that for quadrangulations. We replace the edge in such a black tri-
angle from k + 1 to k + 2 by a fat edge (see Figure 5.9). Now the vertices
(different from the first root vertex of the triangulation) together with the
fat edges form a well-labelled tree (rooted at the second root vertex of the
triangulation) with increments ±1 and root label 1 (see Figure 5.10).

+1

k+2k

k +1

k+2k

k

Fig. 5.9. Modification of black faces
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Fig. 5.10. Eulerian triangulation and well-labelled tree

It is an nice exercise to show that this procedure is actually a bijection
between Eulerian triangulations and well-labelled trees with increments ±1.
This bijection and a procedure that is similar to proof of Theorem 5.3 yields
an explicit formula for the number tn of Eulerian triangulations with n black
faces:

tn =
3 · 2n−1

(n+ 1)(n+ 2)

(
2n

n

)
.

We will come back to this enumeration problem in Section 5.3.1.
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5.2 Profiles of Trees and Random Measures

5.2.1 General Profiles

The profile of a rooted tree T was defined as the sequence (LT (k))k≥0, where
LT (k) denotes the number of nodes of T at distance k from the root. Simi-
larly we have defined the profile (Hk)k≥0 of a quadrangulation and the label
distribution (λk)k≥0 of a well-labelled tree.

All these examples can be seen from a more general point of view. Let T
be a tree with n nodes, where the nodes v are labelled by integers �(v). Let
XT (k) denote the number of nodes v in T with �(v) = k, that is,

XT (k) = #{v ∈ V (T ) : �(v) = k}.

Then the sequence (XT (k))k∈Z that encodes the label distribution will be
called the profile of T corresponding to the labelling �.

This comprises all previous notions. For example, if � denotes the distance
from the root then we get the usual profile. The vertical position of vertices
in binary trees induces the vertical profile.

The distribution of the labels gives rise to a probability distribution on
the integers3

μT =
1

|V (T )|
∑

v∈V (T )

δ�(v) =
1

|V (T )|
∑
k∈Z

XT (k) δk.

If either the tree is random or the labelling is random then the corresponding
profiles induce random measures and it is a natural problem to describe or to
approximate these random measures in a proper way. For example, (4.6) says
that the occupation time of the Brownian excursion e(t) is (after scaling) the
limiting random measure. The corresponding local version is Theorem 4.10,
the local time l(t) is the corresponding random density.

5.2.2 Space Embedded Trees and ISE

In many instances labels encode topological properties like positions or – as
above – the distance from the root. This idea was further developed by Aldous
[5] by using several-dimensional labels. Fix a dimension d ≥ 1 and embed a
rooted tree into the d-dimensional space Rd in the following way. Put the root
at the origin and regard each edge as a step of the form (0, . . . , 0,±1, 0, . . . , 0)
so that each vertex is sent to a vertex of the lattice Zd. Figure 5.11 shows an
easy example of this procedure. Note that different points of the tree may be
sent to the same point in Rd.

By putting mass 1/|V (T )| on each vertex of the embedded tree we get
an induced measure in Rd. Formally we can do this by using a d-dimensional

3 δx denotes the δ-distribution concentrated at x.
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Fig. 5.11. Space embedded tree in dimension d = 2

label �(v) that encodes the position of v in the lattice Zd. Then this measure
is given by

μT =
1

|V (T )|
∑

v∈V (T )

δ�(v). (5.7)

Note that our previous examples fit into this scheme for d = 1. For example, if
we just use unit steps to the positive direction then this measure corresponds
to the usual profile. Other examples are the tree classes discussed above,
well-labelled and embedded trees (with increments 0 and ±1), where both
directions appear.

This procedure gets more interesting in a probabilistic framework. Suppose
that we have random trees Tn of size n and a d-dimensional random (integer)
vector η with zero mean and finite covariance matrix. Then, if we embed Tn

by using an independent copy ηe of η for each edge e, we obtain random
(mass) distributions μn in Rd. Of course, they have to be scaled properly.
If the average distance from the root in Tn is of order

√
n then the average

distance of an embedded point from the origin will be of order
√√

n = n1/4,
since

√
n random steps of η will be of that order. After such a scaling one can

expect to observe a limiting distribution.
Actually, such a limit exists in many instances and is in fact an universal

law, the so-called Integrated Super-Brownian Excursion (ISE) (see Aldous [5]).
Formally, the ISE can be defined in the following way with help of the

continuum random tree. For simplicity we just consider the one dimensional
case here. Let us start (again) with a continuous function g : [0,∞) → [0,∞)
of compact support with g(0) = 0 and consider the corresponding real tree Tg

that is given by Tg = [0,∞)/∼, where the equivalence relation ∼ is defined
by

s ∼ t ⇐⇒ dg(s, t) = g(s) + g(t)− 2 inf
min{s,t}≤u≤max{s,t}

g(u) = 0.
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We next introduce a Gaussian process4 (Wg(t), t ≥ 0) with Wg(0) = 0, mean
value E(Wg(t)) = 0, and covariance

Cov(Wg(s),Wg(t)) = E(Wg(s)Wg(t)) = inf
min{s,t}≤u≤max{s,t}

g(u).

In particular this implies

Var(Wg(s)−Wg(t)) = dg(s, t).

Consequently dg(s, t) = 0 provides Wg(s) = Wg(t) a.s. and, thus, Wg(s) can
also be interpreted as a stochastic process on Tg. Let us have a closer look at
this construction, if g represents the depth-first search on a planted plane tree
(compare with Figure 4.1). The process starts at the planted vertex and is just
a Brownian motion where the path on the edge joining the planted vertex and
the original root acts as the time axis. Then at the original root the process
splits into several processes (depending on the number of successors of the
root and so on); of course, if we consider a path away from the root then
this is just Brownian motion with this path as time axis. Suppose that we
approximate the Brownian motion on an edge by a discrete step of size 0 or
±1 (say with equal probability). Then any realisation of this discrete process
is just an embedded tree with increments 0,±1. Hence, the process Wg(t) can
be considered as a continuous analogue of an embedded tree.

Suppose that g is supported on [0, 1]. Then the process Wg(t) defines an
occupation measure

μg(A) =

∫ 1

0

1A(Wg(s)) ds,

where A is any Borel set. The measure μg can be considered as the value
distribution ofWg and is, thus, a continuous analogue of the value distribution
of the labels of an embedded tree.

Finally, the continuum random tree enters the scene. Let W (s) be defined
by W2e(s), where e denotes Brownian excursion of duration 1 (this means two
random elements are combined). This process is also called head of Brownian
snake and by construction it can be seen as a process on the continuum random
tree, too.

The (one dimensional) ISE is now defined by the (random) occupation
measure

μISE(A) =

∫ 1

0

1A(W (s)) ds

of the head of Brownian snake. If we replace the one dimensional Gaussian
process by a d-dimensional one then we can define the d-dimensional ISE in
the same way but we will not stay on this point.

4 A Gaussian process (X(t), t ∈ I) (with zero mean) is completely determined
by a positive definite covariance function B(s, t). All finite dimensional ran-
dom vectors (X(t1), . . . , X(tk)) are normally distributed with covariance matrix
(B(ti, tj))1≤i,j≤k.
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By Aldous’ result (Theorem 4.6) we know that properly scaled Galton-
Watson trees converge to the continuum random tree (where we assume that
the offspring distribution ξ satisfies E ξ = 1 and 0 < Var ξ = σ2

ξ < ∞). Let

η be a random variable with E η = 0 and variance 0 < Varη = σ2
η < ∞

that embeds the tree into the line (as described above). The displacements
are now interpreted as labels: the root r has label �(r) = 0 and if v′ is a
successor of v that is linked by an edge e, then set �(v′) = �(v) + ηe, where
ηe is an independent copy of η. For example, if we consider planted plane
trees (Exξ = 1/(2− x)) and η is the uniform distribution on {−1, 0, 1} then
this construction leads to the embedded trees with increments 0 and ±1 (also
discussed above).

Then we have the following limit theorem (see Aldous [5] and Janson and
Marckert [117]).

Theorem 5.4. Let the labels �(v) on Galton-Watson trees Tn be defined as

above. Then with γ = σ−1
η σ

1/2
ξ we have

1

n

∑
v∈V (Tn)

δγn−1/4�(v)
d−→ μISE, (5.8)

with convergence in the space of probability measures on R.5

The left hand side of (5.8) is just a scaled version of the (random) displace-
ment distribution (5.7) of the (random) labels �(v). Thus, one dimensional
embedded Galton-Watson trees are actually approximated by the ISE (as it
should be).

This result is also an analogue to (4.6). We just have to replace the la-
bels �(v) by the distances from the root and μISE by the occupation time of
Brownian excursion; of course, the scaling is different.

It is natural to ask whether there is a local version of Theorem 5.4, that
is, an analogue to Theorem 4.10. Here one has to verify first whether the
(random) measures μISE has a proper (random) density. Actually, there is a
corresponding local time of W ,

lim
ε→0

1

ε

1∫
0

1[t,t+ε](W (s)) ds,

and thus there exists a continuous stochastic process

(fISE(t), −∞ < t <∞)

with dμISE = fISE dt, the density of the ISE (see [24]). In fact, a local result
on these (vertical) profiles has been recently proved by Bousquet-Mélou and
Janson [24] and by Devroye and Janson [52].

5 The space of probability measures on R with the weak topology is a Polish space.
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Theorem 5.5. Additionally to the assumptions of Theorem 5.4 we assume
that η is integer valued and aperiodic, that is, it is not concentrated on dZ for
some d > 1. Let (Xn(j))j∈Z the corresponding profile, that is, Xn(j) is the
number of vertices in Tn with �(v) = j, and (Xn(t),−∞ < t <∞) the linearly
interpolated process. Then we have(

n−3/4Xn(n1/4t), −∞ < t <∞
)

d−→ (γfISE(γt), −∞ < t <∞)

in the space C0(R), where γ = σ−1
η σ

1/2
ξ .

Interestingly, Theorems 5.4 and 5.5 appear in other settings, too. We just
mention an example, namely the vertical profile of (incomplete) binary trees,
where we have precisely the same result although the labels are not random.

We recall that a (complete) binary tree is a plane rooted tree where each
node has either two or no successors. In particular we can distinguish between
internal nodes that have two successors and external ones. If we disregard the
external nodes then the resulting object is a rooted tree, a so-called incomplete
binary tree, where each node has either no successor, a right successor, a left
successor or a left and a right successor.6 There is a natural labelling of the
nodes, namely the number of right steps minus the number of left steps on
the path from the root to this node (see Figure 5.12). This labelling induces
a natural embedding of these binary trees and also explains why we call the
sequence (Xn(j))j∈Z, where Xn(j) denotes the number of nodes of label j,
vertical profile.

Theorem 5.6. Let Xn(j) denote the number of nodes of label j in naturally
embedded reduced binary trees with n nodes and (Xn(t),−∞ < t < ∞) the
corresponding linearly interpolated process. Then we have

1

n

∑
v∈V (Tn)

δ(2n)−1/4�(v)
d−→ μISE,

and(
n−3/4Xn(n1/4t), −∞ < t <∞

)
d−→
(

2−1/4fISE(2−1/4t), −∞ < t <∞
)
.

In view of the bijections between quadrangulations (together with their
profile) and well-labelled and embedded trees (with increments 0 and ±1) the
following theorem on quadrangulations is not unexpected (see [35] for details).

For convenience let [L,N ] = [LISE, NISE] denote the (random) support
of μISE and μ̂ISE the shifted ISE that is supported by [0, N − L], that is,
μ̂ISE((−∞, λ]) = μISE((−∞, λ+ L])

6 Reduced binary trees of this kind are easier to handle; for example, the counting
problem for binary trees is based on the number of internal nodes. Therefore we
have decided to formulate the following results in terms of this notion.
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Fig. 5.12. Naturally embedded binary tree

Theorem 5.7. Let (λn,k) denote the height profile and rn the maximum dis-
tance from the root vertex in random quadrangulations with n vertices. Then

1

n

∑
k≥0

λn,k δγn−1/4k
d−→ μ̂ISE

and
γn−1/4rn

d−→ NISE − LISE,

where γ = 2−1/4.

In what follows we will draw a brief glance on these general theorems.
Due to the complexity of the topic we will not present a complete proof
of these results but give some comments. Nevertheless we will discuss some
special cases (embedded trees, binary trees) in detail in Sections 5.3 and
5.4. There are very interesting combinatorial aspects in relation to gener-
ating function. By using these generating function we prove, for example,

n−3/4Xn(n1/4λ)
d−→ γfISE(γλ) for every fixed real number λ (see Theo-

rem 5.24).
The proofs of Theorems 5.4 and 5.5 that rely on the work by Aldous [4, 5],

Chassaing and Schaeffer [35], Janson and Marckert [117], Bousquet-Mélou
and Janson [24], and Devroye and Janson [52] are based on the following
principles. First one observes that a Galton-Watson tree together with the
labels that are induced by random increments ηe can be interpreted as a
discrete version of the Brownian snake. One applies the depth-first search but
instead of interpolating the distance from the root x(i), one considers the
labels �(i), that is the sum of the increments ηe on the path from the root.
By applying the (known) convergence of the scaled depth-first search to the
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Brownian excursion, the central limit theorem and proper tightness estimates
it follows that the discrete snake process converges to the Brownian snake (see,
for example [117]). Theorem 5.4 is a direct consequence of this convergence
result (recall that the ISE is the occupation measure of the Brownian snake).

Theorem 5.7 is deduced by similar arguments, however, one has to use some
additional properties of the relation between quadrangulations and embedded
trees (see [35]).

Now suppose that the distribution of the increments η is discrete (and
aperiodic). Let Xn(j) denote the number of nodes with label j in a random
Galton-Watson tree of size n and let Xn(t) be the corresponding linear inter-
polated process. Then the scaled process n−3/4Xn(n1/4t) can be seen as the
(random) density of a measure

1

n

∑
j≥0

Xn(j) νjn−1/4,n−1/4 ,

that is close to the (scaled) occupation measure

1

n

∑
j≥0

Xn(j) δjn−1/4

of the label distribution (recall that νh,y is the measure with triangular density
f(x) = h−1 max{1− |x− y|/h, 0}, compare with Theorem 4.17 and its discus-
sion). Thus, in order to prove Theorem 5.5 it is sufficient to prove tightness
of n−3/4Xn(n1/4t).

Bousquet-Mélou and Janson [24] have formulated an interesting sufficient
condition for tightness (in this context).

Lemma 5.8. Suppose that there exists a constant C such that for all n ≥ 1
and u ∈ [−π, π],

E

(
|n−1X̂n(u)|2

)
≤ C

1 + nu4
, (5.9)

where
X̂n(u) =

∑
j

Xn(j)eiju

denotes the Fourier transform of the occupations measure
∑

j Xn(j)δj and
that there exists a random variable W with

n−1/4 sup{|j| : Xn(j) = 0} d−→W. (5.10)

Then n−3/4Xn(n1/4t) is tight in C0(R).

We sketch the proof of Lemma 5.8. First, by basic Fourier analytic tools
it follows that (for 0 ≤ a < 3)

E

(∫ ∞
−∞

|t|a
∣∣∣n−3/4Xn(n1/4t)

∣∣∣2 dy)
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is finite so that with high probability∫ ∞
−∞

|t|a
∣∣∣n−3/4Xn(n1/4t)

∣∣∣2 < A
for some A > 0. The condition (5.10) ensures that again with high probability∣∣∣n−3/4Xn(n1/4t)

∣∣∣ = 0

for |t| > M , if M is chosen sufficiently large. Let KM,A denote the set of all
functions in C0(R) with f(t) = 0 for |t| > M and∫ ∞

−∞
|t|a |f(t)|2 < A.

Then KM,A is a relative compact subset of C([−M,M ]), and thus of C0(R),
too (compare with [24]). Since n−3/4Xn(n1/4t) is contained inKM,A with high
probability, this proves tightness.

Note that (5.10) is related to Theorems 5.7 and 5.22 and can be deduced
from the convergence of the (scaled) discrete snake process to the Brownian
snake. Actually, W = γ−1 max{NISE,−LISE}.

It remains to verify (5.9). For this purpose we introduce the following
notions. For each pair of vertices v, w in a random Galton-Watson tree Tn of
size n, the path from v to w consists of two (possibly empty) parts, one going
from v towards the root, ending at the last common ancestor v ∧ w of v and
w, and another part going from v ∧ w to w in the direction away from the
root. We will also prove a more general result, where we consider separately
the lengths of these two parts. Define

hn(x1, x2) = E

⎛⎝ ∑
v,w∈Tn

x
d(v,v∧w)
1 x

d(w,v∧w)
2

⎞⎠ , (5.11)

where d(v, w) denotes the distance between v and w, and

H(z, x1, x2) =
∑
n≥1

ynhn(x1, x2)zn,

where yn =
∑
|T |=n ω(T ). It can be shown (see [52]) that H(z, x1, x2) can be

explicitly represented as

H(z, x1, x2) =

zx1x2Φ
′′(y(z))G(z, x1)G(z, x2) + zΦ′(y(z)) (x1G(z, x1) + x2G(z, x2)) + y(z)

1− zΦ′(y(z)) ,

where



204 5 The Vertical Profile of Trees

G(z, x) =
y(z)

1− zxΦ′(y(z)) .

On the other hand, there is a direct relation to X̂n(u). Let �(v) denote the
random label of the vertex v, that is, the sum of the increments on the path
from the root to v and let ϕ(t) = E eitη the characteristic function of the
distribution of the increment η. Then from

E

(
eiu(�(v)−�(w))|Tn

)
= E

(
eiu(�(v)−�(v∧w))|Tn

)
E

(
e−iu(�(w)−�(v∧w))|Tn

)
= ϕ(u)d(v,v∧w)ϕ(u)

d(w,v∧w)

we obtain

E

(
|n−1X̂n(u)|2

)
=

1

n2
E

⎛⎝ ∑
v,w∈Tn

(
eiu(�(v)−�(w))

)⎞⎠
=

1

n2
E

⎛⎝ ∑
v,w∈Tn

ϕ(u)d(v,v∧w)ϕ(u)
d(w,v∧w)

⎞⎠
=

1

n2
hn(ϕ(u), ϕ(u)).

This means that we have almost direct access to E|n−1X̂n(u)|2 with help of
analytic tools. In particular, by singularity analysis it follows that

|hn(x1, x2)| ≤ C

n |1− x1| |1− x2|

uniformly for x1, x2 in a Δ-domain (compare with [52]). We also have |ϕ(u)−
1| ≥ cu2 for u ∈ [−π, π] and consequently

(1 + nu4) E

(
|n−1X̂n(u)|2

)
≤ 1 + nu4 C

n|1− ϕ(u)|2

≤ 1 +
C

c2
.

Thus, Lemma 5.8 can be applied and Theorem 5.5 follows.
The proof of Theorem 5.6 can be worked out in a similar way.

5.2.3 The Distribution of the ISE

The definition of the ISE does not provide directly analytic expressions for
the distribution of the ISE. Nevertheless there are integral representations for
several statistics of the ISE. In this section we list some of them, however, they
are derived an indirect way. More precisely, they will appear in the proofs of



5.2 Profiles of Trees and Random Measures 205

the Theorems 5.22–5.26 (in Section 5.4) where we analyse limiting distribu-
tional properties of the profile of embedded trees. However, by Theorems 5.4
and 5.5 it follows that these limiting distributions have to be corresponding
functionals of the ISE (see also [23] and [24]).

We start with the distribution of μISE. Let G+(λ) = μISE((λ,∞)) =
1 − μISE((−∞, λ]) denote the (random) tail distribution function. Then the
Laplace transform (for |a| < 1) is given by

E eaG+(λ) = 1 +
48

i
√
π

∫
Γ

B(a/v4)e−2λv

(1 +B(a/v4)e−2λv)2
v5ev

4

dv,

where

B(x) = − (1−D(x))(1 − 2D(x))

(1 +D(x))(1 + 2D(x))
, D(x) =

√
1 +

√
1− x

2
, (5.12)

and the integral is taken over

Γ = {1− te−iπ/4, t ∈ (−∞, 0]} ∪ {1 + teiπ/4, t ∈ [0,∞)} (5.13)

(see Figure 5.13). The expected value has also a series expansion

EG+(λ) =
1

2
√
π

∑
m≥0

(−2λ)m

m!
cos
(mπ

4

)
Γ

(
m+ 2

4

)
.

Γ

1

Fig. 5.13. Contour of integration Γ

Next let
NISE = sup{y : μISE((y,∞)) > 0}
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denote the supremum of the support of the ISE. Its tail distribution function
can be expressed by

P{NISE > λ} =
12

i
√
π

∫
Γ

v5ev
4

sinh2(λv)
dv

Observe that the integration contour Γ can be replaced by its translated
version

Γ0 = {−re−iπ/4, r ∈ (−∞, 0]} ∪ {reiπ/4, r ∈ [0,∞)}.
This parametrisation of Γ0 by r splits the integral into two real integrals, and
one finds

G(λ) = − 12√
π

∫ ∞
0

(
1

sinh2(λreiπ/4)
+

1

sinh2(λre−iπ/4)

)
r5e−r4

dr

=
48√
π

∫ ∞
0

1− cos(
√

2λr) cosh(
√

2λr)

(cosh(
√

2λr) − cos(
√

2λr))2
r5e−r4

dr (5.14)

=
6√
πλ6

∫ ∞
0

1− cosu coshu

(coshu− cosu)2
u5e−u4/(4λ4)du.

The density is given by

f(λ) =
24

i
√
π

∫
Γ

cosh(λv)v6ev
4

sinh3(λv)
dv

=
6√
πλ11

∫ ∞
0

1− cosu coshu

(coshu− cosu)2
u5(6λ4 − u4)e−u4/(4λ4)du,

where the contour Γ is given by (5.13).
The moments of Nise are explicit, for �(r) > −4 we have

E(N r
ise

) =
24
√
π Γ (r + 1)ζ(r − 1)

2rΓ ((r − 2)/4)
,

with analytic continuation at the points −3,−2,−1, 2. For example

ENISE =
3
√
π

2Γ (3/4)
, E(N2

ISE) = 3
√
π.

These moments were already obtained by Delmas [46] and rediscovered by
[23].

Finally, we consider the density of the ISE fISE. The one dimensional
distribution of fISE(λ) is characterised by the Laplace transform (for |a| <
4/
√

3)

E eafISE(λ) = 1 +
48

i
√
π

∫
Γ

A(a/v3)e−2λv

(1 +A(a/v3)e−2λv)2
v5ev

4

dv,

where A(x) = A is the unique solution of
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A =
x

24

(1 +A)3

1−A (5.15)

satisfying A(0) = 0, and the integral is taken over the contour Γ given by
(5.13).

The expected value is given by

E fISE(λ) = (2π)−1/2

∫ ∞
0

y1/2 exp

(
−λ

2

2y
− y

2

2

)
dy

=
2−1/4

√
π

∑
m≥0

(−23/4|λ|)m

m!
cos

(m+ 1)π

4
Γ

(
m+ 3

4

)
.

In particular, fISE(0) has the same distribution as 21/43−1T−1, where T is

a positive 2/3-stable variable defined by its Laplace transform E e−tT = e−t2/3

.
Hence fISE(0) has the moments

E fISE(0)r = 2r/43−rΓ (3r/4 + 1)

Γ (r/2 + 1)
, −4/3 < r <∞.

5.3 Combinatorics on Embedded Trees

The discussion in the previous section shows that there is considerable interest
in labelled trees, where the labels of adjacent vertices are described by a fixed
law (for example, that they differ at most by one).

We have also shown that well-labelled trees can be counted with help of
generating functions (5.6) that have a mysterious representation in terms of
Z(t).

We will next discuss three different kinds of trees: two versions of em-
bedded trees and binary trees (where the labels are not randomly chosen but
correspond to the vertical position). Interestingly, the counting procedures are
almost the same. We follow the work of Bousquet-Mélou [23].

The subsequent asymptotic analysis (see Section 5.4) provides one dimen-
sional versions of Theorems 5.4 and 5.5. As already indicated, a full proof of
these theorems will not be given in this book.

5.3.1 Embedded Trees with Increments ±1

We start by considering a family of embedded planted plane trees, where
the root is labelled 0, and the labels of two adjacent nodes differ by ±1 (see
Figure 5.14), where the counting procedure is slightly easier; the case of in-
crements 0 and ±1 will be discussed in Section 5.3.2. Furthermore, trees with
increments ±1 appear as objects related to special triangulations as we have
mentioned in Section 5.1.

The total number of trees with n edges of that kind is given by
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Fig. 5.14. Embedded tree with increments ±1

tn = 2npn+1 =
2n

n+ 1

(
2n

n

)
.

Let T (t) denote the (ordinary) generating function of these numbers.
For j ∈ N, let Tj(t) be the generating function of labelled trees in which all

labels are less than or equal to j. Clearly, Tj(t) converges to T (t) (in the space
of formal power series in t) as j goes to infinity. It is very easy to describe an
infinite set of equations that completely defines the collection of series Tj(t).

Lemma 5.9. The series T satisfies

T (t) =
1

1− 2tT (t)
. (5.16)

More generally, for j ≥ 0,

Tj(t) =
1

1− t(Tj−1(t) + Tj+1(t))

while Tj(t) = 0 for j < 0.

Proof. First, replacing each label k by j − k shows that Tj(t) is also the
generating function of trees rooted at j and having only non-negative labels
(we say that a tree is rooted at j, if its root has label j). This means that we
actually reduce the problem to a counting problem for specific well-labelled
trees. Secondly, all subtrees of the root of such a tree are again trees of that
kind, however, rooted at j± 1 (compare with the proof of Theorem 5.3). This
leads to the recurrence

Tj(t) = 1 + t(Tj−1(t) + Tj+1(t)) + (t(Tj−1(t) + Tj+1(t)))2 + · · ·

=
1

1− t(Tj−1(t) + Tj+1(t))
.

Finally, be letting (formally) j →∞ we get to (5.16).
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The above lemma also shows that the series T (t), counting labelled trees
by edges, is algebraic. What is far less clear – but nevertheless true – is that
each of the series Tj(t) is algebraic too, as stated in the proposition below.
These series will be expressed in terms of the series T (t) and of the unique
formal power series Z(t), with constant term 0, satisfying

Z(t) +
1

Z(t)
=

1

tT (t)2
. (5.17)

Observe that Z(t) and t are related by

Z(t) = t
(1 + Z(t))4

1 + Z(t)2
(5.18)

and Z(t) and T (t) by

T (t) =
(1 + Z(t))2

1 + Z(t)2
. (5.19)

Proposition 5.10. Let Tj(t) be the generating function of embedded trees with
increments ±1 having no label greater than j. Then we have

Tj(t) = T (t)

(
1− Z(t)j+1

) (
1− Z(t)j+5

)
(1− Z(t)j+2) (1− Z(t)j+4)

, (5.20)

with Z(t) given by (5.18). These functions are algebraic of degree 2 (at most).
In particular, T0(t) satisfies the equation

T0(t) = 1− 11 t− t2 + 4 t (3 + 2 t)T0(t)− 16 t2T0(t)
2
.

Proof. It is very easy to check, using (5.18)–(5.19), that the above values of
Tj(t) satisfy the recurrence relation of Lemma 5.9 and the initial condition
T−1(t) = 0 (compare also with the proof of Theorem 5.3).

The equation satisfied by T0(t) is obtained by eliminating T (t) and Z(t)
from the case j = 0 of (5.20). Then an induction on j, based on Lemma 5.9,
implies that each Tj(t) is quadratic (at most) over Q(t).

Remark 5.11 As we have mentioned in Section 5.1, trees counted by T0(t)
(equivalently, the trees having only non-negative labels) are known to be in
bijection with certain planar maps called Eulerian triangulations (see also
[26]).

Let us now turn to a bivariate counting problem. Let Sj(t, u) be the gen-
erating function of embedded trees (with increments ±1), counted by the
number of edges (variable t) and the number of nodes labelled j (variable u).
Clearly, Sj(t, 1) = T (t) for all j. Moreover, an obvious symmetry shows that
Sj(t, u) = S−j(t, u).
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Lemma 5.12. For j = 0,

Sj(t, u) =
1

1− t(Sj−1(t, u) + Sj+1(t, u))
, (5.21)

while for j = 0,

S0(t, u) =
u

1− t(S−1(t, u) + S1(t, u))
=

u

1− 2tS1(t, u)
. (5.22)

Proof. Observe that Sj(t, u) is also the generating function of labelled trees
rooted at j, counted by the number of edges and the number of nodes labelled
0. The decomposition of planted plane trees provides the lemma. The only
difference between the cases j = 0 and j = 0 lies in the generating function
of the tree reduced to a single node.

Again, the series Sj(t, u) has a remarkable explicit representation (that
shows that it is algebraic, too, for reasons that currently remain mysterious
from the combinatorial point of view). They can be expressed in terms of the
series T (t) and Z(t) given by (5.18)–(5.19). By symmetry we also Sj(t, u) =
S−j(t, u). Thus, it is sufficient to consider the case j ≥ 0.

Proposition 5.13. For any j ≥ 0, the generating function Sj(t, u) that
counts embedded trees (with increments ±1) by the number of edges and the
number of nodes with label j is given by

Sj(t, u) = T (t)

(
1 + μ(t, u)Z(t)j

) (
1 + μ(t, u)Z(t)j+4

)
(1 + μ(t, u)Z(t)j+1) (1 + μ(t, u)Z(t)j+3)

, (5.23)

where Z(t) is given by (5.18) and μ = μ(t, u) is the unique formal power series
in t satisfying

μ = (u − 1)
(1 + Z(t)2)(1 + μZ(t))(1 + μZ(t)2)(1 + μZ(t)3)

(1 + Z(t))(1 + Z(t) + Z(t)2)(1 − Z(t))3(1− μZ(t)2)
. (5.24)

The series μ(t, u) has polynomial coefficients in u and satisfies μ(t, 1) = 0. In
particular, S0(t, u) satisfies the equation

(T (t)− S0(t, u))2

(u− 1)2
= 1− 2(1− T (t)2)

2 + S0(t, u)− S0(t, u)T (t)
. (5.25)

Proof. First, observe that the family of series S0(t, u), S1(t, u), S2(t, u), . . .
is completely determined by (5.21) (taken for j > 0) and the second part
of (5.22). The fact that for any series μ(t, u) ∈ Q(u)[[t]] the expression (5.23)
satisfies (5.21) for all j > 0 is a straightforward verification, once t and T (t)
have been expressed in terms of Z(t) (see (5.18) and (5.19)). In order to
prove that (5.23) is the correct expression of Sj(t, u), it remains to satisfy
the second part of (5.22). This last condition provides a polynomial equation
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relating μ(t, u), T (t), Z(t), t and u. In this equation, replace t and T (t) by
their expressions in terms of Z(t) (given by (5.18)–(5.19)). This exactly gives
(5.24).

Equation (5.25) satisfied by S0 is obtained by eliminating μ(t, u) and Z(t)
(using (5.24) and (5.19)) from the expression (5.23) of S0(t, u).

In the proof of Lemma 5.25 we will need a closed form expression for μ(t, u)
in terms of Z(t). Write

v =
(u− 1)Z(t)(1 + Z(t)2)

(1 + Z(t))(1 + Z(t) + Z(t)2)(1− Z(t))3
.

Then μ(t, u) is given by

μ(t, u) =
1

Z(t)2

(
2

1 + v(1− Z(t))2/3 + 2/3
√

3 + v2(1 − Z(t))4 cos(ϕ/3)
− 1

)
(5.26)

where

ϕ = arccos

(−9v(1 + 4Z(t) + Z(t)2) + v3(1− Z(t))6

(3 + v2(1 − Z(t))4)3/2

)
.

The reason for that is that equation (5.24) which defines μ(t, u) can be rewrit-
ten to

μ(t, u) =
v

Z(t)

(1 + μ(t, u)Z(t))(1 + μ(t, u)Z(t)2)(1 + μ(t, u)Z(t)3)

1− μ(t, u)Z(t)2
.

Hence, μ(t, u) is the unique formal power series in v (with rational coefficients
in Z(t)) that satisfies the above equation and equals 0 when v is 0. And it
is not hard to check that the expression given in (5.26) satisfies these two
conditions.

Let us finally study a third problem. LetRj(t, u) be the generating function
of embedded trees (with increments ±1), counted by the number of edges
(variable t) and the number of nodes labelled at least j (variable u).

Lemma 5.14. The set of series R0(t, u), R1(t, u), R2(t, u), . . . is completely
determined by the following equations: for j ≥ 1,

Rj(t, u) =
1

1− t(Rj−1(t, u) +Rj+1(t, u))
(5.27)

and
R0(t, u) = uR1(tu, 1/u). (5.28)

More generally, for all j ∈ Z, one has:

R−j(t, u) = uRj+1(tu, 1/u). (5.29)
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Proof. For all j ∈ Z, the series Rj(t, u) is also the generating function of trees
rooted at j, counted by their number of edges and the number of nodes having
a non-positive label. The equation satisfied by j, for j ≥ 0, follows once again
from the recursive structure.

It remains to prove the symmetry relation (5.29). For any tree T , let
n≤0(T ) denote the number of nodes of T having a non-positive label. We
use similar notations for the number of nodes having label at most j, etc. Let
Tj,n denote the set of trees rooted at j and having n edges. As observed above,

R−j(t, u) =
∑
n≥0

tn
∑

T∈T−j,n

un≤0(T ) =
∑
n≥0

tn
∑

T∈T−j,n

un+1−n>0(T ),

because a tree with n edges has a total of n + 1 nodes. A translation of all
labels by −1 gives

R−j(t, u) = u
∑
n≥0

(tu)n
∑

T∈T−j−1,n

u−n≥0(T ),

while replacing each label k by −k finally gives

R−j(t, u) = u
∑
n≥0

(tu)n
∑

T∈Tj+1,n

u−n≤0(T ) = uRj+1(tu, 1/u).

Remarkably, the series Rj(t, u) admit a closed form expression in terms of
T (t) and Z(t), too. Due to the symmetry (5.29) it is sufficient to consider the
case j ≥ 0.

Proposition 5.15. Let j ≥ 0. The generating function Rj(t, u) that counts
embedded trees (with increments ±1) by the number of edges and the number
of nodes with labels ≥ j is given by

Rj(t, u) = T (t)

(
1 + ν(t, u)Z(t)j

) (
1 + ν(t, u)Z(t)j+4

)
(1 + ν(t, u)Z(t)j+1) (1 + ν(t, u)Z(t)j+3)

, (5.30)

where Z(t) is determined by (5.18) and ν(t, u) is expressed by

ν(t, u) =
P (t, u)

Z(t)

1− P (t, u)(1 + Z(t))− P (t, u)2(1 + Z(t) + Z(t)2)

1 + Z(t) + Z(t)2 + P (t, u)Z(t)(1 + Z(t))− P (t, u)2Z(t)2
,

with

P (t, u) = (1 + Z(t))
1− V (t, u)−

√
Δ(t, u)

2V (t, u)Z(t)
,

in which

V (t, u) =
1−
√

1−8tu
1−8t

4
,

and

Δ(t, u) = (1− V (t, u))2 − 4Z(t)V (t, u)2

(1 + Z(t))2
.
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We note that the generating function ν(t, u) considered as a series in t has
polynomial coefficients in u and the first terms in its expansion are

ν(t, u) = (u−1)
(

1+2 ut+
(
7 u+ 6 u2

)
t2 +
(
32 u+ 36 u2 + 23 u3

)
t3 +O(t4)

)
.

Proof. In the proof of Proposition 5.13 we have already checked, that for any
formal power series ν in t, the series defined by (5.30) for j ≥ 0 satisfy the
recurrence relation (5.27) for j ≥ 1. It remains to prove that one can choose
ν so as to satisfy (5.28). For any formal power series A in t having rational
coefficients in u, we denote by Ã the series Ã(t, u) = A(tu, 1/u). In particular

T̃ (t, u) = T (tu). Observe that ˜̃A = A. With this notation, if Rj(t, u) is of the
generic form (5.30), the relation (5.28) holds, if and only if

1 + ν = u
T̃

T

(1 + νZ)(1 + νZ3)(1 + ν̃Z̃)(1 + ν̃Z̃5)

(1 + νZ4)(1 + ν̃Z̃2)(1 + ν̃Z̃4)
, (5.31)

where we use the abbreviations T = T (t), T̃ = T̃ (t, u), Z = Z(t), Z̃ =
Z̃(t, u) = Z(tu), ν = ν(t, u), and ν̃ = ν̃(t, u) = ν(tu, 1/u). Let Rm[u] denote
the space of polynomials in u, with real coefficients, of degree at most m. Let
Rn[u][[t]] denote the set of formal power series in t with polynomial coefficients
in u such that for all m ≤ n, the coefficient of tm has degree at most m.
Observe that this set of series is stable under the usual operations on series:
sum, product, and quasi-inverse. Write ν =

∑
n≥0 νn(u)tn. We are going to

prove, by induction on n, that (5.31) determines uniquely each coefficient
νn(u), and that this coefficient belongs to Rn+1[u].

First, observe that for any formal power series ν, the right-hand-side
of (5.31) is u + O(t). This implies ν0(u) = u − 1. Now assume that our
induction hypothesis holds for all m < n. Recall that Z is a multiple of
t: this implies that νZ belongs to Rn[u][[t]]. The induction hypothesis also
implies that the coefficient of tm in uν̃ belongs to Rm+1[u], for all m < n.
Note that Z̃ = Z(tu) = tu + O(t2) is a multiple of t and u and also be-
longs to Rn[u][[t]]. This implies that ν̃Z̃ belongs to Rn[u][[t]], too. The same is
true for all the other series occurring in the right-hand-side of (5.31), namely
T, T̃ , Z, Z̃. Given the closure properties of the set Rn[u][[t]], we conclude that
the right-hand-side of (5.31), divided by u, belongs to this set. Moreover, the
fact that Z and Z̃ are multiples of t guarantees that the coefficient of tn in
this series only involves the νi(u) for i < n. By extracting the coefficient of
tn in (5.31), we conclude that νn(u) is uniquely determined and belongs to
uRn[u] ⊂ Rn+1[u].

This completes the proof of the existence and uniqueness of the series ν
satisfying (5.31). Also, setting u = 1 (that is, T̃ = T and Z̃ = Z) in this
equation shows that ν(t, 1) = 0.

Let us now replace t by tu and u by 1/u in (5.31). This gives

1 + ν̃ =
1

u

T

T̃

(1 + ν̃Z̃)(1 + ν̃Z̃3)(1 + νZ)(1 + νZ5)

(1 + ν̃Z̃4)(1 + νZ2)(1 + νZ4)
. (5.32)
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In the above two equations, replace T by its expression (5.19) in terms of
Z. Similarly, replace T̃ by its expression in terms of Z̃. Finally, it follows
from (5.18) and from the fact that Z̃ = Z(tu) that

u =
Z̃

Z

(1 + Z)4(1 + Z̃2)

(1 + Z̃)4(1 + Z2)
. (5.33)

Replace u by this expression in (5.31) and (5.32). Eliminate ν̃ between the
resulting two equations: this gives a polynomial equation of degree 2 in ν
that relates ν, Z and Z̃. The elimination of Z̃ between this quadratic equation
and (5.33) provides an equation of degree 4 in ν that relates ν = ν(t, u) to
Z = Z(t) and u.

We do not make this equation explicit but it follows from (5.31) and (5.32).
In this equation, we replace u in terms of

δ = δ(t, u) = 1− 8(u− 1)
Z(t)(1 + Z(t)2)

(1− Z(t))4
=

1− 8tu

1− 8t
,

and Z, that is, we set

u = 1− 1− δ
8

(1− Z)4

Z(1 + Z2)
.

Then we replace δ in terms of

V =
1−

√
δ

4
,

that is, we set δ = (1− 4V )2. Interestingly, the resulting equation factors into
two terms. Each of them is quadratic in ν. In order to decide which of these
factors cancels, one uses the fact that when u = 1 (that is, V = 0), the series
ν must be 0. It remains to solve a quadratic equation in ν. Its discriminant is
found to be Δ, and it is convenient to introduce the series P and satisfies the
equation

P =
V

1 + Z
(1 + P )(1 + ZP ).

5.3.2 Embedded Trees with Increments 0, ±1

Next we consider the case of embedded trees with increments 0 and ±1. As
we have discussed in Section 5.1 this class of trees is of interest because of
its relation to quadrangulations, but there are also relations to general planar
maps [26, 35].

As above, let Tj(t) be the generating function of labelled trees in which all
labels are at most j, counted by their number of edges.7 Let Sj(t, u) be the

7 We use the same notation as in Section 5.3.1 although they correspond to different
trees. However, it will be always clear from the context which kind of trees is
considered.
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generating function of labelled trees, counted by the number of edges (variable
t) and the number of nodes labelled j (variable u). Finally, let Rj(t, u) be the
generating function of labelled trees, counted by the number of edges and the
number of nodes having label at least j. As above, it is easy to write an infinite
system of equations defining any of the families Tj(t), Sj(t, u) or Rj(t, u).
The only difference to our first family of trees is that a third case arises in
the decomposition of trees (compare also with the proof of Theorem 5.3). In
particular, the generating function T = T (t) counting these embedded trees
now satisfies

T (t) =
1

1− 3tT (t)
,

while for j ≥ 0,

Tj(t) =
1

1− t(Tj−1(t) + Tj(t) + Tj+1(t))
. (5.34)

The equations of Lemma 5.12 and Lemma 5.14 are modified in a similar way.
The three infinite systems of equations obtained in that way can be solved
using the same techniques as in Section 5.3.1. The solutions are expressed in
terms of the above series T (t) and the unique formal power series Z(t), with
constant term 0, satisfying

Z(t) +
1

Z(t)
+ 1 =

1

tT (t)2
(5.35)

or equivalently

Z(t) = t
(1 + 4Z(t) + Z(t)2)2

1 + Z(t) + Z(t)2
, (5.36)

resp.

T (t) =
1 + 4Z(t) + Z(t)2

1 + Z(t) + Z(t)2
.

We state the counterparts of Propositions 5.10, 5.13 and 5.15 without proof.

Proposition 5.16. Let Tj(t) be the generating function of embedded trees
(with increments 0 and ±1) having no label greater than j. Then we have
(for j ≥ −1)

Tj(t) = T (t)
(1− Z(t)j+1)(1− Z(t)j+4)

(1− Z(t)j+2)(1− Z(t)j+3)
,

where Z(t) is given by (5.36). These functions are algebraic of degree (at most)
2. In particular, T0(t) satisfies the equation

T0(t) = 1− 16 t+ 18 tT0(t)− 27 t2T0(t)
2
.

Proposition 5.17. For any j ≥ 0, the generating function Sj(t, u) that
counts embedded trees (with increments 0 and ±1) by the number of edges
and the number of nodes labelled j is given by
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Sj(t, u) = T (t)
(1 + μ(t, u)Z(t)j)(1 + μ(t, u)Z(t)j+3)

(1 + μ(t, u)Z(t)j+1)(1 + μ(t, u)Z(t)j+2)
, (5.37)

where Z(t) is given by (5.36) and μ(t, u) is the unique formal power series in
t satisfying

μ(t, u) = (u− 1)
(1 + Z(t) + Z(t)2)(1 + μ(t, u)Z(t))2(1 + μ(t, u)Z(t)2)2

(1 + Z(t))2(1− Z(t))3(1− μ(t, u)2Z(t)3)
.

The series μ(t, u) has polynomial coefficients in u and satisfies μ(t, 1) = 0. In
particular, S0(t, u) satisfies the equation

9T (t)4(u − 1)2

(T (t)− S0(t, u))2

= 9T (t)2 − 2T (t)(T (t)− 1)(2T (t) + 1)S0(t, u) + (T (t)− 1)2S0(t, u)2.

Recall that by symmetry S−j(t, u) = Sj(t, u). Thus (5.37) provides an explicit
representation for all j ∈ Z.

The functions Rj(t, u) have a similar symmetry:R−j(t, u) = uRj+1(tu, 1/u).
Hence, it is again sufficient to consider just the case j ≥ 0.

Proposition 5.18. Let j ≥ 0. The generating function Rj(t, u) that counts
embedded trees (with increments 0 and ±1) by the number of edges and the
number of nodes labelled j or more is given by

Rj(t, u) = T (t)
(1 + ν(t, u)Z(t)j)(1 + ν(t, u)Z(t)j+3)

(1 + ν(t, u)Z(t)j+1)(1 + ν(t, u)Z(t)j+2)
,

where Z(t) is given by (5.36) and ν(t, u) is a formal power series in t, with
polynomial coefficients in u.8 This series satisfies ν(t, 1) = 0 and the first
terms in its expansion are

ν(t, u)=(u−1)
(

1+3 ut+
(
15 u+ 14 u2

)
t2+
(
104 u+ 117 u2 + 83 u3

)
t3+O(t4)

)
.

5.3.3 Naturally Embedded Binary Trees

In this section we study incomplete binary trees. Such trees are either empty
or have a root to which a left and right subtree (both possibly empty) are
attached. Equivalently, we could consider complete binary trees and only take
internal nodes into account.

A (minor) difference to the two previous families of trees is that the main
enumeration parameter is now the number of nodes rather than the number
of edges. The number of trees with n nodes is now Cn = 1

n+1

(
2n
n

)
(compare

8 The function ν(t, u) is also algebraic of degree 2 over Q(Z(t), Z(tu)), of degree 4
over Q(u, Z), and of degree 16 over Q(t, u) (see [23]).
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with Section 3.1.1). For notational convenience we will again use the notation
T (t) for the generating function T (t) =

(
1−

√
1− 4t
)
/(2t) of binary trees.

As explained in Section 5.2.2 we embed binary trees into the plane accord-
ing to the position of the nodes (compare also with Figure 5.12). The position
or natural label of a node is the number of right steps minus the number of
left steps on the path from the root to this node

Let Tj(t) be the generating function of (naturally labelled) binary trees
in which all labels are at most j, counted by their number of nodes. Let
Sj(t, u) be the generating function of binary trees, counted by the number of
nodes (variable t) and the number of nodes labelled j (variable u). Finally,
let Rj(t, u) be the generating function of binary trees, counted by the number
of nodes and the number of nodes having label j at least. Again it is easy to
write an infinite system of equations defining any of the families Tj(t), Sj(t, u)
or Rj(t, u). The decomposition of trees that was crucial in Section 5.3.1 is
now replaced by the decomposition explained in Section 2.1. The generating
function T (t) counting naturally labelled binary trees satisfies

T (t) = 1 + tT (t)2,

while for j ≥ 0,
Tj(t) = 1 + tTj−1(t)Tj+1(t). (5.38)

The initial condition is now T−1(t) = 1 (accounting for the empty tree).
The equations of Lemmas 5.12 and 5.14 respectively become:

Sj(t, u) =

{
1 + tSj−1(t, u)Sj+1(t, u) if j = 0,
1 + tuS1(t, u)2 if j = 0,

(5.39)

while
Rj(t, u) = 1 + tRj−1(t, u)Rj+1(t, u) for j ≥ 1, (5.40)

and
R−j(t, u) = Rj+1(tu, 1/u) for all j ∈ Z. (5.41)

These three infinite systems of equations can be solved using the same
techniques as in Section 5.3.1. The solutions are expressed in terms of the
above series T (t) and of the unique formal power series Z(t), with constant
term 0, satisfying

Z(t) +
1

Z(t)
− 1 =

1

tT (t)2
. (5.42)

Equivalently we have

Z(t) = t

(
1 + Z(t)

2
)2

1− Z(t) + Z(t)
2 (5.43)

or

T (t) =
1 + Z(t)2

1− Z(t) + Z(t)2
.
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Again we state without proof the counterparts of Propositions 5.10, 5.13
and 5.15.

Proposition 5.19. Let Tj(t) be the generating function of (naturally embed-
ded) binary trees having no label greater than j. Then we have for all j ≥ −1,

Tj(t) = T (t)
(1− Z(t)j+2)(1− Z(t)j+7)

(1− Z(t)j+4)(1− Z(t)j+5)
,

where Z(t) is given by (5.43). These functions are algebraic of degree (at most)
2. In particular, T0(t) is given by

T0(t) =
(1− 4t)3/2 − 1 + 8t− 2t2

2t(1 + t)
.

Recall that by symmetry we only have to discuss the case j ≥ 0 in the
next two propositions.

Proposition 5.20. For any j ≥ 0, the generating function Sj(t, u) that
counts (naturally embedded) binary trees by the number of nodes and the num-
ber of nodes labelled j is given by

Sj(t, u) = T (t)
(1 + μ(t, u)Z(t)j)(1 + μ(t, u)Z(t)j+5)

(1 + μ(t, u)Z(t)j+2)(1 + μ(t, u)Z(t)j+3)
,

where Z(t) is given by (5.43) and μ(t, u) is the unique formal power series in
t satisfying

μ(t, u) = (u − 1)
Z(t)(1 + μ(t, u)Z(t))2(1 + μ(t, u)Z(t)2)(1 + μ(t, u)Z(t)6)

(1 + Z(t))2(1 + Z(t) + Z(t)2)(1− Z(t))3(1− μ(t, u)2Z(t)5)
.

The series μ(t, u) has polynomial coefficients in u and satisfies μ(t, 1) = 0. In
particular, S0 = S0(t, u) satisfies the equation

T (t)2(u− 1)2

u(T (t)− S0)2
=

(T (t)− 1)4S0)2 − 2T (t)S0(T (t)− 1)2(3− 9T (t) + 7T (t)2)

(T (t)− 1)(S0 − 1)(T (t)2 + T (t)S0)− S0)2

+
T (t)2(T (t)2 + T (t)− 1)2

(T (t)− 1)(S0 − 1)(T (t)2 + T (t)S0)− S0)2
.

Proposition 5.21. Let j ≥ 0. The generating function Rj(t, u) that counts
(naturally embedded) binary trees by the number of nodes and the number of
nodes labelled j or more is given by

Rj(t, u) = T (t)

(
1 + ν(t, u)Z(t)j

) (
1 + ν(t, u)Z(t)j+5

)
(1 + ν(t, u)Z(t)j+2) (1 + ν(t, u)Z(t)j+3)

,

where Z(t) is given by (5.43) and ν(t, u) is a formal power series in t, with
polynomial coefficients in u. This series satisfies ν(t, 1) = 0 and the first terms
in its expansion are

ν(t, u) = (u − 1)
(
t+ (u + 1)t2 + (2u2 + 3u+ 3)t3 +O(t4)

)
.
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5.4 Asymptotics on Embedded Trees

By Theorems 5.4–5.6 we already know the limiting behaviour of the vertical
profile of embedded trees and also of naturally embedded binary trees. In
what follows we show how the explicit formulas for the generating functions
given in Section 5.3 can be used to derive one dimensional versions9 of these
properties. By this procedure we do not get the full result. On the other
hand we get error terms and convergence of moments, too. We again follow
Bousquet-Mélou [23].

Since the generating functions for the three classes of trees presented in
Section 5.3 are principally very close to each other, we will only discuss em-
bedded trees with increments ±1 in detail.

5.4.1 Trees with Small Labels

Let T0 denote the set of well-labelled trees with increments ±1, and let T0,n

denote the subset of T0 formed by trees having n edges. We endow T0,n with
the uniform distribution. In other words, any of its elements occurs with
probability

1
2n

n+1

(
2n
n

) .
Let Mn denote the random variable equal to the largest label occurring in

a random tree of T0,n. By definition the distribution of Mn is related to the
series Tj(t) studied in Proposition 5.10:

P {Mn ≤ j} =
[tn]Tj(t)
2n

n+1

(
2n
n

) .
Theorem 5.22. Let

NISE = sup{y : μISE((y,∞)) > 0}.

Then, as n→∞,
Mn

n1/4

d−→ NISE.

Furthermore, the moments of Mn/n
1/4 converge to the moments of NISE.

Set Nn = Mn/n
1/4 and let λ ≥ 0 and j = �λn1/4�. We are interested in

the probability

P{Nn > λ} = P{Mn > λn
1/4} = P{Mn > j} =

[tn]Uj(t)
2n

n+1

(
2n
n

) , (5.44)

9 In this context one dimensional means a one dimensional projection Xn(t0)
d−→

X(t0) of a functional limit theorem (Xn(t),−∞ < t < ∞)
d−→ (X(t),−∞ <

t < ∞).
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where

Uj(t) = T (t)− Tj(t) (5.45)

=
(1 + Z(t))2 Z(t)j+1

(
1 + Z(t) + Z(t)2

)
(1− Z(t))2(

1 + Z(t)
2
)(

1− Z(t)
j+2
)(

1− Z(t)
j+4
)

is the generating function of trees having at least one label greater than j.
This algebraic series has a positive radius of convergence, and by Cauchy’s
formula

[tn]Uj(t) =
1

2iπ

∫
γ

Uj(t)
dt

tn+1

=
1

2iπ

∫
γ

(1 + Z)
2
Zj+1
(
1 + Z + Z2

)
(1− Z)

2

(1 + Z2) (1− Zj+2) (1− Zj+4)

dt

tn+1
(5.46)

for any contour γ included in the analyticity domain of Uj(t) and enclosing
positively the origin.

This leads us to study the singularities of Uj(t), and therefore those of
Z(t). The following lemma provides a complete picture of the (surprisingly
simple) singular structure of Z(t).

Lemma 5.23. Let Z(t) be the unique formal power series in t with constant
term 0 satisfying (5.18). This series has non-negative integer coefficients. It
has radius of convergence 1/8, and can be continued analytically on the domain
D = C \ [1/8,+∞). In the neighbourhood of t = 1/8, one has

Z(t) = 1− 2(1− 8t)1/4 +O(
√

1− 8t). (5.47)

Moreover, |Z(t)| < 1 on the domain D. More precisely, the only roots of unity
that are accumulation points of the set Z(D) are 1 and −1, and they are only
approached by Z(t) when t tends to 1/8 and when |t| tends to ∞, respectively.

Proof. In order to establish the first statement, we observe that

Z(t) = W (t)(1 + Z(t))2

where W (t) is the only formal power series in t with constant term zero
satisfying

W (t) = t+ 2W (t)2. (5.48)

These equations imply that both W (t) and Z(t) have non-negative integer
coefficients.

The polynomial equation defining Z(t) has the leading coefficient t and
the discriminant 4(1 − 8t)3, so that the only possible singularity of Z(t) is
1/8. Alternatively, one can exploit the following closed form expression
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Z(t) =

√
1− 4t+

√
1− 8t
(√

1− 4t+
√

1− 8t−
√

2(1− 8t)1/4
)

4t
, (5.49)

which can also be used to obtain (5.47).
Next we prove that |Z(t)| never reaches 1 on the domainD. Assume Z(t) =

eiϑ, with ϑ ∈ [−π, π]. From (5.18), one has

t = tϑ where tϑ =
cosϑ

8 cos4(ϑ/2)
and ϑ ∈ (−π, π).

This shows that t is real and belongs to (−∞, 1/8). But the expression (5.49)
of Z(t) shows that Z(t) is real, which contradicts the hypothesis Z(t) = eiϑ,
unless ϑ = 0. But then t = 1/8 which does not belong to the domain D. Hence
the modulus of Z never reaches 1 on D.

Finally, if a sequence tn of D is such that Z(tn) → eiϑ as n → ∞, with
ϑ ∈ (−π, π], then either ϑ = π and, by (5.18), the sequence |tn| tends to ∞
or ϑ ∈ (−π, π) and tn converges to tϑ. But then by continuity, Z(tn) actually
converges to Z(tϑ), which, as argued above, only coincides with eiϑ when
ϑ = 0, that is, tϑ = 1/8. In this case, Z(tn) → 1.

Let us now go back to the evaluation of the tail distribution function
of Nn = Mn/n

1/4 via the integral (5.46). We use the Hankel like contour
γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4, where

γ1 =

{
t =

1

8

(
1 +

−i+ (log n)2 − w
n

)
: 0 ≤ w ≤ (logn)2

}
,

γ2 =

{
t =

1

8

(
1− 1

n
e−iϕ

)
: −π

2
≤ ϕ ≤ π

2

}
,

γ3 =

{
t =

1

8

(
1 +

i+ w

n

)
: 0 ≤ w ≤ (log n)2

}
,

and γ4 is a circular arc centred at the origin and making γ a closed curve,
that is, if we set t = 1

8

(
1 + z

n

)
then for t ∈ γ1 ∪ γ2 ∪ γ3 the (new) variable z

varies over a finite section Hn of a Hankel contour H (see Figure 2.5).
First observe that for t ∈ γ

1− |Z(t)| ≥ 1

2
n−1/4, (5.50)

and consequently for all j ≥ 1

|1− Z(t)j | ≥ 1− |Z(t)|j ≥ 1− |Z(t)| ≥ 1

2
n−1/4.

By Lemma 5.23, the quantity

(1 + Z(t))
2
Z(t)

j+1
(

1 + Z(t) + Z(t)
2
)

(1− Z(t))
2

1 + Z(t)
2
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is uniformly bounded on γ. Therefore the contribution of the integral over γ4

is bounded by ∫
γ4

Uj(t)
dt

tn+1
= O
(

8nn1/2e−(log n)2
)
. (5.51)

The dominant part of the integral comes from the Hankel-like contour γ1 ∪
γ2∪γ3. Recall that t = 1

8

(
1 + z

n

)
and that |z| ≤ log2 n. We have the following

approximations as n→∞ and j = �λn1/4�:

Z(t) = 1− 2(−z)1/4n−1/4 +O
(
n−1/2 logn

)
1− Z(t) = 2(−z)1/4n−1/4

(
1 +O(n−1/4

√
logn)
)

Z(t)j = exp(−2λ(−z)1/4)
(

1 +O(n−1/4logn)
)

t−n−1 = 8n+1e−z
(
1 +O((log n)4/n)

)
.

Observe that, for z ∈ Hn, the real part of (−z)1/4 is bounded from below by
a positive constant c0. Hence,

| exp(−2λ(−z)1/4)| = exp(−2λ�(−z)1/4) ≤ exp(−2λc0),

so that exp(−2λ(−z)1/4) does not approach 1. This allows us to write

1

1− Zj+2
=

1

1− exp(−2λ(−z)1/4)

(
1 +O(n−1/4logn)

)
.

Hence, uniformly in t ∈ γ1 ∪ γ2 ∪ γ3, we have

Uj(t)t−n−1 =
(1 + Z)

2
Zj+1
(
1 + Z + Z2

)
(1− Z)

2

(1 + Z2) (1− Zj+2) (1− Zj+4)
t−n−1

=
6 · 8n+1

n1/2

√
−ze−z

sinh2(λ(−z)1/4)
(1 +O(n−1/4 logn))

and consequently∫
γ1∪γ2∪γ3

Uj(t)
dt

tn+1
=

6 · 8n

n3/2

∫
Hn

√
−ze−z(1 +O(n−1/4 logn))

sinh2(λ(−z)1/4)
dz

=
6 · 8n

n3/2

(∫
H

√
−ze−z

sinh2(λ(−z)1/4)
dz + o(1)

)
.

Hence,

[tn]Uj(t) =
6 · 8nn−3/2

2iπ

(∫
H

√−ze−z

sinh2(λ(−z)1/4)
dz + o(1)

)
and by using the estimate 1

n+1

(
2n
n

)
∼ 4nn−3/2/

√
π, this gives
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P{Nn > λ} →
3

i
√
π

∫
H

√
−ze−z

sinh2(λ(−z)1/4)
dz = G(λ).

If we use the substitution v = (−z)1/4 in the above integral, the variable v
runs to a contour that is close to the contour Γ that is defined by (5.13). Due
to analyticity we can shift the line of integration to Γ and also obtain

G(λ) =
12

i
√
π

∫
Γ

v5ev
4

sinh2(λv)
dv.

Thus we have proved weak convergence of Nn to some random variable
Ñ which has tail distribution function G(λ). By using the property that the
discrete Brownian snake process (which is precisely the process of traversing
an embedded tree and looking at the labels) converges (after scaling) to the
Brownian snake it also follows that the maximum label converges (after scal-

ing) to NISE. Hence, Ñ
d
= NISE. This completes the first part of the proof of

Theorem 5.22.
Now recall that the series Uj(t), given by (5.45), counts the trees that

contain at least one label larger than j. Hence, Uj−1(t) − Uj(t) counts the
trees having maximal label j. Also, note that

Uj(t) = V (Z(t)j , t)− V (Z(t)j+2, t), (5.52)

where

V (x, t) =
xZ(t)(1 + Z(t))(1− Z(t)3)

(1 + Z(t)2)(1− xZ(t)2)
.

Consequently, for k ≥ 1,

EMk
n =

1
2n

n+1

(
2n
n

) ∑
j≥1

jk[tn](Uj−1(t)− Uj(t)) (5.53)

=
1

2n

n+1

(
2n
n

) [tn]
∑
j≥0

(
(j + 1)k − jk

)
Uj(t).

For example, for k = 1 this gives

EMn =
1

2n

n+1

(
2n
n

) [tn]
∑
j≥0

(
V (Z(t)j , t)− V (Z(t)j+2, t)

)
=

1
2n

n+1

(
2n
n

) [tn] (V (1, t) + V (Z(t), t))

=
1

2n

n+1

(
2n
n

) [tn]
Z(t)(1 + 2Z(t) + 2Z(t)2)

1 + Z(t)2
.

Since
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Z(t)(1 + 2Z(t) + 2Z(t)2)

1 + Z(t)2
=

5

6
− 6(1− 8t)1/4 +O(

√
1− 8t),

we have

[tn]
Z(t)(1 + 2Z(t) + 2Z(t)2)

1 + Z(t)2
∼ −6

8nn−5/4

Γ (−1/4)
=

3

2

8nn−5/4

Γ (3/4)

and consequently

EMn ∼
3
√
π

2Γ (3/4)
n1/4

which corresponds to the first moment of NISE.
Now, by combining the expression (5.52) of Uj(t) and (5.53), one obtains,

for k ≥ 2,∑
j≥0

(
(j + 1)k − jk

)
Uj(t) = V (1, t) + (2k − 1)V (Z(t), t) (5.54)

+
∑
j≥2

(
(j + 1)k − jk − (j − 1)k + (j − 2)k

)
V (Z(t)j , t).

Observe that

(j + 1)k − jk − (j − 1)k + (j − 2)k ∼ 2k(k − 1)jk−2

∼ 2k(k − 1)(j + 2)k−2.

Hence, the dominating part of this sum will be of the form

Ak(z) = 2k(k − 1)
∑

j≥−1

(j + 2)V (Z(t)j , t)

= 2k(k − 1)
(1 + Z(t))(1 − Z(t)3)

Z(t)(1 + Z(t)2)

∑
j≥−1

(j + 2)k−2 Z(t)j+2

1− Z(t)j+2

= 2k(k − 1)
(1 + Z(t))(1 − Z(t)3)

Z(t)(1 + Z(t)2)
Dk−2(Z(t)),

where DR(z) =
∑

k≥1 k
Rzk/(1− zk) was discussed in Lemma 4.37. In partic-

ular it follows that

Dk−2(Z(t)) ∼

⎧⎪⎪⎨⎪⎪⎩
1

8(1− 8t)1/4
log

1

1− 8t
for k = 2,

(k − 2)!ζ(k − 1)

2k−1(1− 8t)
k−1
2

for k > 2,

and consequently

Ak(t) ∼

⎧⎪⎪⎨⎪⎪⎩
3 log

1

1− 8t
for k = 2,

24 k!ζ(k − 1)

2k−1(1− 8t)
k−2
4

for k > 2.
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Hence, after applying Lemma 2.14 and normalising by 2n

n+1

(
2n
n

)
, this gives, as

expected:

EMk
n ∼

⎧⎨⎩ 3
√
π n1/4 if k = 2,

24
√
πk!ζ(k − 1)

2kΓ ((k − 2)/4)
nk/4 if k ≥ 3.

This completes the proof of Theorem 5.22.

5.4.2 The Number of Nodes of Given Label

Next let Xn(j) denote the (random) number of nodes having label j in a
random tree of T0,n. This quantity is related to the series Sj(t, u) studied in
Proposition 5.13. In particular,

E

(
eaXn(j)

)
=

[tn]Sj(t, ea)
2n

n+1

(
2n
n

) .
Let us denote the normalised version of Xn(j) by

Yn(j) =
Xn(j)

n3/4
.

The aim of this section is to prove a weak limit theorem for Yn(�λn1/4�), where
λ ∈ R is arbitrary but fixed. Actually this is the one dimensional version of
Theorem 5.5 applied to planted plane trees and η uniformly distributed on
{−1, 1}.

Theorem 5.24. For every λ ∈ R and for all |a| < 4/
√

3 we have

E eaYn(�λn1/4�) → E ea
√

2fISE(
√

2 λ).

Hence,

Yn(�λn1/4�) d−→
√

2fISE(
√

2λ).

and all moments of Yn converge to the corresponding moments of fISE.

An interesting special case of Theorem 5.24 is λ = 0. Here Xn(0) is the
number of nodes labelled 0 in a tree rooted at 0 and we obtain

3Xn(0)√
2n3/4

d−→ T−1/2,

where T follows a unilateral stable law of parameter 2/3 (that can be defined

by its Laplace transform E(e−aT ) = e−a2/3

for a ≥ 0).

In what follows we will show that (for |a| < 4/
√

3)

E eaYn(�λn1/4�) → 1 +
48

i
√
π

∫
Γ

A(a/v3)e−2λv

(1 +A(a/v3)e−2λv)2
v5ev

4

dv, (5.55)
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where A(x) is the unique solution of

A =
x

24

(1 +A)3

1−A ,

satisfying A(0) = 0, and the integral is taken over the contour Γ given by

(5.13). By Theorem 5.5 we already know that Yn(�λn1/4�) d−→
√

2fISE(
√

2λ).
Thus, the Laplace transform of

√
2fISE(

√
2λ) is given by right hand side

in (5.55). Moreover, convergence of Laplace transforms implies not only
convergence in distribution but also convergence of all moments (see [71,
Thm. 9.8.2]). This proves Theorem 5.24. Thus, we just have to concentrate
on the limit relation (5.55).

Note that the series A(x) admits the following closed form expression:

A(x) =
2

1 + 2√
3

cos( arccos(−x
√

3/4)
3 )

− 1. (5.56)

This can be checked by proving that this expression satisfies the defining
relations for A(x).

Let λ ≥ 0 and j = �λn1/4�. The Laplace transform of Yn(j) is related to
the generating functions Sj(t, u) of Proposition 5.13:

E

(
eaYn(j)
)

= E

(
ean−3/4Xn(j)

)
=

[tn]Sj(t, ean−3/4

)
2n

n+1

(
2n
n

) . (5.57)

We will evaluate this Laplace transform by contour integration over γ = γ1 ∪
γ2∪γ3∪γ4, the same contour that we used in the proof of Theorem 5.22. This
requires to prove that Sj(t, u) is analytic in a neighbourhood of this contour

(for n large and u = ean−3/4

) which is guaranteed by the following lemma.
For convenience we denote by In the part of the complex plane enclosed by γ
(including γ itself; note that γ depends on n).

Lemma 5.25. Let a be a real number such that |a| < 4/
√

3. Then there exists

ε > 0 such that for n large enough the series μ(t, un) with un = ean−3/4

is
analytic in the domain

En = {t : |t− 1/8| > 1/((8 + ε)n)} \ [1/8,+∞).

In particular, μ(t, un) is analytic in a neighbourhood of In. Its modulus in In
is smaller than α, for some α < 1 independent of a and n. The series Sj(t, un)
is also analytic in a neighbourhood of In.

Proof. The lemma is clear, if a = 0; in this case un = 1, the series μ(t, un)
vanishes, and the series Sj(t, u) reduces to the size generating function of
labelled trees, namely T (t), which is analytic in C \ [1/8,∞). We now assume
that a = 0 and |a| < 4/

√
3. This guarantees that A(a) is well-defined.
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Let us first study the singularities of the series μ̄ = μ̄(z, u) defined as the
unique formal power series in z, satisfying

μ̄ = (u− 1)
(1 + z2)(1 + μ̄z)(1 + μ̄z2)(1 + μ̄z3)

(1 + z)(1 + z + z2)(1 − z)3(1 − μ̄z2)
.

Note that μ̄ has polynomial coefficients in u, and vanishes when u = 1. As-
sume that u is a fixed real number close to, but different from, 1. Recall
that, as all algebraic formal power series, μ̄(t, u) has a positive radius of con-
vergence. We perform a classical analysis to detect its possible singularities.
These singularities are found in the union of the sets S1 and S2:

1. S1 is the set of non-zero roots of the dominant coefficient of the equation
defining μ̄, that is, S1 = {±i}.

2. S2 is the set of the roots of the discriminant of the equation defining μ̄.
For u = 1 + x and x small, these roots are found to be

z = ±1, z = −1 +O(x),

z = e±2iπ/3 +O(x), z = 1 + ω121/6x1/3 +O(|x|2/3),

where ω satisfies ω6 = 1. (The term ω allows us to write x1/3 without
saying which of the cubic root we take.)
Observe that the moduli of all these “candidates for singularities” go to
1 as x goes to 0.

Now the series μ = μ(t, u) involved in the expression (5.23) of Sj(t, u) satisfies

μ(t, u) = μ̄(Z(t), u)

where Z(t) is defined by (5.18). In other words, we could have defined the
series μ̄ by

μ̄(z, u) = μ

(
z(1 + z2)

(1 + z)4
, u

)
.

Recall that Z(t) is analytic in the domain D = C \ [1/8,∞). Take u = un =

ean−3/4

= 1 + x, with x = an−3/4(1 + o(1)). By Lemma 5.23, for n large, the
only values of S1 ∪S2 that may be reached by Z(t), for t ∈ D, are of the form

z = 1 + ω121/6a1/3n−1/4 +O(n−1/2).

In view of (5.18), these values of Z(t) are reached for

t =
1

8
− ω

4(12)2/3

128

a4/3

n
+O(n−5/4).

Since |a| < 4/
√

3, these values of t are at distance less than 1/((8 + ε)n) of
1/8, for some ε > 0, and hence outside the domain En. Consequently, μ(t, un)
is analytic inside En.
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We now want to bound μ(t, un) inside In. Let tn ∈ In be such that

|μ(tn, un)| = max
t∈In

|μ(t, un)|.

In particular, |μ(tn, un)| ≥ |μ((1−1/n)/8, un)|. In order to evaluate the latter
quantity, note that Z((1−1/n)/8) = 1−2n−1/4+O(n−1/2). Due to the closed
form expression of μ given in (5.26), and to the expression (5.56) of the series
A, we see that μ((1 − 1/n)/8, un) → A(a). Since a = 0, A(a) = 0, and for n
large enough,

|μ(tn, un)| ≥ |μ((1− 1/n)/8, un)| = |A(a)|+ o(1) > 0. (5.58)

Recall that all the sets In are included in a ball of finite radius centred at the
origin. Let α be an accumulation point of the sequence tn. Then |α| ≤ 1/8.

Assume first that α = 1/8. Then there exists N0 such that α is in En

for all n ≥ N0, that is, in the analyticity domain of μ(·, un). Let tn1 , tn2 , . . .
converge to α. By continuity of μ in t and u, we have

μ(tni , uni) → μ(α, 1) = 0.

This contradicts (5.58). Hence the only accumulation point of tn is 1/8, and
tn converges to 1/8. Let us thus write

tn =
1

8

(
1− xn

n

)
.

We have xn = o(n), but also |xn| > 1, since tn belongs to In. We wish to
estimate μ(tn, un). From the singular behaviour of Z(t) (Lemma 5.23), we
derive

Z(tn) = 1− 2
(xn

n

)1/4

+O

((xn

n

)1/2
)
.

Moreover,

un − 1 = an−3/4
(

1 +O(n−3/4)
)
,

which gives
un − 1

(1 − Z)3
=

a

8x
3/4
n

(
1 + O

((xn

n

)1/4
))

.

If the sequence xn was unbounded, then there would exist a subsequence xni

converging to infinity. Then (uni − 1)/(1− Z(t))3 would tend to 0. The closed
form expression of μ given in (5.26) implies that μ(tni , uni) would tend to 0,
contradicting (5.58). Hence, the sequence xn is bounded, and one derives from
the explicit expressions of μ and A that

μ(tn, un) = A(ax−3/4
n ) + o(1).

Since A is bounded by 2 −
√

3 inside its disk of convergence, |μ(tn, un)| is
certainly smaller than some α for α < 1 and n large enough. This concludes
the proof of the second statement of Lemma 5.25.
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By continuity of μ(t, un), this function in t is still bounded by 1 (in mod-
ulus) in a neighbourhood of In. Recall also that the modulus |Z(t)| never
reaches 1 for t ∈ C \ [1/8,∞). The form (5.23) then implies that Sj(t, un) is
an analytic function of t in a neighbourhood of In.

Let us now go back to the expression (5.57) of the Laplace transform of
Yn(j). We use Cauchy’s formula to extract the coefficient of tn in Sj(t, un).
From (5.23) we obtain the representation

Sj(t, u) = T (t) + T (t)
(1− Z(t))2(1 + Z(t) + Z(t)2)μ(t, u)Z(t)j

(1 + μ(t, u)Z(t)j+1)(1 + μ(t, u)Z(t)j+3)
.

Thus

[tn]Sj(t, un) =
2n

n+ 1

(
2n

n

)
+

1

2iπ

∫
γ

T
(1− Z)2(1 + Z + Z2)μZj

(1 + μZj+1)(1 + μZj+3)

dt

tn+1
.

We split the contour γ into two parts γ1 ∪ γ2 ∪ γ3 and γ4. As in the proof
of Theorem 5.22, the contribution of γ4 is easily seen to be o(8n/nm) for all
m > 0, thanks to the results of Lemmas 5.23 and 5.25. On γ1 ∪ γ2 ∪ γ3, one
has

t =
1

8

(
1 +

z

n

)
where z lies in the truncated Hankel contour Hn. Conversely, let z ∈ H . Then
z ∈ Hn for n large enough, and, in addition to the estimates already used in
the proof of Theorem 5.22, one finds

μ(t, un) = A(a(−z)−3/4)(1 + o(1)), (5.59)

where A(x) is the series defined by (5.15). After a few reductions, one finally
obtains

[tn]Sj(t, un) =
2n

n+ 1

(
2n

n

)
+

12 · 8nn−3/2

iπ

∫
H

A(a(−z)−3/4) exp(−2λ(−z)1/4)
√
−ze−z

(1 +A(a(−z)−3/4) exp(−2λ(−z)1/4))2
dz + o(8nn−3/2).

It remains to normalise by 2n

n+1

(
2n
n

)
∼ 8nn−3/2/

√
π, and then to set v =

(−z)1/4 to obtain the expected expression for the limit of the Laplace trans-
form of Yn(j), with j = �λn1/4�. This completes the proof of Theorem 5.24.

5.4.3 The Number of Nodes of Large Labels

Let X+
n (j) denote the (random) number of nodes having label at least j in a

random tree of T0,n. We denote the normalised version of X+
n (j) by

Y +
n (j) =

X+
n (j)

n
.



230 5 The Vertical Profile of Trees

These quantities are related to the series Rj(t, u) studied in Proposition 5.15.
In particular,

E

(
eaY +

n (j)
)

= E

(
ean−1X+

n (j)
)

=
[tn]Rj(t, ea/n)

2n

n+1

(
2n
n

) .

In the present context it is convenient to extend the definition of X+
n and Y +

n

to real values by setting X+
n (t) = X+

n (�t�) and Y +
n (t) = Y +

n (�t�). Our next
aim is to prove that Y +

n (λn1/4) (for some λ ≥ 0) converges weakly and in
terms of all moments to the (random) tail distribution function

G+(λ) = μISE((λ,∞))

of the ISE. This is the one dimensional version of Theorem 5.4 applied
to planted plane trees with increments η that are uniformly distributed on
{−1, 1}.

Theorem 5.26. For every λ ∈ R and for all |a| < 1 we have

E eaY +
n (�λn1/4�) → E eaG+(λ/

√
2).

Hence,

Y +
n (�λn1/4�) d−→ G+(λ/

√
2).

and all moments of Y +
n converge to the corresponding moments of G+.

One interesting consequence of Theorem 5.26 is the limit law for X+
n (0),

the number of nodes having a non-negative label in a tree rooted at 0:

X+
n (0)

n

d−→ U,

where U is uniformly distributed on [0, 1].

Similarly to the proof of Theorem 5.24 we just show that

E eaY +
n (�λn1/4�) → 1 +

48

i
√
π

∫
Γ

B(a/v4)e−2λv

(1 +B(a/v4)e−2λv)2
v5ev

4

dv,

where

B(x) = − (1−D)(1 − 2D)

(1 +D)(1 + 2D)
, D =

√
1 +

√
1− x

2
.

By Theorem 5.4 the limiting distribution of Y +
n (�λn1/4�) coincides with G+.

For the proof of Theorem 5.26 let j = �λn1/4�. Since the product forms of
the series Sj(t, u), and Rj(t, u) are very similar, it is not surprising that the
analysis is similar, too. We start from
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E(eaY +
n (j)) = E(u

X+
n (j)

n ) =
[tn]Rj(t, un)

2n

n+1

(
2n
n

) ,

with un = ea/n. For technical reasons, we choose to modify slightly the inte-
gration contour γ to γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4 given by

γ1 =

{
t =

1

8

(
1 +

4

3

−i+ (log n)2 − w
n

)
: 0 ≤ w ≤ (logn)2

}
,

γ2 =

{
t =

1

8

(
1− 4

3

1

n
e−iϕ

)
: −π

2
≤ ϕ ≤ π

2

}
,

γ3 =

{
t =

1

8

(
1 +

4

3

i+ w

n

)
: 0 ≤ w ≤ (log n)2

}
,

and γ4 is a circular arc centred at the origin and making γ a closed curve.
Informally, we are now considering a Hankel contour centred around 1/8 at
distance 1/(6n) to the real axis.

We first need to prove that the series Rj(t, un) is analytic in a neighbour-
hood of In, the region lying inside the integration contour γ. The following
lemma is the counterpart of Lemma 5.25.

Lemma 5.27. Let a be a real number such that |a| < 1. Then ν(t, un) is
analytic in a neighbourhood of In. Its modulus in In is smaller than α, for
some α < 1 independent of a and n. The series Rj(t, un) is also analytic in a
neighbourhood of In.

Proof. The lemma is obvious if a = 0. We thus assume a = 0 and |a| < 1.
Let us first study the singularities of the series ν̄ = ν̄(z, u) defined by

ν̄(z, u) = ν

(
z(1 + z2)

(1 + z)4
, u

)
.

According to Proposition 5.15, ν̄ is a formal power series in z with polynomial
coefficients in u, and by (5.18), one has:

ν(t, u) = ν̄(Z(t), u).

In the proof of Proposition 5.15, we have obtained a polynomial equation
P (ν, Z, u) = 0 of degree 4 in ν, relating ν(t, u), Z(t) and the variable u which
can be obtained by using the expression of ν given in Proposition 5.15. By
definition of ν̄, we have P (ν̄, z, u) = 0.

Assume that u is a fixed real number close to 1. That is, u = 1 + x, with
x being small. In order to study the singularities of ν̄, we look again at the
zeros of the leading coefficient of P , and at the zeros of its discriminant. This
gives several candidates for singularities of ν̄(z, u), which we classify in three
series according to their behaviour when x is small. First, some candidates
tend to a limit that is different from 1,
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z = −1, z = ±i, z = e±2iπ/3, z = e±2iπ/3 +O(x), z = −1 +O(x).

Then, some candidates tend to 1 and lie at distance at most |x|1/4 of 1 (up
to a multiplicative constant):

z = 1 + ω(cx)1/4 +O(
√
|x|),

where ω is a fourth root of unity and c is in the set {0, 16, 64/3,−16/3}.
Finally, some candidates tend to 1 but lie further away from 1 (more precisely,
at distance |x|1/6):

z = 1 + 2eiπ/6ω′x1/6 +O(|x|1/3),

where ω′ is a sixth root of unity.
Let us now consider ν(t, u) = ν̄(Z(t), u) with u = un = ea/n = 1+x, where

x = a/n(1 + o(1)). Recall that Z is analytic in C \ [1/8,∞). By Lemma 5.23,
the series Z(t) never approaches any root of unity different from 1. Hence for
n being large enough, Z(t) never reaches any of the candidates z of the first
series.

The candidates of the second series are of the form

z = 1 + ω(ac/n)1/4 +O(n−1/2)

for some constant c, with |c| ≤ 64/3 depending on the candidate. By (5.18),
Z(t) may only reach these values for

t =
1

8
− ac

128n
+O(n−5/4).

Since |a| < 1, there exists ε > 0 such that these values lie at distance less
than 1/((6 + ε)n) of 1/8, that is, outside a neighbourhood of the domain In.

The candidates of the third series are more worrying: Z(t) may reach them
for

t =
1

8
− ω

′′

8

(a
n

)2/3

+O(n−5/6), (5.60)

where ω′′ is a cubic root of unity, and these values may lie inside In. If a > 0
and ω′′ = e±2iπ/3, or if a < 0 and ω′′ = e2iπ/3, the modulus of the above value
of t is found to be 1/8(1+cn−2/3+o(n−2/3)), for some positive constant c: this
is larger than the radius of the contour γ, which implies that t lies outside
a neighbourhood of In. However, if a > 0 and ω′′ = 1, or if a < 0 and
ω′′ = 1 or e−2iπ/3, the above value of t definitely lies inside In. Its modulus
is 1/8(1− cn−2/3 + o(n−2/3)), for some positive constant c.

In order to rule out the possibility that ν(t, un) has such a singularity,
we are going to prove, by having a close look at the expression of ν given in
Proposition 5.15, that the radius of convergence of ν(t, un) is at least 1/8 −
O(1/n). Below we use the notation of Proposition 5.15.
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Clearly, the series V (t, un) has radius of convergence min(1/8, 1/(8un)).
In particular, this radius is at least ρn = 1/(8(1 + |x|)) with un = 1 + x.
Moreover, the series V admits the following expansion

V (t, 1 + x) =
1

4

(
1−
√

1− 8tx

1− 8t

)
=

1

2

∑
n≥1

Cn−1

(
2tx

1− 8t

)n

,

where Cn = 1
n+1

(
2n
n

)
is the n-th Catalan number. This shows that V (t, 1+ |x|)

is a series in t with positive coefficients and that for all t such that |t| ≤ ρn,

|V (t, 1 + x)| ≤ V (|t|, 1 + |x|) ≤ V
(

1

8(1 + |x|) , 1 + |x|
)

=
1

4
.

The next step is to prove that Δ(t, un) never vanishes for |t| ≤ ρn. Indeed,

Δ = (1− V )2 − 4WV 2,

where W = W (t) is the formal power series in t defined by (5.48). This
series has radius 1/8, and non-negative coefficients. Hence, for all t such that
|t| ≤ 1/8, one has |W (t)| ≤W (1/8) = 1/4. Consequently, for |t| ≤ ρn,

|Δ(t, 1+x)| ≥ (1−|V (t, 1+x)|)2−4|W (t)||V (t, 1+x)|2 ≥
(

1− 1

4

)2

− 1

16
=

1

2
.

Hence, Δ(t, un) does not vanish in the centred disk of radius ρn. It follows
that the series P (t, un) is analytic inside this disk.

According to the expression of ν given in Proposition 5.15, the series
ν(t, un) is meromorphic for |t| ≤ ρn. The final question we have to answer
is whether ν has poles in this disk, and where. Returning to the polynomial
P such that P (ν, Z, u) = 0 shows that this can only happen, if the coefficient
of ν4 in this polynomial vanishes. But this can only occur, if z = Z(t) has one
of the following forms:

z = ±i, z = e±2iπ/3+O(x), z = −1+O(x), z = 1+ω(64x/3)1/4+O(x1/2).

As argued above, only the last value of z is likely to be reached by Z(t), and
this may only occur, if

t =
1

8
− a

6n
+O(n−5/4).

Consequently, the radius of ν(t, un) is at least 1/8−O(1/n), and this proves
that the values (5.60) that have been shown to lie in the centred disk of radius
1/8, are not, after all, singularities of ν(t, un). This completes our proof that
ν(t, un) is analytic in a neighbourhood of In.

We now want to bound ν(t, un) inside In. From now on, we can walk safely
along the steps of the proof of Lemma 5.25. Let tn ∈ In be such that
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|ν(tn, un)| = max
t∈In

|ν(t, un)|.

We first give a lower bound for this quantity, by estimating ν(t, un) for t =
1/8− 1/(6n). This is easily done by combining the closed form expressions of
ν (Proposition 5.15) and B(x) (see (5.12)). One obtains:

|ν(tn, un)| ≥ |μ(1/8− 1/(6n), un)| = |B(3a/4)|+ o(1) > 0.

This lower bound is then used to rule out the possibility that the sequence tn
has an accumulation point different from 1/8. Thus tn converges to 1/8, and
one can write

tn =
1

8

(
1− xn

n

)
.

We have xn = o(n), but also |xn| > 4/3, since tn belongs to In. We want to
estimate ν(tn, un). Since

Z(tn) = 1− 2
(xn

n

)1/4

+O

((xn

n

)1/2
)

and
un − 1 = a/n (1 +O(1/n)) ,

one has
u− 1

(1− Z(t))4
=

a

16xn

(
1 +O

((xn

n

)1/4
))

.

The closed form expressions of ν and B imply that the sequence xn is bounded
and

ν(tn, un) = B(a/xn) + o(1).

Since B is bounded by 0.12 inside its disk of convergence, |ν(tn, un)| is cer-
tainly smaller than some α for α < 1 and n large enough. This concludes the
proof of the second statement of Lemma 5.27.

By continuity of ν(t, un), this function in t is still bounded by 1 (in mod-
ulus) in a neighbourhood of In. Recall also that the modulus of Z(t) never
reaches 1 for t ∈ C \ [1/8,∞). The form (5.30) then implies that Rj(t, un) is
an analytic function of t in a neighbourhood of In.

The rest of the proof of Theorem 5.26 is precisely the same as the corre-
sponding part of the proof of Theorem 5.24, with Sj , μ and A, respectively,
replaced by Rj , ν and B. The counterpart of (5.59) is

ν(t, un) = B(−a/z)(1 + o(1)).

Recall that the Hankel part of the contour γ is now at distance 1/(6n) of the
real axis. Hence, when n goes to infinity, one finds
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[tn]Rj(t, un) =
2n

n+ 1

(
2n

n

)
+

12 · 8nn−3/2

iπ

∫
4/3H

B(−a/z) exp(−2λ(−z)1/4)
√−ze−z

(1 +B(−a/z) exp(−2λ(−z)1/4))2
dz + o(8nn−3/2).

After normalising by 2n

n+1

(
2n
n

)
and setting v = (−z)1/4, this gives

E eaY +
n (j) → 1 +

48

i
√
π

∫
(4/3)1/4Γ

B(a/v4)e−2λv

(1 +B(a/v4)e−2λv)2
v5ev

4

dv,

but the analyticity properties of the integrand allow us to replace the integra-
tion contour by Γ .

Remark 5.28 It is probably possible to prove finite dimensional conver-
gence and tightness by using the above combinatorial and analytic tools (see
Lemma 5.8 and its application). This would provide an alternative proof of
Theorems 5.4 and 5.5 in these special cases. However, it is not clear whether
the above methods will generalise to arbitrary Galton-Watson trees or even
to Pólya trees. It would be necessary to study analytic properties of infinite
systems of functional equations and so forth. This seems to be out of reach at
the moment.

5.4.4 Embedded Trees with Increments 0 and ±1

If we consider embedded trees with increments 0 and ±1 then we can obtain
precisely the same results as presented in Theorems 5.22, 5.24 and 5.26. We
just comment the slight modifications that have to be made.

We consider the set of labelled trees having n edges with the uniform
distribution, and look at the same random variables as for our first family of
trees: Mn, the largest label, Xn(j), the number of nodes having label j, and
finally X+

n (j), the number of nodes having at least label j.

Again, we can prove thatMnn
−1/4 d−→ NISE/

√
3, where NISE is the supre-

mum of the support of the ISE, and that for all λ ∈ R, Xn(�λn1/4�)n−3/4 d−→√
3fISE(

√
3λ) and X+

n (λn1/4)/n
d−→ G+(

√
3λ). In all three cases, the conver-

gence of the moments holds as well.

5.4.5 Naturally Embedded Binary Trees

For binary trees with n nodes (that are considered to be equally likely) we use
the labels corresponding to the natural embedding and consider the same ran-
dom variables as above:Mn, the largest label,Xn(j), the number of nodes hav-
ing label j, andX+

n (j), the number of nodes having label at least j. Here we get

thatMnn
−1/4 d−→ NISE and that for all λ ∈ R,Xn(�λn1/4�)n−3/4 d−→ fISE(λ)

and X+
n (λn1/4)/n

d−→ G+(λ), that is, we just have to replace the constant√
3 by 1.





6

Recursive Trees and Binary Search Trees

Recursive trees and binary search trees can be considered as the result of
a growth process and although they are of different structure (in particular,
concerning their degree distribution) they have many properties in common.

First, one observes that both kinds of trees are closely related to permu-
tations so that their generating functions are almost the same. But even the
finer structure is comparable. In particular we will discuss profile and height.
Although the limiting behaviour is not as universal as it is for Galton-Watson
trees there are remarkable similarities. The limiting object of the normalised
profile is now a stochastic process of random analytic functions and the height
distribution is highly concentrated around its mean that is of order logn.

We also discuss d-ary recursive trees, generalised plane oriented trees and
(fringe balanced) m-ary search trees, where we observe analogue properties.

The proof methods are leaning very much on the analytic side. Generating
functions are very well suited for the above mentioned classes of random
trees. Nevertheless, we also make use of sophisticated probabilistic tools like
proper L2 settings for martingales or the contraction method for recursively
defined random variables. We completely skip the use of Pólya urn model,
since there is a recent monograph [147] on that subject. For early literature
and complementary results we refer to the excellent survey by Smythe and
Mahmoud [192] and to the article by Bergeron, Flajolet and Salvy [12].
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6.1 Permutations and Trees

There are different ways to represent a permutation π ∈ Sn. One standard
way is to use a 2-row matrix

π =

(
1 2 · · · n
π(1) π(2) · · · π(n)

)
,

or the cycle decomposition.1 For example, the permutation

π =

(
1 2 3 4 5 6 7 8
4 6 3 5 1 8 2 7

)
∈ S8

has the cycle decomposition

π = (1, 4, 5)(2, 6, 8, 7)(3)

which can also be depicted graphically (see Figure 6.1). Note that the order
of the cycles and also the cyclic order inside a cycle are irrelevant.

3

1 4

5

2 6

7 8

Fig. 6.1. Cycle decomposition of a permutation

The cycle decomposition of permutations can be used to define an evolu-
tion process of permutations. Suppose that we have a permutation π ∈ Sn

represented in its cycle decomposition. We can uniquely reduce π to a per-
mutation π̃ ∈ Sn−1 just by deleting n in the cycle decomposition of π. More
precisely, if n forms a cycle of length 1, that is, n is a fixed point of π, then we
just remove this cycle. However, if n is contained in a cycle of length greater
than 1 then there exist i and j with π(i) = n and π(n) = j. Deleting n means
we set π̃(i) = j. For example, if we remove n = 8 in our previous example
then we obtain

1 A cycle C (of length k) of a permutation π is a sequence of the kind C =
(j, π(j), π2(j), · · · , πk−1(j)) with πk(j) = j, where k is the smallest positive inte-
ger with this property. Every permutation π induces a partition of the underlying
set {1, 2, . . . , } of cycles, which is called the cycle decomposition of π. We also
say that j is a fixed point of π if π(j) = j, that is, (j) is a singleton in the
corresponding cycle decomposition. A permutation is called cyclic, if the cycle
decomposition consists just of one cycle.
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π̃ =

(
1 2 3 4 5 6 7
4 6 3 5 1 7 2

)
∈ S7

with its cycle decomposition

π̃ = (1, 4, 5)(2, 6, 7)(3)

(compare also with Figure 6.2).

3

1 4

5

2 6

7

Fig. 6.2. Cycle decomposition of a reduced permutation π̃

It is also possible to reverse this process. Starting with π̃ ∈ Sn−1 given
through its cycle decomposition we can include n either by defining a new
cycle of length 1, that is, we set π(n) = n, or we include it somewhere in
the existing cycles. Since there are precisely k possible ways to include a new
element into a cycle of length k, there are n − 1 possible ways to include
an n element into the already existing cycles of π̃. Hence, in total there are
n = n − 1 + 1 possible ways to extend π̃ ∈ Sn−1 to a permutation π ∈ Sn

consistently with the cycle decomposition.
This can be, of course, extended to a process that generates all n! per-

mutations. Starting with (1) ∈ S1 there are two possible ways to extend (1)
to a permutation in S2. Next, for every permutation in S2 there are three
different ways to extend it to a permutation in S3, and so on. Since we can
uniquely go back, every permutation is uniquely constructed in this way (and
also provides another proof of |Sn| = n!).

6.1.1 Permutations and Recursive Trees

We recall that recursive trees are rooted labelled trees, where the root is
labelled by 1 and the labels of all successors of any node v are larger than the
label of v. The labels can also be seen as the result of an evolution process
where at the j-th step the node with label j is attached. Thus, the labels
encode the history of the process. Using this interpretation it is easy to see
that there are exactly (n− 1)! different recursive trees of size n. For example,
Figure 6.3 depicts all 6 recursive trees of size 4.

In order to show that there is a close relation to permutations we slightly
change the labels by starting with label 0 at the root. Then there are n!
recursive trees with labels 0, 1, . . . , n.
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1

4

111

2 2 2 2

3 3 3

3

4

4

4

1

2 3

4

1

2 3

4

Fig. 6.3. All recursive trees of size 4

We now present a bijection between the evolution process of recursive trees
(with labels {0, 1, . . . , n}) and permutations (in Sn) in their cycle decomposi-
tion. We start with the recursive tree consisting just of the root that is labelled
by 0 at one hand and with the empty permutation on the other hand. The first
step is to attach a node with label 1 to the root and to consider the permuta-
tion 1 ∈ S1. Now we proceed inductively in the following way. If the j-node is
attached to the root node then modify the corresponding cycle decomposition
by appending a fixed point that maps j to j, that is, a new cycle of length 1.
On the other hand, if the j-th node is attached to node i > 0 (that is different
from the root) then we consider the cycle C that contains i. If i is followed
by k in this cycle then we modify it by including j in-between i and k, that
is, in the new cycle i is followed by j and j is followed by k. Figure 6.4 shows
this procedure applied to the example permutation π. This kind of process is
also called Chinese restaurant process. The cycles in the permutations can be
interpreted as (circular) tables in a Chinese restaurant and when a new guest
arrives he/she either opens a new table or joins an already used table.

It is easy to check that this procedure provides a bijection. Furthermore
the uniform random model on recursive trees corresponds to the uniform
random model on permutations for every fixed n. The bijection also transfers
some shape characteristics. For example, the root degree of the recursive tree
corresponds to the number of cycles in the cycle decomposition and the subtree
sizes of the root correspond to the sizes of the cycles.

Let us use this correspondence in two ways to characterise the limiting
behaviour of the root degree of a random recursive tree resp. the number of
cycles in a random permutation.

The Stirling numbers of the first kind sn,k are defined by

n∑
k=0

sn,ku
k = u(u− 1) · · · (u− n+ 1).

The first few values are given in Figure 6.5.
Equivalently, they can be defined by the initial values s0,k = δ0,k, sn,0 =

δn,0 and the recurrence relation
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Fig. 6.4. Bijection between recursive trees and permutations
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sn,k k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

n = 0 1
n = 1 0 1
n = 2 0 -1 1
n = 3 0 2 -3 1
n = 4 0 -6 11 -6 1
n = 5 0 24 -50 35 -10 1
n = 6 0 -120 274 -225 85 -15 1
n = 7 0 720 -1764 1624 -735 175 -21 1
n = 8 0 -5040 13068 -13132 6769 -1960 322 -28 1

Fig. 6.5. Stirling numbers of the first kind

sn+1,k = sn,k−1 − nsn,k.

It is easy to check that the Stirling numbers have alternating signs. Hence,
|sn,k| = (−1)n+ksn,k. These absolute values can, thus, be defined by

n∑
k=0

|sn,k|uk = u(u+ 1) · · · (u + n− 1)

or by the recurrence

|sn+1,k| = |sn,k−1|+ n|sn,k|. (6.1)

It is well known that the absolute value |sn,k| coincides with the number of
permutations an,k in Sn where the cycle decomposition consists of k cycles.
There are various ways to prove this assertion. For example, by using the
above evolution process of permutations, it follows that the numbers an,k

satisfy the same recurrence as (6.1) and they have the same initial values.
Permutations can certainly be viewed as labelled objects with the expo-

nential generating function

a(x) =
∑
n≥0

n!
xn

n!
=

1

1− x .

Similarly the generating function of cyclic permutations is given by

c(x) =
∑
n≥1

(n− 1)!
xn

n!
=
∑
n≥1

xn

n
= log

1

1− x .

Indeed, this corresponds with the cycle decomposition: every permutation is
a set of cycles:

a(x) = ec(x) = elog
1

1−x =
1

1− x.

Consequently, the double generating function for the number an,k is given by
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a(x, u) =
∑
n,k

an,k
xn

n!
uk = eu log 1

1−x =
1

(1− x)u
. (6.2)

If we now consider the random variable Cn that counts the number of cycles
in random permutations in Sn, that is,

P{Cn = k} =
an,k

n!
,

we obtain from (6.2) and (2.10)

EuCn =
n!

n!
[xn]a(x, u)

= (−1)n

(−u
n

)
=
nu−1

Γ (u)
+O(n�(u)−2)

=
1

Γ (u)
e(u−1) log n

(
1 +O

(
1

n

))
,

provided that u is contained in a (small) complex neighbourhood of u = 1.
Now a direct application of the Quasi Power Theorem 2.22 implies that

Cn satisfies a central limit theorem with ECn = log n + O(1) and VarCn =
logn+O(1):

Cn − logn√
logn

d−→ N(0, 1). (6.3)

This also shows that the root degree Rn+1 of random recursive trees (of size
n+ 1) has the same behaviour.

We complete this combinatorial approach to the root degree with a proba-
bilistic one. Looking at the evolution process of recursive trees it follows that
Rn+1 can be represented as

Rn+1 =

n∑
j=1

ξj ,

where ξj = 1 if the j-th node is attached to the root, and ξj = 0 if it is
attached somewhere else. By definition the random variables ξj (1 ≤ j ≤ n)
are independent and have the probability distribution P{ξj = 1} = 1/j, that
is, they are Bernoulli distributions with parameter 1/j. Hence we have

ERn+1 =

n∑
j=1

1

j
= logn+O(1),

and

VarRn+1 =
n∑

j=1

(
1

j
− 1

j2

)
= log n+O(1).
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Finally, the classical central limit theorem (for independent but not necessarily
identically distributed random variables) can be applied and we recover (6.3).

We close this section by providing a bivariate asymptotic expansion for
Stirling numbers of the first kind that is valid for k = O(log n).

Lemma 6.1. We have uniformly for c logn ≤ k ≤ C logn

|sn,k| =
(n− 1)!(logn)k

k!Γ
(

k
log n

) (1 +O

(
1√

logn

))
,

where c < C are arbitrary positive constants.

Proof. By definition we have∑
k≥0

|sn,k|uk = (−1)n

(−u
n

)
n!.

Hence, by Lemma 2.14 we have uniformly for c ≤ |u| ≤ C∑
k≥0

|sn,k|uk = n!
nu−1

Γ (u)

(
1 +O

(
1

n

))

= (n− 1)!
eu log n

Γ (u)

(
1 +O

(
1

n

))
and consequently by Cauchy’s formula

|sn,k| =
(n− 1)!

2πi

∫
γ

eu log n

Γ (u)

(
1 +O

(
1

n

))
du

uk+1
.

We will choose γ to be a circle |u| = r with radius r = k/ logn, since the
dominating part of the integrand

eu log nu−k = eu log n−k log u

has a saddle point at u = k/ logn. In fact, a standard saddle point method
yields the result.

We use the substitution u = reit (−π < t ≤ π) with r = k/ logn. Then by
using the approximation eit = 1 + it− 1

2 t
2 +O(t3) we get

eu log nu−k = ekr−ke−
k
2 t2+O(kt3).

We split up the integral into two parts:

γ1 = {u = reit : |t| ≤ k−1/3},
γ2 = {u = reit : k−1/3 < |t| ≤ π}.
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For the integral over γ1 we have

(n− 1)!

2πi

∫
γ1

eu log n

Γ (u)

(
1 +O

(
1

n

))
du

uk+1

=
(n− 1)!

2π

∫
|t|≤k−1/3

ekr−k

Γ (r) +O(t)
e−

k
2 t2+O(kt3)

(
1 +O

(
1

n

))
dt

=
ekr−k

Γ (r)

(n− 1)!

2π

∫
|t|≤k−1/3

e−
k
2 t2
(

1 +O(t) +O(kt3) +O

(
1

n

))

=
ekr−k

Γ (r)

(n− 1)!

2π

(√
2π

k
+O
(
e−

1
2 k1/3
)

+O

(
1

k

)
+O

(
1

n

))

=
(n− 1)!(logn)k

k!Γ (r)

(
1 +O

(
1√
k

))
.

The integral over γ2 is negligible. This can be checked by the following obser-
vations. By continuity it follows that there exists a constant c′ > 0 such that
for all |t| ≤ π and uniformly for c ≤ r ≤ C∣∣eu log nu−k

∣∣ ≤ ekr−ke−c′kt2 .

Furthermore we have ∫
k−1/3≤|t|≤π

e−c′kt2 dt = O
(
e−c′k1/3

)
.

This completes the proof of the lemma.

Remark 6.2 Lemma 6.1 holds even uniformly for 1 ≤ k ≤ C logn. This can
be proved, for example, by using the series expansion

∑
n≥0

|sn,k|
xn

n!
=

1

k!

(
log

1

1− x

)k

and a Hankel like contour integration applied to Cauchy’s formula (similarly
to the proof of Lemma 2.14).

Using this asymptotic expansion we obtain even more precise information
on the local behaviour of the distribution of the number of cycles in permuta-
tions (resp. of the root degree of recursive trees). Since P{Cn = k} = |sn,k|/n!,
we have (uniformly for c logn ≤ k ≤ C log n)

P{Cn = k} =
(logn)k

n k!Γ
(

k
log n

) (1 +O

(
1√

logn

))
.
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In particular, if k is close to logn, that is, if |k − logn| = O((log n)2/3) then
we also get

P{Cn = k} =
1√

2π log n
e−

(k−log n)2

2 log n

(
1 +O

( |k − logn|3
(logn)2

)
+O

(
1√

log n

))
,

which is a local central limit theorem.

6.1.2 Permutations and Binary Search Trees

In Section 1.4.1 we have introduced binary search trees as binary trees that
are generated by input keys that can be viewed as a permutation π. The
construction starts by putting π(1) to the root and ends with a tree where
all nodes that are put to the left of an internal node v have a smaller value
and all nodes that are put to the right have a larger value. For example the
permutation

π =

(
1 2 3 4 5 6 7 8
4 6 3 5 1 8 2 7

)
∈ S8

resp. the list (4, 6, 3, 5, 1, 8, 2, 7) induces the binary tree that is depicted on
the left-hand-side of Figure 6.6.

1

2

3

4

5

6

7

8 5.

7.

3.

1.

4.

2.

8.

6.

Fig. 6.6. Binary search tree and its evolution with input list (4, 6, 3, 5, 1, 8, 2, 7)

Note, however, that this mapping is not one-to-one. For example, the list
(4, 3, 6, 5, 1, 8, 7, 2) produces exactly the same (labelled) tree. Nevertheless, if
we take care of the insertion order of the evolution process then the situation
is different. For example, the right-hand-side in Figure 6.6 shows the order
of insertion for this particular example. However, in this way we just recover
binary recursive trees (see Section 1.3.3, where we have discussed ternary
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recursive trees in more detail). The input list encodes in which order we have
to put the nodes in the evolution process.

Interestingly, this is actually a bijection between permutations π ∈ Sn and
binary recursive trees with n labelled internal nodes. We already discussed
how a permutation leads to a binary recursive tree. Conversely, if a binary
recursive tree is given, where the labels encode the evolution of the tree, then
we use the fact that the values of nodes of the left subtree of any node v are
smaller than the value of v to recover the permutation π. In our example the
left subtree of the root has 3 internal nodes. Hence, the root corresponds to the
value 4. In this way we can continue. If we have the correspondence between
the values of π and the order of the insertion we get π (see Figure 6.7).

5./1

3./3

1./4

4./5

2./6

8./7

6./8

7./2

−→ π =

„
1 2 3 4 5 6 7 8
4 6 3 5 1 8 2 7

«

Fig. 6.7. Bijection between binary recursive trees and permutations

We will not exploit this bijection further. Nevertheless, the study of ran-
dom binary search trees (or random binary recursive trees) is always related
to the study of random permutations.

6.2 Generating Functions and Basic Statistics

Since recursive trees and binary recursive trees are labelled objects, it is nat-
ural to use exponential generating functions. Nevertheless there is some flex-
ibility in the case of recursive trees as we will see.

We will now show that recursive trees have a similar recursive structure as
simply generated trees. Note that the definition of recursive trees is a bottom-
up-approach. A recursive tree of size n+1 is obtained by attaching a new node
to a recursive tree of size n. However, it is also possible to use a top-down-
view by separating the root and by studying subtrees that can be considered
as (relabelled) recursive trees (of a smaller size, of course).
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6.2.1 Generating Functions for Recursive Trees

We already know that there are (n− 1)! recursive trees of size n. Hence, the
exponential generating function y(x) is given by

y(x) =
∑
n≥1

(n− 1)!
xn

n!
=
∑
n≥1

xn

n
= log

1

1− x . (6.4)

We first show how we could have gotten this relation by using the recursive
structure of recursive trees.

Lemma 6.3. The exponential generating function y(x) of recursive trees sat-
isfies the differential equation

y′(x) = ey(x), y(0) = 0. (6.5)

Proof. Instead of considering a recursive tree with labels {1, 2, . . . , n} we look
at a recursive tree with labels {0, 1, 2, . . . , n}, where the root gets label 0.
Then the generating function of this structure is given by

Y (x) = y′(x).

Equivalently we can say that we disregard the root. Then the subtrees of the
root represent an unordered labelled sequence of recursive trees of total size n
and have, thus, the generating function ey(x) (compare also with the graphical
representation of the recursive structure given in Figure 6.8). This completes
the proof of the lemma.

= + + + ...+

Fig. 6.8. Recursive structure of recursive trees

The differential equation (6.5) is easy to solve and we, thus, recover the
explicit representation (6.4).

In the proof of Lemma 6.3 we made use of recursive trees, where the root
is disregarded (or labelled with 0) and has the generating function

Y (x) = y′(x) =
1

1− x. (6.6)
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Alternatively to the recurrence used in Lemma 6.3 we can also use the follow-
ing recurrence (compare also with the alternate recurrence for planted plane
trees depicted in Figure 3.4). We divide the recursive tree (where the root is
labelled by 0) into two trees, the subtree that is rooted at the node with label
1 and the remaining tree (see Figure 6.9). Formally we do that by disregard-
ing the root and the vertex with label 1, which corresponds to the generating
function Y ′(x) = y′′(x). Due to this decomposition we get the relation

Y ′(x) = Y (x)2, Y (0) = 1. (6.7)

This also follows from (6.6).

=

Fig. 6.9. Alternate recursive structure of recursive trees

6.2.2 Generating Functions for Binary Search Trees

The usual probabilistic model for binary search trees is the random permu-
tation model, that is, one assumes that every permutation π ∈ Sn is equally
likely. This naturally induces a probability distribution for binary search trees
with n internal nodes. Equivalently we can consider binary recursive trees.
Due to the bijective relation to permutations the random permutation model
corresponds to the uniform distribution on binary recursive trees of given size.

Let us work with binary recursive trees. Since there are n! different trees
of size n, the exponential generating function y(x) is given by

y(x) =
∑
n≥1

n!
xn

n!
=

x

1− x .

As in the case of recursive trees it is also possible to use a top-down-view by
separating the root and by studying the two subtrees. This again leads to a
differential equation.

Lemma 6.4. The exponential generating function y(x) of binary recursive
trees satisfies the differential equation

y′(x) = (1 + y(x))2, y(0) = 0. (6.8)
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Proof. Let y′(x) denote the (exponential) generating function of binary re-
cursive trees, where the root is disregarded. Then the two subtrees of the
root represent a labelled product of the union of the empty tree and a binary
recursive tree, which has the (exponential) generating function (1 + y(x))2

(compare also with Figure 6.10).

=

++

Fig. 6.10. Recursive structure of binary recursive trees

The relations (6.7) and (6.8) again show that recursive trees and binary
recursive trees (resp. binary search trees) are very similar. Nevertheless the
actual shape characteristics are not necessarily the same (see again Figures 6.9
and 6.10).

Occasionally it will be convenient to replace y(x) by ỹ(x) = y(x) + 1, that
is we change the convention for recursive trees of size 0. Then (6.8) rewrites
to

ỹ′(x) = ỹ(x)2.

Equivalently we can think of binary search trees, where it is usual to include
the case of size 0. Thus, the generating function for binary search trees is
y(x) = 1/(1− x).

Lemma 6.4 extends directly to d-ary recursive trees (compare with Fig-
ures 1.10 and 1.11).

Lemma 6.5. The exponential generating function y(x) of d-ary recursive
trees (with an integer d ≥ 2) satisfies the differential equation

y′(x) = (1 + y(x))d, y(0) = 0, (6.9)

and is explicitly given by

y(x) = (1− (d− 1)x)
− 1

d−1 − 1.

Consequently, the number of different d-ary trees of size n is given by
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yn =

n−1∏
j=1

(jd− (j − 1))

= n!(−1)n(d− 1)n

(− 1
d−1

n

)
∼ n!(d− 1)n n

2−d
d−1

Γ
(

1
d−1

) .
Again it is also convenient to consider instead

ỹ(x) = y(x) + 1 = (1− (d− 1)x)
− 1

d−1

that satisfies the differential equation ỹ′(x) = ỹ(x)d.

6.2.3 Generating Functions for Plane Oriented Recursive Trees

Plane oriented recursive trees are similarly defined to recursive trees with
the only difference that the left-to-right-order of the successors is taken into
account. This means that we are considering plane trees. There are again
different points of view.

The corresponding evolution process works as follows. As usual we start
with the root that gets label 0. Now if a node already has out-degree k (where
the descendants are ordered), then there are k + 1 possible ways to attach
a new node. Hence, if a plane tree already has j − 1 nodes then there are
precisely 2j − 3 possibilities to attach the j-th node and to generate a plane
oriented recursive tree of size j. We already observed in Section 1.3.2 that this
consideration implies that there are

1 · 3 · . . . · (2n− 3) = (2n− 3)!! =
1

2n−1

(2(n− 1))!

(n− 1)!

different plane oriented recursive trees.
We can also use a generating function approach.

Lemma 6.6. The exponential generating function y(x) of plane oriented re-
cursive trees satisfies the differential equation

y′(x) =
1

1− y(x)
, y(0) = 0 (6.10)

and is explicitly given by

y(x) = 1−
√

1− 2x =
∑
n≥1

(2n− 3)!!
xn

n!
.
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Proof. The only difference to the proof of Lemma 6.3 is that the subtrees of
the root are now ordered and, thus, constitute a sequence of plane oriented
trees that is counted by 1/(1− y(x)).

The natural probabilistic model is to assume that every plane oriented
recursive tree of size n is equally likely. Since the evolution process discussed
above represents every tree in a unique way, this uniform model is obtained
in the following way, too.

The process starts with the root that is labelled with 1. Then inductively at
step j a new node (with label j) is attached to any previous node of out-degree
k with a probability proportional to k + 1. More precisely, the probability of
choosing a node of out-degree k equals (k + 1)/(2j − 3).

If we think in this way it is not necessary anymore to consider plane trees.
It is now a non-uniform evolution process on (usual) recursive trees, where
the local out-degrees of the nodes are taken into account.

Now we use a slightly more general model. We fix a parameter r > 0 and
randomly generate recursive trees in the following way: We start with the root
that is labelled with 1. Then inductively at step j a new node (with label j) is
attached to any previous node of out-degree k with probability proportional
to k + r; more precisely the probability equals (k + r)/((r + 1)j − (r + 2)).

If r = 1, we get plane oriented recursive trees. It is further possible to
describe these kinds of trees by using a recursive procedure that leads to a
differential equation of the form

y′(x) =
∑
m≥0

(−1)m

(−r
m

)
y(x)m =

1

(1 − y(x))r

with solution

y(x) =
∑
n≥1

yn
xn

n!
= 1− (1− (r + 1)x)

1
r+1 .

The n-th coefficient

yn = (−1)n−1n!(r + 1)n

( 1
r+1

n

)
∼ −n!(r + 1)n n−

r+2
r+1

Γ
(
− 1

r+1

) (6.11)

has to be interpreted as the sum of weights of trees of size n, where the
weights are proportional to the probabilities that come from the evolution
process. Anyway, it is a special class of increasing trees.2

2 We have discussed this correspondence more precisely in Section 1.3.3.
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6.2.4 The Degree Distribution of Recursive Trees

Next we will discuss the distribution of the number of nodes of given degree
in a random recursive tree of size n, where we use one of the above evolution
processes to define the probability distribution. First of all note that all dis-
cussed trees (recursive trees, d-ary recursive trees,3 variants of plane oriented
recursive trees) can be considered as special kinds of increasing trees (see
Section 1.3.3) where the corresponding exponential generating function y(x)
satisfies a differential equation of the kind

y′(x) = Φ(y(x)),

where Φ(w) = φ0 + φ1w + φ2w
2 + · · · is a generating series of weights. As

described in Section 1.3.3 this kind of equation can be interpreted in a com-
binatorial way. The left-hand-side y′(x) corresponds to those objects, where
we disregard the root resp. where the root (formally) gets the label 0. The
right-hand-side is then the weighted union of (labelled) n-tuples of trees, that
is

φ0 + φ1y(x) + φ2y(x)2 + · · · .
This is very similar to the combinatorial recursive description of simply gen-
erated trees resp. of Galton-Watson trees.

Now let X
(k)
n denote the (random) number of nodes of out-degree k in a

class of random recursive trees of size n, where the probability distribution is
defined in terms of the weights φj . We can extend the above combinatorial

description to characterise the distribution of X
(k)
n .

Lemma 6.7. The bivariate generating function

yk(x, u) =
∑
n≥1

ynEuX(k)
n
xn

n!
=
∑
n,m

ynP{X(k)
n = m} x

n

n!
um

satisfies the differential equation

∂yk(x, u)

∂x
= Φ(yk(x, u)) + φk (u− 1) yk(x, u)k, y(0, u) = 0. (6.12)

Moreover, we have[
∂yk(x, u)

∂u

]
u=1

=
∑
n≥1

ynEX(k)
n

xn

n!
= φky

′(x)

∫ x

0

y(t)k

y′(t)
dt. (6.13)

Proof. Equation (6.12) follows from the combinatorial decomposition, since
the number of nodes of out-degree k equals the sum of those nodes in the

3 In d-ary recursive trees the node degree is defined by the number of internal
descendent nodes.
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subtrees of the root with the only exception that we have to add 1, if the
out-degree of the root equals k.

Next set

S(x) =

[
∂y(x, u)

∂u

]
u=1

.

Then from (6.12) we derive the linear differential equation

S′(x) = Φ′(y(x))S(x) + φky(x)k, S(0) = 0

which has the solution (6.13).

Before we present general results on the distribution of X
(k)
n we comment

on a special case, namely on the number of leaves Ln = X
(0)
n of recursive

trees. In this case we have Φ(x) = ex and yn = (n − 1)!. Here we explicitly
obtain

P{Ln = k} =
1

(n− 1)!

〈
n− 1
k − 1

〉
, (6.14)

where

〈
n
k

〉
denotes the Eulerian numbers. These numbers satisfy a recurrence

that looks similar to that of Stirling numbers:〈
n
k

〉
= (k + 1)

〈
n− 1
k

〉
+ (n− k)

〈
n− 1
k − 1

〉
.

The first few values are listed in Figure 6.11.
There is an easy proof for (6.14). It is immediate from the definition of the

evolution process of recursive trees that the number of recursive trees of size

n with k leaves satisfies the same recurrence as the numbers

〈
n− 1
k − 1

〉
(and

have the same initial values). Consequently they coincide.

fi
n
k

fl
k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

n = 0 1
n = 1 1 1
n = 2 1 4 1
n = 3 1 11 11 1
n = 4 1 26 66 26 1
n = 5 1 57 302 302 57 1
n = 6 1 120 1191 4216 1191 120 1
n = 7 1 247 4293 15619 15619 4293 247 1
n = 8 1 502 14608 88234 156190 88234 14608 502 1

Fig. 6.11. Eulerian numbers

Note that the differential equation
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∂y(x, u)

∂x
= u+ ey(x,u) − 1

for the generating function y(x, u) =
∑

n≥1 EuLn xn/n has an explicit solution

y(x, u) = log

(
u− 1

ue−x(u−1) − 1

)
,

which can be used to obtain explicit formulas for mean value and variance:

ELn =
n

2
, VarLn =

7

12
n+

1

3
.

Moreover, a central limit theorem for Ln holds:

Ln − n
2√

7
12n

d−→ N(0, 1).

In fact we will extend this kind of limiting result to X
(k)
n for all k and for

all classes of recursive trees we have discussed. In order to make this more
transparent we split it into three statements.

Theorem 6.8. Let X
(k)
n denote the (random) number of nodes of out-degree

k in a random recursive tree of size n in the uniform model. Then for every

k ≥ 0, X
(k)
n satisfies a central limit theorem with mean value and variance

asymptotically proportional to n. In particular we have

EX(k)
n =

n

2k+1
+O((log n)k+1).

Theorem 6.9. Let X
(k)
n denote the (random) number of (internal) nodes with

k internal successors in a random d-ary recursive tree of size n, where d ≥ 2

is a fixed integer. Then for every k ≥ 0, X
(k)
n satisfies a central limit theorem

with mean value and variance asymptotically proportional to n. In particular
we have for 0 ≤ k ≤ d

EX(k)
n =

(d− 1)d!(2d− k − 2)!

(2d− 1)!(d− k)!
n+O
(
nmin{ d−2

d−1 , k−1
d−1 }
)
.

Theorem 6.10. Let X
(k)
n denote the (random) number of nodes of out-degree

k of a random increasing tree of size n, defined by the generating series Φ(x) =

(1 − x)−r, where r > 0. Then for every k ≥ 0, X
(k)
n satisfies a central limit

theorem with mean value and variance asymptotically proportional to n. In
particular we have

EX(k)
n = n

(r + 1)Γ (2r + 1)Γ (r + k)

Γ (r)Γ (2r + k + 2)
+O
(
n

1
r+1

)
.
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Theorem 6.10 is of special interest, since the corresponding (asymptotic)
degree distribution

dk =
(r + 1)Γ (2r + 1)Γ (r + k)

Γ (r)Γ (2r + k + 2)

has a polynomial tail of the form

(r + 1)Γ (2r + 1)

Γ (r)
k−2−r.

Such distributions are also called scale-free and appear in several real networks
like the internet or social networks that have an evolution in time. In particular
there is substantial interest in random graph models where vertices are added
to the graph successively and are connected to several already existing nodes
according to some given law. The so-called Albert-Barabási model (see [1])
joins a new node to an existing one with probability proportional to the degree.
Recall that the random recursive trees that are considered in Theorem 6.10
are constructed exactly by this principle: a new node is attached to an already
existing one (with out-degree k) with probability proportional to k+ r. Thus,
these models confirm the observation that networks that follow the Albert-
Barabási principle have asymptotically a scale-free degree distribution.

The proofs of Theorems 6.8–6.10 are very similar. So we group them to-
gether.

Proof. Let us start with recursive trees. The differential equation (y =
yk(x, u))

∂y

∂x
= ey +

yk

k!
(u− 1) (6.15)

can be rewritten to ∫ y

0

1

ev + vk

k! (u − 1)
dv = x. (6.16)

We split up the integral on the left-hand-side into two parts:∫ y

0

1

ev + vk

k! (u− 1)
dv =

∫ ∞
0

1

ev + vk

k! (u− 1)
dv

−
∫ ∞

y

1

ev + vk

k! (u− 1)
dv

= C(u)−D(y, u).

Observe that D(y, u) is given asymptotically by

D(y, u) = e−y
(
1 +O
(
e−yyk|u− 1|

))
.

Hence (6.16) translates to
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C(u)− x = e−y
(
1 +O
(
e−yyk|u− 1|

))
which can be inverted to

yk(x, u) = log
1

C(u)− x +O

(
|u− 1| |C(u)− x|

(
log

1

C(u)− x

)k+1
)
.

Consequently it follows from Theorem 2.25 (combined with the Remark fol-

lowing Corollary 2.16) that X
(k)
n satisfies a central limit theorem with mean

value

EX(k)
n = −C

′(1)

C(1)
n+O
(
(log n)k+1

)
and variance

VarX(k)
n =

(
−C

′′(1)

C(1)
− C

′(1)

C(1)
+
C′(1)2

C(1)2

)
n+O
(
(logn)k+1

)
.

It is now an easy exercise to compute

C(1) = 1, C ′(1) = − 1

2k+1
, C′′(1) =

2

32k+1

(2k)!

(k!)2
.

This completes the proof for recursive trees.
In the d-ary case we can work in completely the same way. The solution of

the corresponding differential equation rewrites to x−C(u) = D(y, u), where
(for k < d)

C(u) =

∫ ∞
0

1

(1 + v)d +
(

d
k

)
vk(u− 1)

dv

and

D(y, u) =

∫ ∞
y

1

(1 + v)d +
(

d
k

)
vk(u − 1)

dv

=
1

d− 1

1

(1 + y)d−1

(
1 +O

( |u− 1|
yd−k

))
.

This leads to

yk(x, u) = ((d− 1)(C(u)− x))
− 1

d−1

(
1 +O
(
|u − 1| |C(u)− x| d−k

d−1

))
− 1

which again implies a central limit theorem with expected value and variance
that is asymptotically proportional to n. In particular we have

C(1) =
1

d− 1
, C′(1) = − d!(2d− k − 2)!

(2d− 1)!(d− k)!
, and

C′′(1) = 2

(
d

k

)2
(2k)!(3d− 2k − 2)!

(3d− 1)!
.
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Since X
(d)
n = n−∑k<dX

(k)
n , the case k = d can be reduced (more or less) to

the previous cases by considering the differential equation

∂y

∂x
= (y + 1)d + (u− 1)

(
(y + 1)d − yd

)
.

The proof in the final case, where Φ(w) = (1− w)−r , is slightly different,
since y(x0) is finite at the radius of convergence. Here the solution y = yk(x, u)
of the corresponding differential equation is determined by x−C(u) = D(y, u),
where

C(u) =

∫ 1

0

1

(1− v)−r +
(
r+k−1

k

)
vk(u − 1)

dv

and

D(y, u) =

∫ y

0

1

(1− v)−r +
(
r+k−1

k

)
vk(u− 1)

dv

=
1

r + 1
(1− y)r+1 (1 +O (|u− 1| |1− y|r)) .

Hence, we get

yk(x, u) = 1− ((r + 1)(C(u)− x))
1

r+1 +O (|u− 1| |C(u)− x|) .

Consequently it follows from Theorem 2.25 that X
(k)
n satisfies a central limit

theorem with mean and variance asymptotically proportional to n. It is an
easy exercise to compute

C(1) =
1

r + 1
, C′(1) = −k!Γ (r + k)Γ (2r + 1)

Γ (r)Γ (2r + k + 2)
and

C′′(1) =
(2k)!Γ (r + k)2Γ (3r + 1)

(k!)2Γ (r)2Γ (3r + 2k + 2)

which completes the proof of Theorems 6.8–6.10.

Note that in the previous discussion we have not distinguished nodes by
their label. Obviously the out-degree of node n is always 0, whereas the root
degree is usually much larger than the average degree. We will not go much
into detail here (for a detailed analysis see Kuba and Panholzer [134]). We
will only focus on the root degree Rn. By construction it follows that the
derivative with respect to x of the function

y(x, u) =
∑
n≥1

ynEuRn
xn

n!

is given by
∂y(x, u)

∂x
= Φ(uy(x)).
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Note that the analysis is relatively simple, since

∂y(x, u)

∂x
=
∑
n≥1

ynEuRn
xn−1

(n− 1)!
.

We have already observed that the root degree of recursive trees is re-
lated directly to Stirling numbers of the first kind and satisfies a central limit
theorem with mean value and variance asymptotically proportional to logn.
Thus, we just present a corresponding result for plane oriented recursive trees
(and their variants defined by Φ(w) = 1/(1− w)r). For the d-ary case we get
concentration at d.

Theorem 6.11. Let Rn denote the root degree of a random increasing tree of
size n, defined by the generating series Φ(w) = (1−w)−r, where r > 0. Then
for every κ > 0 we have

P{Rn = �κn 1
r+1 �} ∼

Γ
(

r
r+1

)
Γ (r)

κr−1

n
1

r+1

1

2πi

∫
H

e−κ·(−z)
1

r+1−z dz, (6.17)

where H denotes a Hankel contour, and

ERn ∼ rΓ
(

r

r + 1

)
n

1
r+1 . (6.18)

In particular for r = 1 we have

P{Rn = k} =
(2n− 3− k)!

2n−1−k(n− 1− k)!
∼
√

2

πn
e−k2/(4n)

and ERn =
√
πn+O(1).

Proof. Since ∂y(x,u)
∂x = (1− uy(x))−r, it follows that

P{Rn = k} =
(n− 1)!

yn

(
r + k − 1

k

)
[xn−1]y(x)k,

where y(x) =
∑

n≥1 yn x
n/n! = 1−(1−(r+1)x)

1
r+1 . By using an approximate

Hankel contour and the substitution x = 1
r+1

(
1 + z

n

)
one obtains (if k is

proportional to n
1

r+1 )

[xn−1]y(x)k =
1

2πi

∫
γ

(
1− (1 − (r + 1)x)

1
r+1

)k dx
xn

∼ (r + 1)n−1

n

1

2πi

∫
H

e−kn
− 1

r+1 ·(−z)
1

r+1−z dz.

By using the asymptotic relations
(
r+k−1

k

)
∼ kr−1/Γ (r) and (6.11), we obtain

(6.17).
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The generating function for the expected value is r y(x)(1−y(x))−2r. Thus,
(6.18) follows easily.

For the case r = 1 we have y(x) = 1 −
√

1− 2x, which is the solution of
the equation

y =
x

1− y
2

.

Hence, by Lagrange’s inversion formula, we obtain explicit formulas for yn

and [xn−1]y(x)k, and consequently for P{Rn = k}.

Another interesting parameter is the maximum degree Δn. For recursive
trees the following precise result due to Goh and Schmutz [94] is known. (It
extends previous results by Szymánski [198] and Devroye and Jiang Lu [53].)

Theorem 6.12. The maximum degree Δn in random recursive trees of size
n satisfies

P{Δn ≤ d} = exp
(
−2−(d−log2 n+1)

)
+ o(1).

This says that the distribution of Δn is highly concentrated around the value
log2 n and the distribution’s behaviour is related to the extreme value dis-

tribution (or Gumbel distribution) with distribution function F (t) = e−e−t

.
Note that the root degree is approximately logn which is considerably smaller
than the maximum degree.

The proof of Theorem 6.12 is an analytic tour de force which we do not
present here. Nevertheless we want to give some indications why the maximum
degree is concentrated around log2 n. More precisely we derive an upper bound
for the expected maximum degree and indicate that a corresponding lower
bound can be obtained, too.

The method we use here relies on the so-called first moment method.

Lemma 6.13. Let X be a discrete random variable on non-negative integers.
Then

P{X > 0} ≤ min{1,EX}.

Proof. We only have to observe that

EX =
∑
k≥0

k P{X = k} ≥
∑
k≥1

P{X = k} = P{X > 0}.

We apply this principle to the random variable X
(>k)
n that counts the

number of nodes in recursive trees with out-degree > k. Obviously we have

Δn > k ⇐⇒ X(>k)
n > 0

and consequently

EΔn =
∑
k≥0

P{Δn > k}
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=
∑
k≥0

P{X(>k)
n > 0}

≤
∑
k≥0

min{1,EX(>k)
n }.

Thus, if we have some (uniform) information on the expected values

EX(>k)
n =

∑
j>k

EX(j)
n

then we obtain an upper bound for EΔn.

Lemma 6.14. For random recursive trees of size n we have uniformly in
k ≥ 0

EX(k)
n =

n

2k+1
+O

(
1

n

(logn)k

k!

)
. (6.19)

Proof. By Lemma 6.7 we have

∑
n≥1

EX(k)
n

xn

n
=

1

k!(1 − x)

∫ x

0

(1− t)
(

log
1

1− t

)k

dt

=
1

2k+1

1

1− x + (x − 1)

k∑
j=0

1

j!2k+1−j

(
log

1

1− x

)j

.

It is now an easy exercise to use the methods of Lemma 2.12 to obtain the
uniform estimate

[xn](x − 1)

(
log

1

1− x

)k

≤ C

n2
(logn)k

for some constant C > 0. Hence, (6.19) follows.

Suppose that k ≥ log2 n. Then∑
j>k

(logn)j

j!
= O

(
(log n)k+1

(k + 1)!

)
.

Consequently we get (for k ≥ log2 n)

EX(>k)
n =

n

2k+1
+O

(
1

n

(logn)k+1

(k + 1)!

)
and also ∑

k≥log2 n

EX(>k)
n = O(1).

Summing up we, thus, obtain
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EΔn ≤
∑
k≥0

min{1,EX(>k)
n }

≤
∑

k<log2 n

1 +
∑

k≥log2 n

EX(>k)
n

= log2 n+O(1).

In order to obtain a corresponding lower bound one can use the so-called
second moment method.

Lemma 6.15. Suppose that X is a non-negative random variable which is not
identically zero and has finite second moment. Then

P{X > 0} ≥ (EX)2

E (X2)
.

Proof. This follows from an application of the Cauchy-Schwarz inequality:

EX = E
(
X · 1[X>0]

)
≤
√

E (X2)
√

E (12
[X>0]) =

√
E(X2)
√

P{X > 0}.

In order to apply the second moment method to obtain a lower bound for

EΔn one needs estimates for E (X
(>k)
n )2 which can be derived in a similar

way as above. In particular it follows that

EΔn ≥ log2 n+O(1)

and, hence, EΔn = log2 n+O(1). However, we do not work out the details.
Nevertheless, remark that the threshold k ≈ log2 n is determined by the

equation
EX(>k)

n ≈ 1 resp. by EX(k)
n ≈ 1.

Thus, in order to get a first impression where the average maximum degree is
situated one should look at this equation. A rigorous treatment can then be
realised with the help of the first and second moment method.

6.2.5 The Insertion Depth

The insertion depth Dn of a recursive tree is the distance of the n-th node
to the root. Note that the distribution of Dn depends on the whole evolution
process until step n− 1. Nevertheless, there is a very elegant way to describe
the distribution ofDn in relation to the profiles of the occurring random trees.
Let (T1, T2, . . .) denote the sequence of random recursive trees, where in each
step a new node is attached to one of the existing ones. The profile Xn,k of
Tn is the number of nodes at distance k to the root. Now the conditional
probability P{Dn = k|Tn−1} is given by

P{Dn = k|Tn−1} =
Xn−1,k−1

n− 1
,
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because Dn = k if the n-th node is attached to a node at distance k − 1 in
Tn−1. Hence, by taking expectations we obtain

P{Dn = k} =
EXn−1,k−1

n− 1
.

Therefore, the distribution ofDn is determined by the expected profile that we
will calculate in the next lemma (that is due to Dondajewski and Szymánski
[56], see also Meir and Moon [151]).

Lemma 6.16. The expected profile in random recursive trees is given by

EXn,k =
|sn,k+1|
(n− 1)!

,

where sn,k denotes the of the first kind.

Proof. We present two different proofs of this property. The first proof uses the
evolution process (T1, T2, . . .) and conditional probabilities resp. expectations.
The insertion of the n-th node has the following (conditional) effect on the
profile:

E(Xn,k|Tn−1) =

(
1− Xn−1,k−1

n− 1

)
Xn−1,k +

Xn−1,k−1

n− 1
(Xn−1,k + 1)

= Xn−1,k +
Xn−1,k−1

n− 1
.

Taking the expectation this leads to the recurrence relation

EXn,k = EXn−1,k +
EXn−1,k−1

n− 1
. (6.20)

Hence, by using the series

en(u) =
∑
k≥0

EXn,k u
k,

we derive the recurrence

en(u) = en−1(u)

(
1 +

u

n− 1

)
.

Since e1(u) = 1, we this leads to an explicit representation

en(u) =

(
1 +

u

n− 1

)(
1 +

u

n− 2

)
· · ·
(

1 +
u

1

)
or to

(n− 1)! en(u) = (u+ 1) · · · (u + n− 1).
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Hence, by definition
(n− 1)!EXn,k = |sn,k+1|.

The second proof uses the fact that a random recursive tree can be parti-
tioned into two random recursive trees (compare with Figure 6.9). This shows
that the double sequence (Xn,k) satisfies

Xn,k
d
= XIn,k−1 +X∗n−In,k, (6.21)

where
d
= denotes equality in distribution and where (Xn,k), (X∗n,k), and

(In) are independent, Xn,k
d
= X∗n,k, and In is uniformly distributed over

{1, 2, . . . , n− 1}. Taking expectations this relation implies

EXn,k =
1

n− 1

n−1∑
j=1

(EXj,k−1 + EXj,k) . (6.22)

Setting

F (x, u) =
∑
n,k

EXn,k x
n uk

the equation (6.22) rewrites to

x
∂F

∂x
− F = (1 + u)

xF

1− x

with initial condition F (0, u) = 0. Its unique solution is given by

F (x, u) = x(1 − x)−1−u =
∑
n≥1

(
n+ u− 1

n− 1

)
xn =
∑
n,k

|sn,k+1|
(n− 1)!

xn uk

which again proves the formula EXn,k =
|sn,k+1|
(n−1)! .

We can now use the fact that Stirling numbers approximate a Gaussian
distribution (compare with (6.3)) or we apply the Quasi-Power Theorem to
derive the following theorem for the insertion depth.

Theorem 6.17. The insertion depth Dn in random recursive trees satisfies a
central limit theorem of the form

Dn − logn√
logn

d−→ N(0, 1)

and we have

EDn = logn+O(1) and VarDn = logn+O(1).
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This theorem has a natural probabilistic interpretation.4 Fix n and let
ξj = 1 if node j appears on the path from the root to node n, and ξj = 0 if
not. Evidently

Dn =

n−1∑
j=1

ξj .

It is a nice exercise to show that ξj , 1 ≤ j ≤ n− 1, are independent Bernoulli
random variables with P{ξj = 1} = 1/j (see [54]). This implies the central
limit theorem and is also consistent with the explicit relation between the
probability distribution of Dn and the Stirling numbers sn,k.

6.3 The Profile of Recursive Trees

We already observed that the expected profile of random recursive trees is

given by EXn,k =
|sn,k+1|
(n−1)! . Due to the asymptotic properties of Stirling num-

bers (see Lemma 6.1) we have for k = α logn

EXn,k ∼
(logn)k

k!Γ
(

k
log n + 1

) ∼ nα(1−log α)

Γ (α+ 1)
√

2πα logn
(6.23)

and if k is close to logn

EXn,k ∼
n√

2π log n
e−

(k−log n)2

2 log n .

These asymptotic expansions show that almost all nodes are concentrated
around the level logn. This concentration property is not present for condi-
tioned Galton-Watson trees, where the profile was of order

√
n in the whole

range. Therefore we cannot expect that the profile of recursive trees is approxi-
mated by a process like the local time of the Brownian excursion. Nevertheless
there is a natural limiting structure if we consider the normalised profile

Xn,k

EXn,k
.

Theorem 6.18. For 0 ≤ α ≤ e there exists a random variable X(α) that
satisfies the equation

X(α)
d
= αUαX(α) + (1 − U)αX(α)∗

with EX(α) = 1, where X(α), X(α)∗, U are independent, X(α)
d
= X(α)∗,

and U is uniformly distributed on [0, 1], such that

4 This fact was communicated to the author by Svante Janson.
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Xn,�α log n�
EXn,�α log n�

d−→ X(α). (6.24)

Furthermore, for 0 ≤ α ≤ m1/(m−1) we also have convergence up to the m-th
moment.

Remark 6.19 It is also possible to define (X(α), 0 ≤ α ≤ e) as a stochastic
process, where the elements X(α) are not only continuous (a.s.) but even
analytic and have, thus, an analytic continuation to a proper region of the
complex plane. Theorem 6.18 then extends to a weak limit law of the form(

Xn,�α log n�
EXn,�α log n�

0 ≤ α ≤ e
)

d−→ (X(α), 0 ≤ α ≤ e)

(compare with [68]).

There are at least three different possible approaches to prove Theo-
rem 6.18, namely a martingale approach, a moment approach, and a contrac-
tion method approach. All these three methods have advantages and draw-
backs. In what follows we will describe all these methods, however, we mainly
focus on the martingale approach (although we do not give a full treatment
for the whole range of Theorem 6.18) and comment on the underlying ideas
of the other two methods.

6.3.1 The Martingale Method

The martingale method is in fact the strongest method (of the three men-
tioned ones), since we also obtain almost sure convergence (instead of weak
convergence). In what follows we prove that

sup
k

log n∈K

∣∣∣∣ Xn,k

EXn,k
−X
(

k

logn

)∣∣∣∣→ 0 a.s. (6.25)

as n → ∞, for all compact sets K that are contained in the open interval
((3 −

√
2)/2, 1.58). The reason why we restrict to this interval is that we

apply L2 methods. Since the limit X(α) has finite second moments only for
α ∈ (0, 2), we might extend the interval ((3 −

√
2)/2, 1.58) to the interval

(0, 2) but we will not cover the whole interval (0, e). It is possible to extend
(6.25) to all compact sets K ⊆ (0, e). For this purpose we would have to
introduce proper continuous embeddings of recursive trees (Yule processes)
which is much beyond the scope of this book (for details we refer to [38, 39]
and [189]).

The martingale method makes use of certain random polynomials, the
so-called profile polynomials

Wn(u) =
∑
k≥0

Xn,k u
k (u ∈ C).
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From the proof of Lemma 6.16 we already know that the expected values are
given by

EWn(u) =
(u+ 1) · · · (u+ n− 1)

(n− 1)!
= (−1)n−1

(−u− 1

n− 1

)
. (6.26)

The main observation is the following martingale property. In the (similar)
context of binary search trees this observation is due to Jabbour-Hattab [108].

Lemma 6.20. The normalised profile polynomial

Mn(u) =
Wn(u)

EWn(u)

is a martingale (with respect to the natural filtration related to the tree evolu-
tion process).

Proof. We use the identity

E(Xn,k|Tn−1) = Xn−1,k +
Xn−1,k−1

n− 1

from the proof of Lemma 6.16 to deduce that

E (Wn(u)|Tn−1) = Wn−1(u)

(
1 +

u

n− 1

)
.

Alternatively we can use the recurrence

Wn(u) = Wn−1(u) + uDn

and the observation

E
(
uDn |Tn−1

)
=
∑
k≥1

Xn−1,k−1

n− 1
uk =

uWn−1(u)

n− 1
. (6.27)

Thus, normalising by the expected profile (6.26) leads to

E (Mn(u)|Tn−1) = Mn−1(u),

which proves the martingale property.

If u is real and non-negative, then Mn(u) is a non-negative martingale.
Hence, there exits M(u) which is the a.s. limit:

Mn(u) →M(u) a.s.

The idea of the martingale method is to first show that this conver-
gence also holds in a certain complex domain and then to use Cauchy’s for-
mula to derive a limit relation for Xn,k from the limit relation Wn(u) =
Mn(u) EWn(u) ∼M(u) EWn(u).

Accordingly our first goal is to extend the convergence property of the
martingale Mn(u) to complex u.
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Proposition 6.21. For any compact set C ⊆ {u ∈ C : |u − 1| < 1} the
martingale Mn(u) converges a.s. uniformly to its limit M(u).

Note that Mn(u) can be considered as a random analytic function. Hence, the
limit M(u) is a random analytic function, too.

We start by establishing an explicit formula for the covariance function of
(Wn(u1),Wn(u2)) which is valid for all u1, u2 ∈ C.

Lemma 6.22. For all u1, u2 ∈ C:

E (Wn(u1)Wn(u2)) =

n−1∑
j=1

⎛⎝βj(u1, u2)

n−1∏
k=j+1

αk(u1, u2)

⎞⎠+

n−1∏
j=1

αj(u1, u2),

where

αk(u1, u2) = 1 +
u1 + u2

k
(6.28)

and

βk(u1, u2) = u1u2
EWk(u1u2)

k
. (6.29)

Proof. By using the relation Wn(u) = Wn−1(u) + uDn and (6.27) we get the
linear recurrence

E (Wn(u1)Wn(u2)) = αn−1(u1, u2)E (Wn−1(u1)Wn−1(u2)) + βn−1(u1, u2).
(6.30)

Now, the explicit formula for E (Wn(u1)Wn(u2)) follows from (6.30) (and
E (W1(u1)W1(u2)) = 1).

Using Lemma 6.22 we establish regularity of the covariance function of M
over U × U , where U = {u ∈ C : |u− 1| < 1}.

Corollary 6.23 (Mn(u))n∈N is bounded in L2, if and only if |u − 1| < 1.
Hence, there exists a random variable M(u) ∈ L2 such that Mn(u) → M(u)
almost surely and in L2 for u ∈ U = {u ∈ C : |u− 1| < 1}. Furthermore, the
covariance function Γ (u1, u2) = E (M(u1)M(u2)) is holomorphic in U × U .

Proof. By (6.28) we have

n−1∏
k=j+1

αk(u1, u2) =

(
n

j

)u1+u2
(

1 +O

(
1

j

))
and consequently

E (Wn(u1)Wn(u2)) = u1u2

n−1∑
j=1

EWj(u1u2)

j

n−1∏
k=j+1

αk(u1, u2) +

n−1∏
j=1

αj(u1, u2)
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= O

⎛⎝n−1∑
j=1

j�(u1u2)−1

(
n

j

)�(u1+u2)

+ n2�(u1+u2−1)

⎞⎠
= O

⎛⎝n�(u1+u2)
n−1∑
j=1

j−�(u1+u2−u1u2+1)

⎞⎠ .
Thus,

Γn(u1, u2) := E (Mn+1(u1)Mn+1(u2))

=
E (Wn+1(u1)Wn+1(u2))

EWn+1(u1) · EWn+1(u2)

= O

⎛⎝n−1∑
j=1

j−�(u1+u2−u1u2+1)

⎞⎠ .
Obviously, we have the same lower bound. Hence, (Mn(u))n∈N is bounded in
L2, if and only if 2�u− |u|2 > 0, respectively if and only if u ∈ U .

Now, if 2�u1−|u1|2 > 0 and 2�u2−|u2|2 > 0 then we also have �(u1+u2−
u1u2) > 0. Thus, Γn(u1, u2) → Γ (u1, u2) is uniformly over the compact sets of
U ×U . Since for any n, Γn is holomorphic we conclude that Γ is holomorphic
in U × U .

The holomorphy of Γ will give us (with the help of the Kolmogoroff cri-
terion) continuity of M(u) over any parametrised arc γ ⊆ U . However, Kol-
mogoroff’s criterion is not sufficient to establish directly a continuity of M as
a complex function.

Lemma 6.24. Set I ′ := (0, 2). Then (M(t))t∈I′ has a continuous modification
M̃ such that, for any compact interval K ⊆ I ′,

E

(
sup
t∈K

|M̃(t)|2
)
< +∞.

More generally, if γ : R → U is continuously differentiable, then there is s a
modification M̃γ of (Mn(γ(t)))t∈R such that, for any compact set K of R,

E

(
sup
t∈K

|M̃γ(t)|2
)
< +∞.

Proof. Observe that, as Mn(u) is a rational function with real coefficients
which implies Mn(u) = Mn(u). Thus for all u1, u2 ∈ U

E
(
|M(u1)−M(u2)|2

)
= Γ (u1, u1) + Γ (u2, u2)− 2� (Γ (u1, u2)) . (6.31)

Let C be a compact set of U ; since Γ is holomorphic, a local expansion of Γ
up to order 2 yields
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Γ (u1, u1) + Γ (u2, u2)− 2� (Γ (u1, u2)) ≤ C|u1 − u2|2 (6.32)

for some constant C > 0 and for all u1, u2 ∈ K. Hence, by (6.31) and (6.32)

E
(
|M(u1)−M(u2)|2

)
≤ C|u1 − u2|2 (6.33)

for all u1, u2 ∈ K. Hence by Kolmogoroff’s criterion (cf. [183, p. 25]), a con-
tinuous modification M̃ exists and

E

[(
sup

s,t∈K

|M̃t − M̃s|
|t− s|α

)2 ]
< +∞

for all α ∈ (0, 1
2 ). Consequently, for all compact set K ⊆ (0, 2), we have

E

(
sup
t∈K

|M̃(t)|2
)
< +∞.

Now let γ : R → U be continuously differentiable. We can do the same as
before with the martingales (Mn,γ(t))t∈R for Mn,γ(t) = Mn(γ(t)). Equation
(6.33) becomes

E (|Mγ(t1)−Mγ(t2)|2) ≤ K|γ(t1)− γ(t2)|2 ≤ C′|t1 − t2|2

for some constant C ′ > 0 depending on the compact interval K ⊆ R under
consideration. Thus, (Mγ(t))t∈R has a continuous modification M̃γ such that

E (supt∈K |M̃γ(t)|2) < +∞ for all compact set K ⊆ R.

Now uniform convergence of (Mn) follows from a theorem of vectorial
martingales. (We proceed as in [118].)

Lemma 6.25. For any compact set K ⊆ (0, 2), we have a.s.

Mn →M uniformly over K

and

lim
n→∞

E

(
sup
t∈K

|Mn(t)−M(t)|2
)

= 0.

More generally, let γ : R → U be continuously differentiable and set Mn,γ(t) =
Mn(γ(t)) and Mγ(t) = M(γ(t)). Then the same result holds for (Mn,γ).

Proof. Let [a, b] ⊆ (0, 2). The modification M̃ of the previous proposition
is a random variable taking its values in the separable Banach space E =
CC([a, b]). Let E be the Borelian σ-field of E and F∞ = σ(Tn, n ≥ 1), and M̃
is E|F∞-measurable and is in L2(E) = L2(Ω,E).

We will show that E (M̃ |Tn) can be identified as Mn|[a,b] if Mn|[a,b] is
understood as a random variable taking its values in E.
Observe that
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ϕt : CC([a, b]) → C, X �→ X(t)

is a continuous linear form over CC([a, b]), hence E (ϕt(M̃)|Tn) = ϕt(E (M̃ |Tn))
almost surely. Saying that M̃ is a modification of M means that for all
t ∈ [a, b], ϕt(M̃) = M(t) (a.s.). Hence it follows that Mn(t) = E (M̃ |Tn)(t)
a.s., so that Mn = E (M̃ |Tn) a.s.

We can now apply the theorem of vectorial martingales (see [164, Propo-
sition V-2-6, p104]), which yields

Mn = E

(
M̃ |Tn

)
→ E

(
M̃ |F∞
)

a.s. and in L2(E).

Since M̃ is F∞-measurable we get, as n→∞,

sup
t∈[a,b]

|Mn(t)− M̃(t)| → 0 a.s. (6.34)

and

E

(
sup

t∈[a,b]

|Mn(t)− M̃(t)|2
)
→ 0. (6.35)

Hence, the first part of the lemma is proved since (6.34) implies that, almost
surely, M(t) exists for all t ∈ [a, b] and is equal to M̃(t).

By the previous proposition we can proceed for (Mn,γ) along the same
lines as for (Mn). This completes the proof.

Now, since Mn is holomorphic, for all n and any ρ < 1, the uniform
convergence of Mn over the arc γ(t) = 1+ρeit, implies (via Cauchy’s formula)
uniform convergence of Mn and all its derivatives over compact subsets of U .

In order to apply Cauchy’s formula to obtain information on the profile
Xn,k it is, however, not sufficient to know the behaviour of Mn(u) near the
real axis. We need more precise information about the limiting behaviour of
Mn(u) for 0 < |u| < 2, resp. of Wn(u). The next proposition provides a.s.
estimates for u ∈ C also away from the real axis.

Proposition 6.26. For any K > 0 there exists δ > 0 such that a.s.

Wn(u) = O

(
n|u|

(logn)K

)
uniformly for u ∈ C with (3 −

√
2)/2 + ε ≤ |u| ≤ 1.58, |u − 1| ≥ 1 − δ as

n→∞.

Before we prove Proposition 6.26 we state a corollary.

Corollary 6.27 For any K > 0 and ε > 0 we have a.s. that there exists n0

such that for all n ≥ n0

|Wn(u)| ≤ EWn(|u|)
(log n)K

for all u ∈ C with (3−
√

2)/2 + ε ≤ |u| ≤ 1.58 and (log n)−
1
2+ε ≤ | arg u| ≤ π

as n→∞.
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Proof. By Proposition 6.26 this estimate is true for u ∈ C with (3−
√

2)/2+ε ≤
|u| ≤ 1.58 and |u − 1| ≥ 1 − δ. Moreover, for u ∈ C with |u − 1| ≤ 1 − δ we
know that Mn(u) is a.s. bounded. Furthermore we have uniformly in n and t
for (logn)ε/

√
logn ≤ |t| ≤ π

|EWn(u0e
it)| ≤ EWn(u0)e−ct2 log n

for some constant c > 0 (depending continuously on u0). A combination of
these two estimates proves the corollary.

For the proof of Proposition 6.26 we need an estimate for E |Wn(u)|2.

Lemma 6.28. For every δ > 0 we have uniformly for u with |u− 1| ≤ 1− δ

E |Wn(u)|2 = O(n2�u)

and for u with 1− δ ≤ |u− 1| ≤ 1

E |Wn(u)|2 = O(n2�u logn)

as n→∞. Let K be a compact set in the complex plane such that |u− 1| ≥ 1
for all u ∈ C. Then

E |Wn(u)|2 = O(n|u|
2

logn)

as n→∞, uniformly for u ∈ K.

Proof. We recall that

E |Mn(u)|2 = O

⎛⎝n2�u
n−1∑
j=1

j−(2�u−|u|2+1)

⎞⎠ .
We also have 2�u−|u|2 > 0 for |u−1| < 1 and 2�u−|u|2 < 0 for |u−1| > 1.
Thus, for |u − 1| ≤ 1− δ, there exists δ′ > 0 such that

E |Wn(u)|2 = O

⎛⎝n2�u
n∑

j=1

j−1−δ′

⎞⎠ = O
(
n2�u
)
,

and for 1− δ ≤ |u− 1| ≤ 1

E |Wn(u)|2 = O

⎛⎝n2�u
n∑

j=1

j−1

⎞⎠ = O
(
n2�u logn

)
,

which prove the first part of the lemma.
Finally, for u with |u− 1| > 1 we obtain

E |Wn(u)|2 = O
(
n|u|

2

logn
)
.

This completes the proof of the lemma.
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We will also use an a.s. estimate for the derivative of Wn(u).

Lemma 6.29. We have for all u with |u| < 2

|W ′
n(u)| ≤W ′

n(|u|) = O
(
|u|−1n|u| log n

)
a.s.

Proof. Obviously, we have |W ′
n(u)| ≤ W ′

n(|u|). It is also known that Hn ∼
e logn a.s. (compare with Section 6.4 and [175]). Hence, Xn,k = 0 a.s. if
k > (e+ 1) logn. This implies a.s.

W ′
n(|u|) =

∑
k≥0

kXn,k|u|k−1 ≤ (e+1) logn
∑
k≥0

Xn,k|u|k−1 = (c+1) logn
Wn(|u|)
|u| .

Since Wn(|u|) ∼Mn(|u|)EWn(|u|) = O
(
n|u|
)
, this proves the lemma.

We are now ready to work out the Proof of Proposition 6.26. By Lemma 6.28
we have for (3−

√
2)/2 < |u| ≤ 1.58 and |u− 1| ≥ 1− δ (for some sufficiently

small δ > 0)

P

{
|Wn(u)| ≥ n|u|

(logn)K

}
≤ E |Wn(u)|2

(n|u|/(logn)K)2
= O

(
(logn)2K+1

n2|u|−|u|2

)
.

First, let us consider the range R1 := {u ∈ C : |u− 1| ≥ 1− δ, 1 ≤ |u| ≤ 1.58}.
Set α = 1/(1.581(2− 1.581)). Then we have

α|u|(2− |u|) > 1 and α− 1 + αe log |u| < α|u|

for all u with 1 ≤ |u| ≤ 1.58.
We now use O((log n)2K+2) points un,j covering R1 with maximal distance

(logn)−K−1. Observe that for u ∈ R1 the series∑
n≥1

(log[nα])2K+1

[nα]2|u|−|u|2

converges uniformly. Hence, by the Borel-Cantelli-Lemma we have a.s.

sup
j
|W[nα](u[nα],j)| ≤ [nα]|u|

(log[nα])K

for all but finitely many n. By using Lemma 6.29 we obtain a.s.

|W[nα](u)−W[nα](v)| = O
(

[nα]max{|u|,|v|} logn
)

which implies that we can interpolate between u[nα],j and obtain a.s.

sup
u∈R1

|W[nα](u)| ≤ [nα]|u|

(log[nα])K
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for all but finitely many n.
Finally, we have to observe that a.s., uniformly for nα ≤ k ≤ (n+ 1)α

|Wk(u)−W[nα](u)| = O

(
[nα]2|u|−1

(log[nα])K

)
. (6.36)

Since

Wn+k(u)−Wn(u) =

n+k∑
l=n+1

uDl ,

we have to estimate uDl . We know that a.s. Hn ≤ e logn (for sufficiently large
n). Hence it follows that a.s.

max
nα≤l≤(n+1)α

Dl ≤ e · log(nα).

So we only have to check that

|u| ([(n+ 1)α]− [nα]) |u|e log(nα) = O

(
[nα]|u|

(log[nα])K

)
.

Alternatively, it suffices to show that there exists η > 0 such that

α− 1 + αe log |u| ≤ α|u| − η

for 1 ≤ |u| ≤ 1.58. However, this is true for the above choice of α. Hence,
(6.36) follows, which completes the proof for u ∈ R1.

For u ∈ R2 := {u ∈ C : |u − 1| ≥ 1/ − δ, (3 −
√

2)/2 + ε ≤ |u| ≤ 1} we
have to do almost the same. Again we use a subsequence [nβ ] to apply the
Borel-Cantelli-Lemma. We set β = (1 +

√
5)/2 and observe that

β|u|(2− |u|) > 1 and β − 1 < β|u|

for all u with (3 −
√

2)/2 + ε ≤ |u| ≤ 1. This completes the proof of Proposi-
tion 6.26.

The proof of (6.25) can now be completed in the following way. In partic-
ular we show that the limit X(α) coincides with the limit M(α). For small t
we use the a.s. expansion

Mn(u0e
it) = Mn(u0)eitM

′
n(u0)/Mn(u0)+O(t2)

and Wn(u0e
it) = Mn(u0e

it)EWn(u0e
it). For large t we use the estimate of

Proposition 6.26 (resp. of its Corollary 6.27).
By Cauchy’s formula we have

Xn,k =
u−k

0

2π

∫ π

−π

Wn(u0e
it)e−kit dt,
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where we will use u0 = k/ logn. First, for any (sufficiently small) η > 0 we
have by Corollary 6.27

|Wn(u0e
it)| ≤ EWn(u0)

logn
a.s.

for (3−
√

2)/2 + ε ≤ u0 ≤ 1.58 and (log n)−
1−η
2 ≤ |t| ≤ π. Hence∣∣∣∣∣u−k

0

2π

∫
(log n)−

1−η
2 ≤|t|≤π

Wn(u0e
it)e−kit dt

∣∣∣∣∣ = O

(
EWn(u0)

uk
0 log n

)
.

Conversely, for real t with |t| ≤ (logn)−
1−η
2 we have uniformly

Wn(u0e
it)e−kit = Mn(u0e

it)EWn(u0e
it)e−kit

= Mn(u0)EWn(u0)e2u0 log n(eit−1)−kit(1 +O(|t|) +O(n−1))

= Mn(u0)EWn(u0)e−u0 log n t2(1 +O((log n)−
1−3η

2 )).

This implies that a.s.

Xn,k =
u−k

0

2π

∫
|t|≤(log n)−

1−η
2

Wn(u0e
it)e−kit dt+O

(
u−k

0

EWn(u0)

logn

)
= Mn(u0)u−k

0

√
2πkEWn(u0)(1 +O((log n)−

1−3η
2 )).

Since we uniformly have

u−k
0

√
2πkEWn(u0) ∼ EXn,k

and Mn(u0) ∼M(u0), the result follows.

6.3.2 The Moment Method

Suppose that 0 ≤ α ≤ 1. We indicate a proof of (6.24) in this range by showing
that for all integers k ≥ 1

lim
n→∞

E

(
Xn,�α log n�

EXn,�α log n�

)k

= EX(α)k.

This moment method only works for 0 ≤ α ≤ 1, since X(α) does not have
moments of arbitrary order if α > 1 (compare with [87]).

Let Pn,k(u) = EuXn,k denote the probability generating function of Xn,k.
Then the recurrence (6.21) implies that

Pn,k(u) =
1

n− 1

n−1∑
j=1

Pj,k−1(u)Pn−j,k(u), (n ≥ 2, k ≥ 1),
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with Pn,0(u) = u for n ≥ 1 and P0,k = 1. Taking derivatives and setting u = 1
yields the recurrence

EXn,k =
1

n− 1

n−1∑
j=1

(EXj,k−1 + EXn−j,k)

with EXn,0 = 1 for n ≥ 1 and EX0,k = 0. This recurrence is different from
(6.20) but can be extended to higher moments.

By taking m-th derivatives we are led to the recurrence

A
(m)
n,k =

1

n− 1

n−1∑
j=1

(
A

(m)
j,k−1 +A

(m)
n−j,k

)
+B

(m)
n,k

with A
(1)
n,0 = 1 for n ≥ 1 and An,0(m) = 0 for m ≥ 2 and n ≥ 1, where

A
(m)
n,k = E (Xn,k(Xn,k − 1) · · · (Xn,k −m+ 1)) = P

(m)
n,k (1)

and where B
(m)
n,k abbreviates

B
(m)
n,k =

m−1∑
h=1

(
m

h

)
1

n− 1

n−1∑
j=1

A
(h)
j,k−1A

(m−h)
n−j,k .

Hence, for every fixed m ≥ 1 the sequence (A
(m)
n,k ) satisfies a recurrence of the

form

an,k =

n−1∑
j=1

(aj,k−1 + an−j,k) + bn,k, (n ≥ 2, k ≥ 1), (6.37)

with given initial values a1,k and a given sequence bn,k. For the interest of
consistency we set b1,k = a1,k. Then (6.37) holds also for n = 1. Remarkably
the recurrence (6.37) has an explicit solution of the following form (see [87]).

Lemma 6.30. Suppose that the sequence an,k satisfies the recurrence (6.37).
Then we have (for n ≥ 1 and k ≥ 0)

an,k = bn,k +

n−1∑
j=1

k∑
r=0

bj,k−r

j
[ur] (u+ 1)

∏
j<�<k

(
1 +

u

�

)
.

Proof. Setting an(u) =
∑

k an+1,ku
k and bn(u) =

∑
k bn+1,ku

k the recurrence
(6.37) rewrites to

an(u) =
1 + u

n

n−1∑
j=0

aj(u) + bn(u) (n ≥ 1)
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with initial condition a0(u) =
∑

k a1,ku
k. By taking the difference nan(u) −

(n− 1)an−1(u) we thus obtain

an(u) =
(

1 +
u

n

)
an−1(u) + bn−1(u)− n− 1

n
bn−1(u), (n ≥ 2),

and consequently

an(u) = bn(u) + (1 + u)

n−1∑
j=0

bj(u)

j + 1

∏
j+1≤�≤n

(
1 +

u

�

)
.

Taking the coefficient of uk on both sides provides the result.

For example, in the case m = 1 we have bn,k = δn,1δ0,k for n ≥ 1 and
k ≥ 0. Thus, we recover the explicit (and also the asymptotic) formula for the

expected value A
(1)
n,k = EXn,k:

EXn,k = [uk]
∏

1≤�<n

(
1 +

u

j

)
=
|sn,k+1|
(n− 1)!

∼ (log n)k

k!Γ
(

1 + k
log n

) .
Starting from this solution one can iteratively apply Lemma 6.30 to obtain

asymptotic expansions for A
(m)
n,k for m ≥ 2.

Proposition 6.31. For 0 ≤ α ≤ m1/(m−1) set ν0(α) = ν1(α) = 1 and recur-
sively (for m ≥ 2)

νm(α) =
1

m− αm−1

m−1∑
h=1

(
m

h

)
νh(α)νm−h(α)

Γ (hα + 1)Γ ((m− h)α+ 1)

Γ (mα+ 1)

Then for every fixed 0 ≤ α ≤ m1/(m−1) we have, as n→∞,

EXm
n,�α log n� ∼ νm(α)

(
EXn,�α log n�

)m
(6.38)

It is easy to check that for every 0 ≤ α ≤ 1 the sequence νm(α) is the moment
sequence of a random variableX(α). From the contraction method (see Chap-
ter 8) it follows that (6.41) has a unique solution X(α) (with EX(α) = 1)
and by definition the sequence νm(α) is the moment sequence of X(α). By
induction it follows that νm(α)Γ (mα + 1)/m! = O(Km) (for some K > 0,
see [107]). Hence, the sequence νm(α) determines uniquely the distribution of
X(α). Consequently, for 0 ≤ α ≤ 1, Proposition 6.31 implies the limit relation
(6.24).

If α > 1 then only few moments exist. More precisely if α ≤ m1/(m−1 then
X(α) has moments up to order m (and we have convergence of moments up
to this order) but the (m+ 1)-st moment is infinite.

The proof of Proposition 6.31 is very technical. Following [87] one starts
with a uniform upper bound for the expected profile of the form
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A
(1)
n,k = O

(
(v logn)−1/2v−knv

)
, (0 ≤ k < n),

where 0 < v ≤ v0. If k is of logarithmic order then this bound is optimal,
since we can set v = k/ logn. Then Lemma 6.30 implies inductively

A
(m)
n,k = O

(
1

m− vm−1

(
(v logn)−1/2v−knv

)m)
,

uniformly for 0 ≤ k < n, where 0 < v < m1/(m−1).
By using this a priori bound Proposition 6.31 follows by induction on m.

More precisely one shows that for every integer m ≥ 1

A
(m)
n,k ∼ νm(α)

(
(logn)k

k!Γ (α+ 1)

)m

, (6.39)

where k = �α logn�. We just observed that this is true form = 1. By assuming
that (6.39) holds all integers < m and by using the definition of νm(α) one
obtains

B
(m)
n,k ∼ νm(α)

mα − αm

mα+ 1

(
(logn)k

k!Γ (α+ 1)

)m

.

Furthermore, from

[ur]
∏

j<�<n

(
1 +

u

�

)
=

(log(n/j))r

j

(
1 +O(r2/j)

)
(for εn ≤ j ≤ (1 − ε)n and 0 ≤ r ≤ k = o(

√
j)) it follows that

n−1∑
j=1

k∑
r=0

B
(m)
j,k−r

j
[ur](u + 1)

∏
j<�<k

(
1 +

u

�

)
= μm(α)

mα − αm

mα+ 1
(αm + 1)

(
(log n)k

k!Γ (α+ 1)

)m ∫ 1

0

xmα−αm−1 dx

= μm(α)
αm + 1

mα + 1

(
(log n)k

k!Γ (α+ 1)

)m

Hence, (6.39) holds for m, too.
Finally we have

EXm
n,�α log n� ∼ A

(m)
n,�α log n�

which implies (6.38) for all m ≥ 1.

6.3.3 The Contraction Method

The contraction method makes use of the fact that there is a fixed point
equation for the (expected) limiting distribution.
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Assume for a moment that we already know a limiting relation for the

profile Xn,k of the form Xn,�α log n�/EXn,�α log n�
d−→ X(α). Motivated by

that we rewrite the recurrence (6.21) in the form:

Xn,k

EXn,k

d
=

EXIn,k−1

EXn,k

XIn,k−1

EXIn,k−1
+

EX∗n−In,k

EXn,k

X∗n−In,k

EX∗n−In,k

. (6.40)

Recall that X∗n,k is an independent copy of Xn,k and that (Xn,k), (X∗n,k), and
(In) are independent. By (6.23) we have for k = �α logn�

EXIn,k−1

EXn,k
∼ k

logn

(
log In
logn

)k−1

∼ α
(
In
n

)α

,

and
EX∗n−In,k

EXn,k
∼
(

1− In
n

)α

.

Hence, by (formally) taking the limit n→∞ and by observing that In/n
d−→ U ,

the (expected) limit relation for X(α) is

X(α)
d
= αUαX(α) + (1− U)αX(α)∗. (6.41)

Interestingly we can do a similar calculation for the profile polynomial
Wn(u). For simplicity we assume that u is a positive real number. Then we

already know that Mn(u) = Wn(u)/EWn(u)
d−→ M(u), where M(u) is the

limiting martingale. Again from (6.21) we obtain

Wn(u)
d
= uWIn(u) +Wn−In (u)∗,

and consequently

Mn(u)
d
= u

EWIn(u)

EWn(u)
MIn(u) +

EWn−In (u)∗

EWn(u)
M∗

n−In
(u)

∼ u
(
In
n

)u

MIn(u) +

(
n− In
n

)u

Mn−In(u)∗.

By taking the limit n→∞ we get

M(u)
d
= uUuM(u) + (1− U)uM(u)∗. (6.42)

Thus, X(α) and M(u) satisfy the same distributional fixed point equation

(6.41), resp. (6.42) when we set α = u. Actually we have X(α)
d
= M(α). By

the martingale method we already know that Xn,�α log n�/EXn,�α log n� has a
limit X(α) which equals M(α).

Nevertheless, one can proceed directly without using profile polynomials.
We will make this more precise in Section 8.2.3, however, the underlying idea
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is the following. In order to solve a distributional fixed point equation of the
form (6.41) one has to introduce a proper metric on a space of measures so
that the right-hand-side of the fixed point equation becomes a contraction. In
particular, one gets a unique solution and since the normalised version (6.40)
of the original underlying recurrence is close to the limit equation (6.41),
one can expect that Xn,k/EXn,k (for k ∼ α logn) stabilises around the limit
X(α).

This concept works quite well if the random variable of interest is not
double indexed. For example, the so-called contraction method (introduced in
Chapter 8) applies to the profile polynomial Wn(u). In the case of the profile
Xn,k one has to take care of the second index k, too, which causes some extra
work (compare with [87]). In fact, it is possible to prove Theorem 6.18 in the
full range 0 < α < e. We will give more details in Section 8.2.3.

6.4 The Height of Recursive Trees

We encode the distribution of the height Hn of recursive trees by the gener-
ating function

yk(x) =
∑
n≥1

P{Hn < k}
xn

n
.

This is consistent with the generating function y(x) = log(1/(1 − x)) of re-
cursive trees. More precisely, let yn,k denote the number of recursive trees of
size n and height < k. Then

P{Hn < k} =
yn,k

(n− 1)!
,

and yk(x) also is the exponential generating function of these numbers:

yk(x) =
∑
n≥1

yn,k
xn

n!
.

Thus, we can use the usual counting procedure and obtain recursively

y′k+1(x) = eyk(x), (yk+1(0) = 0),

with the initial condition y0(x) = 0. In parallel we will work with

Yk(x) = y′k(x) =
∑
n≥0

P{Hn+1 < k} xn.

Here we have Y1(x) = 1 and

Y ′k+1(x) = Yk+1(x)Yk(x), (Yk+1(0) = 1).

The analysis of these generating functions is the basis of the following result
(that is due to Drmota [57]).
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Theorem 6.32. The height Hn of random recursive trees has expected value

EHn ∼ e logn. (6.43)

Furthermore there are exponential tail estimates of the form

P{|Hn − EHn| ≥ η} = O
(
e−cη
)

with some c > 0.

This result is in accordance with Pittel’s result [175] saying thatHn/ logn→ e
a.s.

Note that the exponential tail estimate shows that the distribution of
the height is heavily concentrated around its expected value. In particular it
follows that, as n→∞,

VarHn = O(1).

One can also be much more precise about the distribution of the height
Hn. In particular the values Yk(1) play an essential role in the analysis. For
example, we have

EHn = max{k : Yk(1) ≤ n}+O(1)

(compare with (6.48)), and

P{Hn < k} = F (n/Yk(1)) + o(1),

uniformly for all k ≥ 0 as n→∞, where F (y) satisfies the integral equation

y F (y/e1/e) =

∫ y

0

F (z/e1/e)F (y − z) dz. (6.44)

We will comment on this problem at the end of the section. Anyway, this
already shows that although the results on the height are quite precise, the
behaviour of the distribution is in some sense implicit, since it uses y′k(1) =
Yk(1) =

∑
n≥1 P{Hn < k}, a value that is unknown. We will just prove

logYk(1) ∼ k/e which provides (6.43). It is conjectured that

logYk(1) =
k

e
+ c1 log k + c2(log k) + o(1)

for some constant c1 > 0 and a periodic function c2(x). Of course, if this
conjectural relation can be verified then we actually get an explicit asymptotic
representation for the height distribution.

The proof of Theorem 6.32 is divided into several steps. We start with
some technical lemmas.

Lemma 6.33. Suppose that Y1(x), Y2(x), Y 1(x), Y 2(x) are non-negative con-
tinuous functions that are defined for x ≥ 0 such that Y1(0) < Y 1(0),

Y2(0) < Y 2(0), Y ′2(x) = Y2(x)Y1(x), Y
′
2(x) = Y 2(x)Y 1(x), and that the

difference Y 1(x) − Y1(x) has exactly one positive zero. Then the difference
Y 2(x)− Y2(x) has at most one positive zero.
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Proof. For j = 1, 2 set

yj(x) =

∫ x

0

Yj(t) dt and yj(x) =

∫ x

0

Y j(t) dt.

Then we have y1(x) < y1(x), y2(x) < y2(x) (at least) for a small interval
0 < x < ζ and also y′2(x) = ey1(x) and y′2(x) = ey1(x). Since Y 1(x) − Y1(x)
is positive (for small positive x) and has at most one positive zero, the same
follows for

y1(x)− y1(x) =

∫ x

0

(
Y 1(t)− Y1(t)

)
dt.

Namely, if Y 1(t)− Y1(t) ≥ 0 for all t ≥ 0 then y1(x) − y1(x) is an increasing
function with y1(0)− y1(0) = 0. If, however, Y 1(t) − Y1(t) ≥ 0 for 0 ≤ t ≤ t0
and Y 1(t)−Y1(t) ≤ 0 for t ≥ t0 then y1(x)−y1(x) is increasing for 0 ≤ x ≤ t0
and decreasing for x ≥ t0. In the first case the function y1(x) − y1(x) has no
positive zero and in the second case at most one.

Now observe that (ey − ez)/(y − z) > 0 for real y = z. Hence,

Y 2(x)−Y2(x) = y′2(x)−y′2(x) = ey1(x)−ey1(x) =
ey1(x) − ey1(x)

y1(x)− y1(x)
(y1(x) − y1(x))

has at most one positive zero, too.

Lemma 6.34. For all k ≥ 0 we have

Yk+2(1)

Yk+1(1)
≤ Yk+1(1)

Yk(1)
.

Proof. For 0 ≤ γ < 1 set

Vk(x, γ) =

{
1

1−x for 0 ≤ x ≤ 1− γ,

γ−1Yk

(
x−(1−γ)

γ

)
for 1− γ ≤ x ≤ 1.

These functions satisfy

V ′k+1(x, γ) = Vk+1(x, γ)Vk(x, γ),

Vk(0) = 1 and Vk(1, γ) = γ−1Yk(1). In particular, for γk = Yk+1(1)/Yk(1)
we have Vk(1, γk) = Yk+1(1). Now the inductive application of Lemma 6.33
shows that Yk+1(x)− Vk(x, 1) have (at most) one positive zero. Hence we get

Yk+1(x) ≤ Vk(x, γk) for 0 ≤ x ≤ 1,

and after integration

Yk+2(1) ≤ Vk+1(1, γk) = γ−1
k Yk+1(1) =

Yk+1(1)2

Yk+1(1)
.
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Corollary 6.35 There exists α0 > 1 with

α0 = lim
k→∞

Yk+1(1)

Yk(1)
. (6.45)

Proof. Lemma 6.34 implies that there exists α0 ≥ 1 with

α0 = lim
k→∞

Yk+1(1)

Yk(1)
.

We show that Yk(1) grows at least exponentially which implies α0 > 1.
Set δk = y(x)− yk(x). Then it follows by induction that

δk(x) ≤ L(x)k+1

(k + 1)!
(0 ≤ x ≤ 1), (6.46)

where L(x) abbreviates log(1/(1− x)). By definition (6.46) is true for k = 0.
Now observe that yk(x) ≤ y(x) implies

δ′k+1(x) = ey(x) − eyk(x) ≤ ey(x)δk(x) ≤ 1

1− x
L(x)k+1

(k + 1)!
.

Since δk+1(0) = 0, integration gives

δk+1(x) ≤
∫ x

0

1

1− t
L(t)k+1

(k + 1)!
dt =

L(x)k+2

(k + 2)!
.

For xk = 1− e−(k+1)/e we have y(xk) = (k + 1)/e and

L(xk)k+1

(k + 1)!
∼ 1√

2πk
.

Hence it follows that (for sufficiently large k)

yk(1) ≥ yk(xk) ≥ y(xk)− L(xk)k+1

(k + 1)!
=
k + 1

e
− 1√

2πk
(1 + o(1)) ≥ k

e
.

This completes the proof of the lemma since

Yk(1) = y′k(1) = eyk−1(1) ≥ e(k−1)/e.

Remark 6.36 If we replace xk in the proof of Corollary (6.35) by

xk = 1− e−(k+log
√

k)/e

we get the slightly better lower bound

Yk(1) ≥ e(k+log
√

k)/e+O(1).

However, it is conjectured that the correct order of magnitude is

Yk(1) = e(k+ 3
2 log k)/e+O(1),

which cannot be reached by the method mentioned above.
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The property that Yk(1) has an approximately exponentially growing be-
haviour is sufficient to prove exponential tail estimates for the distribution of
Hn.

Lemma 6.37. We have the estimates

P{Hn < k} ≤
Yk(1)

n

and
P{Hn ≥ k} ≤ e

n

Yk(1)
.

Proof. By considering the evolution model of recursive trees it immediately
follows that the height is an increasing sequence in n. Hence we have for all
n, k ≥ 0

P{Hn+1 < k} ≤ P{Hn < k}.
It follows directly that

Yk(1) =
∑
�≥0

P{H�+1 < k}

≥
∑

0≤�<n

P{H�+1 < k}

≥ nP{Hn < k}

or P{Hn < k} ≤ Yk(1)/n.
Next consider the function

Y (x) =
1

1 + 1
Yk(1) − x

,

which satisfies the differential equation Y
′
(x) = Y (x)2. Since 0 < Y (0) < 1

there is exactly one positive zero of the difference Y0(x) − Y (x). Hence, an
inductive application of Lemma 6.33 implies that this is also true for the
difference Yk(x)−Y (x). However, by construction Y (1) = Yk(1). Since Y (0) <
Yk(0), it follows that Yk(x) ≤ Y (x) for 0 ≤ x ≤ 1. In particular, if we set
xn = 1− 1

n we obtain

Y (xn)− Y (xn) ≥ Y (xn)− Yk(xn)

=
∑
�≥0

P{H�+1 ≥ k}x�
n

≥
∑

�≥n−1

P{H�+1 ≥ k}x�
n

≥ P{Hn ≥ k}
xn−1

n

1− xn

≥ P{Hn ≥ k}
n

e
.
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Since

Y (xn)− Y (xn) = n− 1
1
n + 1

Yk(1)

≤ n2

Yk(1)
,

we finally get

P{Hn ≥ k} ≤ e
n

Yk(1)
.

Set
hn = max{k : Yk(1) ≤ n}.

Then Lemma 6.37 combined with the property that Yk+1(1) ≥ (α0 − ε)Yk(1)
(for sufficiently large k) provides exponential tail estimates of the kind

P{|Hn − hn| ≥ η} = O
(
e−ηc
)
, (6.47)

for a properly chosen constant c. Of course, (6.47) implies

EHn = hn +O(1) (6.48)

and consequently
P{|Hn − EHn| ≥ η} = O

(
e−ηc
)
,

which also implies that VarHn = O(1) as n→∞. Thus, in order to complete
the proof of Theorem 6.32 we need more precise information on Yk(1) (resp.
on hn). Namely, the limit relation of Corollary 6.35 implies

hn ∼ (log n)/(logα0)

and therefore

EHn ∼
logn

logα0
.

It remains to prove α0 = e1/e. For this purpose we will define auxiliary func-
tions yk(α, x) and Y k(α, x). But before we can do that we have to solve an
integral equation.

Lemma 6.38. Suppose that 1 < α < e1/e and that β < e denotes the smallest
positive solution of

αβ = β.

Furthermore, let F denote the set of monotonically decreasing and continuous
functions F (y) (y ≥ 0) that satisfy

F (y) = 1− yβ +O(ye)) (y → 0+)

and F (y) → 0 as y → ∞. Then there exists a unique solution Fα ∈ F of the
integral equation

yF (y/α) =

∫ y

0

F (z/α)F (y − z) dz. (6.49)
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Moreover, there exists C > 0 such that

Fα(y) = O
(
e−Cy
)

(6.50)

as y →∞.

Proof. It is easy to show that d defined by

d(F1, F2) = sup
y≥0

(
|F1(y)− F2(y)|y−e

)
is a complete metric on F and that (6.49) is a fixed point equation on F that
can be rewritten as F = A(F ), where

A(F ) =
1

αy

∫ αy

0

F (z/α)F (αy − z) dz.

Moreover, A is a contraction with Lipschitz constant

K =
1 + αe

1 + e
< 1.

Hence, by Banach’s fixed point theorem there is a unique solution.
Finally, (6.50) can be proved in an inductive way. Let F0(y) = max{1 −

ye, 0} and Fn+1 = A(Fn). By keeping track of the contraction A it follows
that there exists C0 > 0 and y′′0 > 0 such that

sup
n≥0

Fn(y) < 1− yβ + C0y
e < 1

for 0 ≤ y ≤ y′′0 . Hence, for every 0 < y′0 < y
′′
0 there exists C > 0 such that

Fn(y) ≤ e−Cy for all n ≥ 0 and for y′0α ≤ y ≤ y′′0 and that F0(y) ≤ e−Cy for
y ≥ y′0. More precisely we can choose C = C(y′0) with C ∼ (y′0)β−1 as y′0 → 0.
In particular we can assure that

1− e−C(α−1)y

C
+ y′0e

Cy′0/α ≤ (α− 1)y + y′0 (6.51)

for y ≥ y′′0 .
It remains to verify the upper bound Fn(y) ≤ e−Cy for y ≥ y′′0 which we

will do by induction. Recall that

Fn+1(y) =
1

αy

∫ αy

0

Fn(z/α)Fn(αy − z) dz.

By using the a priori bound we can assume that Fn(y) ≤ e−Cy even for y ≥ y′0.
We split the integral into tree parts: 0 ≤ z ≤ (α−1)y, (α−1)y ≤ z ≤ αy− y ′0
and αy − y′0 ≤ z ≤ αy.

For the first part of the integral we have αy−z ≥ y ≥ y′′0 and consequently
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0

Fn(z/α)Fn(αy − z) dz ≤
∫ (α−1)y

0

e−C(αy−z) dz

= e−Cαy e
C(α−1)y − 1

C
.

In the second range we have z/α ≥ y′0 and αy − z ≥ y′0. Hence we get∫ αy−z

(α−1)y

Fn(z/α)Fn(αy − z) dz ≤
∫ αy−z

(α−1)y

e−C(z/α+αy−z) dz

≤ (αy − z − (α− 1)y) e−Cy.

Finally, for the third integral we have∫ αy

αy−z

Fn(z/α)Fn(αy − z) dz ≤ y′0e−Cy+Cy′0/α.

For proving Fn+1(y) ≤ e−Cy, it is thus sufficient to check that the sum of
these three upper bounds is smaller or equal αye−Cy for y ≥ y′′0 :

e−Cαy e
C(α−1)y − 1

C
+ (αy − z − (α − 1)y) e−Cy + y′0e

−Cy+Cy′0/α ≤ αye−Cy.

However, this inequality is equivalent to (6.51). Hence, we have shown
Fn+1(y) ≤ e−Cy (for y ≥ y′′0 ).

By taking the limit n→∞, we observe the same upper bound for Fα(y).

Note that for every solution F (y) of (6.49) the function F (c y) (where
c > 0) is also a solution of (6.49). Thus, we can assume without loss of
generality that (after a proper scaling) Fα(y) satisfies (6.49) and∫ ∞

0

Fα(y) dy = 1.

Note that α = e1/e is a critical value for the fixed point equation (6.49) because
the Lipschitz constantK would equal 1 and, thus, we could not apply Banach’s
fixed point theorem.5

Next, consider the Laplace transforms

Φα(u) =

∫ ∞
0

Fα(y)e−yu dy.

They satisfy Φα(0) = 1 and

Φ′α(u) = − 1

α
Φα(u)Φα(u/α).

5 It is, however, possible to solve (6.49) even for α = e1/e, see [57].
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The crucial step in this analysis it to introduce (for 1 < α < e1/e) the
following auxiliary functions

Y k(α, x) = αkΦα

(
αk(1− x)

)
, (6.52)

where k can be considered a real (not necessarily integral) parameter and

yk(α, x) =

∫ x

0

Y k(α, t) dt = logY k+1(α, x).

The next lemma collects some useful facts on Y k(α, x) if α < e1/e. In fact,
these auxiliary functions have almost the same properties as the function
Yk(x). The proof is immediate by translating the corresponding properties of
Fα and Φα respectively.

Lemma 6.39. Suppose that 1 < α < e1/e and let β < e be given by αβ = β.
Let Y k(α, x) be defined by (6.52). Then the following assertions hold:

1. For all k > 0 the function Y k(α, x) is monotone for x ≥ 0. It satisfies
0 < Y k(α, 0) < 1, more precisely, 1−Y k(α, 0) ∼ Cα−βk for some constant
C depending on α. Furthermore we have Y k(α, 1) = αk.

2. They satisfy the recurrence relation

Y
′
k+1(x) = Y k+1(x)Y k(x).

3. For all integers � ≥ 0 and for all real numbers k > 0 the difference Y�(x)−
Y k(α, x) has exactly one positive zero x�,k. In particular we have Y k(x) ≤
Y�(x) for 0 ≤ x ≤ x�,k and Y k(x) ≥ Y�(x) for x ≥ x�,k.

Note that yk(x) = logYk+1(x) and yk(α, x) = logY k+1(α, x). Hence, the
above properties can be translated to yk(α, x) and yk(x).

The next lemma completes the proof of Theorem 6.32.

Lemma 6.40. We have limk→∞ Yk+1(1)/Yk(1) = e1/e and consequently

EHn ∼ e logn. (6.53)

Proof. Suppose that 1 < α < e1/e and set ek := yk(1)/(logα) − 1. Then the
function yek

(α, x) satisfies yek
(α, 0) < yk(0) and

yek
(α, 1) = yk(1).

Hence, by Lemma 6.39 (reformulated for yk(α, x)) it follows that yek
(α, x) ≤

yk(x) for 0 ≤ x ≤ 1. Hence, by integration it also follows that yek+1(α, x) ≤
yk+1(x) for 0 ≤ x ≤ 1. In particular,

yek+1(α, 1) = yk(1) + logα ≤ yk+1(1).

Thus, we have yk+1(1) − yk(1) ≥ logα for all α < e1/e and consequently
yk+1(1)− yk(1) ≥ 1/e. This also shows that Yk(1)/Yk−1(1) ≥ e1/e.
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In a second step we will show that for every ε > 0

yk(1) ≤ k

e
(1 + ε)

for sufficiently k ≥ k0(ε). This is sufficient to complete the proof of Lemma 6.40.
We again fix α < e1/e and define t(α) > 0 by

(1 + t(α))αβ logα = 1.

Note that limα→e1/e t(α) = 0.
Set δk(x) = yk(x) − yk+r(α, x), where r ≥ 0 is a parameter that will

be chosen appropriately. Note that yk(x) ≤ y(x) and yk+r(α, x) ≤ y(x) for
0 ≤ x < 1. By induction it follows that

δk(x) ≤
k∑

�=0

δ�(0)
L(x)k−�

(k − �)! ,

where L = log 1/(1 − x). We now suppose that r = 2kt(α) − 1, set x′ =
1− α−k(1+t(α)) and estimate yk(x′) = yk+2kt(α)−1(α, x′) + δk(x′) from above.
We have

yk+2kt(α)−1(α, x′) = k(1 + t(α)) − C

αβkt(α)
(1 + o(1)),

and

δk(x′) ≤
k∑

�=0

C

αβ�+2βkt(α)

(k(1 + t(α)) logα)
k−�

(k − �)!

=
C

αβk(1+2t(α))

k∑
�=0

(
k(1 + t(α))αβ logα

)k−�

(k − �)!

=
C

αβk(1+2t(α))

k∑
�=0

kk−�

(k − �)!

∼ C

αβk(1+2t(α))

ek

2

=
1

2

C

αβkt(α)
.

Consequently we obtain

yk(x′) ≤ k(1 + t(α)) log α− 1

2

C

αβkt(α)
(1 + o(1)).

If we compare that with

yk+3kt(α)−1(α, x′) = k(1 + t(α)) logα− C

α2βkt(α)
(1 + o(1))
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we observe that (for sufficiently large k)

yk(x′) ≤ yk+3kt(α)−1(α, x′).

Since yk(0) > yk+3kt(α)(α, 0), it follows from Lemma 6.39 (resp. from its
reformulation to yk(α, x)), that yk(x) ≤ yk+3kt(α)(α, x) even for all x ≥ x′. In
particular we have (for sufficiently large k)

yk(1) ≤ yk+3kt(α)−1(α, 1) = k(1 + 3t(α)) logα ≤ k

e
(1 + 3t(α)).

Since we can choose α such that t(α) is arbitrarily small this completes the
proof of Lemma 6.40.

We close this section with some comments on the distribution of Hn. In
Lemma 6.38 we have observed that for every α < e1/e the integral equation
(6.49) has a solution Fα, since it is a fixed point of a proper contraction. For
α0 = e1/e the method fails. Nevertheless it is possible to find a non-trivial
continuous solution for α0 (see [57, 36]). As above we consider the Laplace
transform Φα0 and the auxiliary functions

Y k(x) = αk
0Φα0(αk

0(1 − x))

= αk
0

∫ ∞
0

Fα0(y)e−yαk
0(1−x) dy

=

∫ ∞
0

Fα0(yα−k
0 )e−yeyx dy

=
∑
n≥0

(
1

n!

∫ ∞
0

yne−yFα0(yα−k
0 ) dy

)
xn.

Observe that
1

n!

∫ ∞
0

yne−y dy = 1

and that the integrand yne−y = en log y−y is highly concentrated around y = n.
Hence, by a simple application of the Laplace method and by continuity of
Fα0 we obtain

[xn]Y k(x) = Fα0(nα−k
0 ) + o(1)

uniformly for n and k with C1 ≤ nα−k ≤ C2, where 0 < C1 < C2 are arbitrary
constants.

Recall that Yk+1(1)/Yk(1) ∼ α0 = e1/e. By definition we also have the
relation Y k+1(1)/Y k(1) = α0 = e1/c. Since Yk(x) and Y k(x) satisfy the same

recurrence Y ′k+1(x) = Yk+1(x)Yk(x) resp. Y
′
k+1(x) = Y k+1(x)Y k(x), one is

led to the conjecture that Yk(x) and Y k(x) are quite close. This is definitely
true for small x but not for x close to 1. However, we can do the following
trick. Define dk by the relation
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αdk
0 = Yk(1),

that is, we have Y dk
(1) = Yk(1). Then

Y ′k(1) = Yk(1)Yk−1(1) ∼ Yk(1)2α−1
0 = α2dk−1

0 = Y k(1)Y k−1(1),= Y
′
dk

(1)

and similarly Y
(j)
k (1) ∼ Y

(j)

dk
(1) for all j ≥ 1. Thus, Yk(x) can be properly

approximated by Y dk
(x) in a complex neighbourhood of x = 1. Together with

some further (technical but easy) estimates (compare with [62]) it follows via
Cauchy’s formula that

P{Hn+1 < k} =
1

2πi

∫
|x|=1

Yk(x)

xn+1
dx

=
1

2πi

∫
|x|=1

Ỹdk
(x)

xn+1
dx + o(1)

= Fα0(nα−dk
0 ) + o(1)

= Fα0(n/Yk(1)) + o(1),

which leads to the proposed asymptotic representation of the height distribu-
tion.

6.5 Profile and Height of Binary Search Trees and

Related Trees

Recursive trees have several generalisations including binary search trees, m-
ary increasing trees and (generalised) plane oriented recursive trees. A second
line of generalisations are m-ary search trees as introduced in Section 1.4.2.

All these classes of trees have similar asymptotic properties. In contrast to
Galton-Watson trees their height is of order logn. The corresponding limiting
profile processes are similar to each other but not identical.

6.5.1 The Profile of Binary Search Trees and Related Trees

In the case of binary search trees we distinguish between internal and external
nodes. Accordingly we consider the internal profile In,k and the external profile
Bn,k, that is, the number of internal resp. external nodes at level k in trees
with a total number of n internal nodes. Both profiles are closely related to
each other. Due to the structure of a binary tree

Bn,k = 2In,k−1 − In,k and In,k =
∑
j>k

2k−jBn,j . (6.54)

Actually, the external profile is easier to study. It has almost the same
properties as the profile or recursive trees. First, it is related to the insertion
depth Dn (of the internal nodes) by
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P{Dn = k} =
EBn−1,k

n− 1
.

Second, we have

Bn,k
d
= BIn,k−1 +B∗n−1−In,k−1,

where In is uniformly distributed over {0, 1, . . . , n− 1}, Bn,k
d
= B∗n,k, and In,

(Bn,k) and (B∗n,k) are independent. We also have

E(Bn,k|Tn−1) = (Bn−1,k + 2)
Bn−1,k−1

n
+ (Bn−1,k − 1)

Bn−1,k

n

+Bn−1,k

(
1− Bn−1,k−1 +Bn−1,k

n

)
=

2Bn−1,k−1

n
+

(n− 1)Bn−1,k

n
.

For example, by using the last property it follows that

EWn(z) = E
∑
k≥0

Bn,kx
k = (−1)n

(−2x

n

)
,

and consequently

E Bn,k =
2k

n!
|sn,k|. (6.55)

(It seems that this explicit formula was first observed by Lynch [145], compare
also with [146]).

There are several other ways to derive (6.55). If we introduce the generating
functions

Yk(x, u) =
∑
n≥0

E uBn,k , xn.

Then we have Y0(x, u) = u+ x/(1− x) and recursively

∂Yk+1(x, u)

∂x
= Yk(x, u)2 (6.56)

with Yk+1(0, u) = 1 (for k ≥ 0). By taking derivatives with respect to u we
obtain

Zk(x) =

[
∂Yk(x, u)

∂u

]
u=1

=
∑
n≥0

E Bn,k x
n

which satisfies Z0(x) = 1 and by (6.56)

Z ′k+1(x) = 2Yk(x, 1)Zk(x) =
2

1− xZk(x),

with Zk+1(0) = 0 (for k ≥ 0). Hence,
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Zk(x) =
2k

k!

(
1

1− x

)k

,

which translates to (6.55).
By using the asymptotic expansion for Stirling numbers (from Lemma 6.1)

the representation (6.55) implies

EBn,k =
2k(log n)k

k!nΓ
(

k
log n

) ∼ nα(1−log(α/2))−1

√
2πk

(
1 +O

(
1

n

))
, (6.57)

where α = k
log n . In particular, if we just consider a local expansion for k close

to 2 logn we obtain

EBn,k =
n√

4π logn

(
e−

(k−2 log n)2

4 log n +O

(
1√

logn

))
. (6.58)

By (6.54) we get the same for In,k:

E In,k =
n√

4π logn

(
e−

(k−2 log n)2

4 log n +O

(
1√

logn

))
.

This indicates that the majority of the nodes of a binary search tree Tn is
concentrated around level 2 logn. In particular, a central limit theorem for
the insertion depth Dn follows.

From (6.58) it also follows that EBn,k →∞ (for k ∼ α logn), if and only
if α ∈ (α−, α+), where 0 < α− < 2 < α+ are the solutions of the equation

α log

(
2e

α

)
= 1, α− = 0.373 . . . , α+ = 4.311 . . .

This implies that the natural range of the external profile is α− logn ≤ k ≤
α+ logn. The corresponding limit theorem is the following one (see [37, 87]).

Theorem 6.41. For α− < α < α+ there exists a random variable X(α) that
satisfies the equation

X(α)
d
=
α

2
Uα−1X(α) +

α

2
(1− U)α−1X(α)∗

with EX(α) = 1, where X(α), X(α)∗, U are independent, X(α)
d
= X(α)∗,

and U is uniformly distributed on [0, 1], such that

Bn,�α log n�
EXn,�α log n�

d−→ X(α).

The internal profile behaves different. Here we have (see [87])



294 6 Recursive Trees and Binary Search Trees

E In,k ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2k − (2 log n)k

nk!(1− k
log n )Γ( k

log n )
for k ≤ logn−O(

√
logn),

2kΦ
(
−k−log n√

log n

)
for k = logn+ o((log n)2/3),

(2 log n)k

nk!(1− k
log n )Γ( k

log n )
for logn+O(

√
logn) ≤ k ≤ O(log n),

where Φ(x) denotes the normal distribution function. This means that the
binary search tree is almost full up to level k = logn, that is, the expected
number of internal nodes is approximately 2k. For higher level the situation
is different. There the number of internals and externals are (asymptotically)
proportional. According to these two regimes we have

2k − In,�α log n�
2k − EXn,�α log n�

d−→ X(α)

for α− < α < 1 and
In,�α log n�

EXn,�α log n�

d−→ X(α)

for 1 < α < α+, where X(α) is the same limiting random variable as in
Theorem 6.41.

There are again at least three different proofs for these properties: the
martingale method (see [37, 38, 39]), the moment method and the contraction
method (see [87]) which work exactly as in the case of recursive trees.

Binary search trees can be considered as special cases of d-ary recursive
trees (see Section 1.3.3), that are determined by the generating series Φ(x) =
(1 +x)d. This implies that the differential equation of the generating function
y(x) =

∑
n≥1 ynx

n/n! of d-ary recursive trees is given by y′(x) = (1 + y(x))d.
We have (see Section 6.2.2)

y(x) = (1− (d− 1)x)−
1

d−1 − 1

and

yn = n!(−(d− 1))n

(− 1
d−1

n

)
∼ n!(d− 1)n n

2−d
d−1

Γ
(

1
d−1

) .
We slightly change the generating function to Y (x) = 1 + y(x). Here we have
the differential equation Y ′(x) = Y (x)d with initial condition Y (0) = 1.

In order to study the external profile we introduce the generating functions

Yk(x, u) =
∑
n≥0

E uBn,k yn
xn

n!
. (6.59)

As in the binary case we have Y0(x, u) = u+ y(x) and recursively

∂Yk+1(x, u)

∂x
= Yk(x, u)d



6.5 Profile and Height of Binary Search Trees and Related Trees 295

with Yk(0, u) = 1. The corresponding generating function

Zk(x) =

[
∂Yk(x, u)

∂u

]
u=1

=
∑
n≥0

EBn,k yn
xn

n!

of the expected profile satisfies

Z ′k+1(x) =
d

1− (1− d)xZk(x)

(with Zk+1(0) = 0 for k ≥ 0). The solution

Zk(x) =
dk

k!

(
log

(
1

1− (1 − d)x

))k

rewrites to

EBn,k =
dk|sn,k|

k!(−1)n
(− 1

d−1
n

)
∼

(d log n)kΓ
(

1
d−1

)
n

1
d−1 k!Γ

(
k

log n

)
∼
nα(1−log(α/d))− 1

d−1Γ
(

1
d−1

)
√

2πkΓ (α)
,

where α = k/ logn = O(1). The profile is thus concentrated around the level
k = d logn and by P[Dn = k] = EBn−1,k/((d− 1)(n− 1) + 1) we again get a
central limit theorem for the insertion depth Dn with EDn = d log n+ O(1)
and VarDn = d logn+O(1).

Furthermore it follows that EBn,k → ∞ (for k ∼ α logn), if and only if
α ∈ (αd,−, αd,+), where 0 < αd,− < d < αd,+ are the solutions of the equation

α log

(
de

(d− 1)α

)
=

1

d− 1
.

Hence, the natural range for the external profile is αd,− logn ≤ k ≤ αd,+ logn
for which we have the following property (which is a direct extension of The-
orem 6.41).

Theorem 6.42. Let Bn,k denote the external profile of d-ary recursive trees.
Then for αd,− < α < αd,+ there exists a random variable X(α) that

satisfies the equation

X(α)
d
=
α

d
V

α− 1
d−1

1 X(α)(1) + · · · α
d
V

α− 1
d−1

d X(α)(d)
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with EX(α) = 1, where X(α)(1), . . . , X(α)(d), (V1, . . . , Vd) are independent,

X(α)(j)
d
= X(α), and (V1, . . . , Vd) is a Dirichlet distribution on the simplex

Δ = {(s1, . . . , sd) : sj ≥ 0, s1 + · · ·+ sd = 1} with density

f(s1, . . . , sd) = (d− 1)!(s1 · · · sd),

such that
Bn,�α log n�

EXn,�α log n�

d−→ X(α).

The properties of the internal profile of the binary case extend to the d-
ary one. Again one has to distinguish between the range αd,− < α < 1 and
1 < α < αd,+.

Next we consider the class of increasing trees that are determined by the
generating series Φ(x) = (1 − x)−r, where r is a positive real parameter (see
Section 1.3.3). The case r = 1 corresponds to plane oriented recursive trees.

The generating function y(x) =
∑

n≥1 ynx
n/n! = 1−

(
1−(r+1)x

)1/(r+1)
sat-

isfies the differential equation y′ = 1/(1−y)r and we have yn = n!(−1)n−1(r+

1)n
(
1/(r+1)

n

)
. Equivalently we can work with the function

Y (x) = y′(x) =
∑
n≥0

yn+1
xn

n!
=

1

(1− (r + 1)x)
r

r+1
,

that satisfies the differential equation

Y ′(x) = rY (x)
1
r +2.

Let Xn,k denote the corresponding profile. Then the generating function

Y (x, u) =
∑
n≥0

EuXn+1,k yn+1
xn

n!

satisfies the differential equation

∂Yk+1(x, u)

∂x
= rY

1
r +1

k+1 Yk(x, u).

The analysis of this class of increasing trees is more involved than in the
previous cases (compare with Hwang [106], Sulzbach [194] and Schopp [189]).
Nevertheless it is possible to obtain a corresponding results for the limit.

Theorem 6.43. Let Xn,k denote the profile of increasing trees defined by the
generating series Φ(x) = (1 − x)−r, where 1/r is a positive integer, and let
α = α0 > 0 be the unique solution of the equation

α

(
logα+ log

r + 1

r
− 1

)
=

1

r + 1
.
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Then for 0 < α < α0 there exists a random variable X(α) such that

Xn,�α log n�
EXn,�α log n�

d−→ X(α). (6.60)

The distribution of X(α) is determined by the stochastic fixed point equation

X(α)
d
=

1
r +1∑
i=1

V
α+ 1

r+1

i X(α)(i) +
r + 1

r
αV 1

r +2X(α)(
1
r +2)

with EX(α) = 1, where X(α)(1), . . . , X(α)(
1
r +2), (V1, . . . , V 1

r +2) are indepen-

dent, X(α)(j)
d
= X(α), and (V1, . . . , V 1

r +2) are given by Vj = Gj/(
∑ 1

r +2
i=1 Gi)

with Gi independent and gamma distributed Γ ( r
r+1 ,

r
r+1).6

The proof method of Schopp [189] is based on an martingale approach
and leads to an optimal result (almost sure convergence), but only if 1/r
is a positive integer. If 1/r is not an integer then one can use a moment
method in order to obtain (6.60) at least in the range 0 < α < r/(r + 1)
(compare with [106]). Note also that α = r/(r + 1) is the level, where most
of the nodes are concentrated. As in the previous cases we obtain a central
limit theorem for the insertion depth Dn with EDn = r

r+1 logn + O(1) and
VarDn = r

r+1 logn+O(1).

Finally we discuss the profile of fringe balanced m-ary search trees as
described in Section 1.4.2. Recall that every (internal) node in anm-ary search
tree can hold up to m − 1 keys. Hence, there are m different kinds of nodes
and, thus, m different possible kinds of profiles. For simplicity we only discuss
the key profile Xn,k, that is the number of keys that are stored in nodes with
depth k.

By construction (see Section 1.4.2) we have the recurrence

Xn,k
d
= X

(1)

V
(1)

n ,k−1
+X

(2)

V
(2)

n ,k−1
+ · · ·+X(m)

V
(m)

n ,k−1
, (6.61)

where (X
(1)
n,k), . . . , (X

(1)
n,k), (V

(1)
n , . . . , V

(m)
n ) are independent, (X

(1)
n,k)

d
= (Xn,k),

and where the splitter (V
(1)
n , . . . , V

(m)
n ) has distribution

P{(V (1)
n , . . . , V (m)

n ) = (n1, . . . , nm)} =

(
n1

t

)
· · ·
(
nm

t

)(
n

mt+m−1

) . (6.62)

Let
Wn(z) =

∑
k≥0

Xn,kz
k

6 A non-negative random variable X is gamma distributed Γ (α,β) with pos-
itive parameters α, β if the density of the distribution is given by f(x) =
xα−1e−x/β/(βαΓ (α)) for x > 0.
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denote the corresponding profile polynomial. By (6.61) it is recursively given
by Wn(z) = n for n ≤ m− 1 and

Wn(z)
d
= zW

(1)

V
(1)

n

(z)+zW
(2)

V
(2)

n

(z)+· · ·+zW (m)

V
(m)

n

(z)+m−1, n ≥ m, (6.63)

where W
(j)
� (z), j = 1, . . . ,m, are independent copies of W�(z) that are inde-

pendent of (V
(1)

n , . . . , V
(m)
n ), � ≥ 0. From this relation we obtain a recurrence

for the expected profile polynomial EWn(z). We have, for n ≥ mt +m − 1
and z ∈ C,

EWn(z) = mz

n−1∑
�=0

(
�
t

)(
n−�−1

(m−1)t+m−2

)(
n

mt+m−1

) EW�(z) +m− 1. (6.64)

As in the previous cases we use the expected profile polynomial to get
asymptotic information on the expected profile. Set

F (θ) =
t!

m(mt+m− 1)!
(θ + t)(θ + t+ 1) · · · (θ +mt+m− 2), (6.65)

and let λj(z), j = 1, . . . , (m− 1)(t+ 1) denote the roots of F (θ) = z (counted
with multiplicities), arranged in decreasing order of the real parts: �λ1(z) ≥
�λ2(z) ≥ . . . . Further, let Ds, for real s, be the set of all complex z such that
�λ1(z) > s and �λ1(z) > �λ2(z) (in particular, λ1(z) is a simple root). It
can be seen that the set Ds is open and that λ1(z) is an analytic function of
z ∈ Ds. If z ∈ Ds is real, then λ1(z) has to be real (and thus > s), because
otherwise λ1(z) would be another root with the same real part.

Lemma 6.44. Let Wn(z) =
∑

k≥0Xn,kz
k denote the (random) profile poly-

nomials.

1. If K is a compact subset of D1 then there exists δ > 0 and an analytic
function E(z) such that

EWn(z) = nλ1(z)−1
(
E(z) +O(n−δ)

)
(6.66)

uniformly for z ∈ K.
2. K is a compact subset of C. Then there exists D ≥ 0 such that

|EWn(z)| = O
(
nmax{�(λ1(z))−1,0}(logn)D

)
(6.67)

uniformly for z ∈ K.

We indicate a possible proof for the first part of the lemma. We intro-
duce the generating function Ψ(ζ; z) =

∑
n≥0 EWn(z)ζn. Let Λ(θ; z) be the

polynomial (in θ) of degree r := mt+m− 1 defined by
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Λ(θ; z) = θ(θ + 1) · · · (θ +mt+m− 2)

−mz (mt+m− 1)!

t!
θ(θ + 1) · · · (θ + t− 1). (6.68)

=
m(mt+m− 1)!

t!
θ(θ + 1) · · · (θ + t− 1) (F (θ)− z)

and let ϑ denote the differential operator (1− ζ) d
dζ . Then (6.64) is equivalent

to the differential equation (in ζ, with z fixed)

Λ(ϑ; z)Ψ(ζ; z) = (m− 1)r! (1− ζ)−1. (6.69)

The functions (1 − ζ)−λj(z) are then solutions of the corresponding homoge-
neous differential equation. With the help of this observation it follows that
(for ζ in a Δ region and for z ∈ D1)

Ψ(ζ; z) = E(z)(1− ζ)−λ1(z) +O
(
|1− ζ|−�(λ2(z))

)
.

This implies the first part of Lemma 6.44 by using the transfer lemma
(Lemma 2.12). The second part can be similarly proved by estimating the
appearing Cauchy integral instead of applying the transfer lemma (see [68]).

By using Lemma 6.44 we derive bivariate asymptotic expansions for EXn,k

in a large range. For convenience we use the abbreviation

α0 =

(
1

t+ 1
+

1

t+ 2
+ · · ·+ 1

(t+ 1)m− 1

)−1

.

Lemma 6.45. Suppose that α1, α2 with α0 < α1 < α2 <∞ are given and let
β(α) be defined by β(α)λ′1(β(α)) = α. Then

EXn,k =
E(β(αn,k))nλ1(β(αn,k))−αn,k log(β(αn,k))−1√

2π(αn,k + β(αn,k)2λ′′1 (β(αn,k))) logn

(
1 +O((log n)−1/2)

)
uniformly for αn,k = k/ logn ∈ [α1, α2] as n, k→∞.

The proof is a simple application of Cauchy’s formula

EXn,k =
1

2πi

∫
|z|=β

EWn(z)z−k−1 dz,

where β is chosen to be β(αn,k), that is, the saddle point of the dominant
part of the integrand:

nλ1(z)z−k = eλ1(z) log n−k log z .

In order to formulate a limit theorem for the profile Xn,k we need the
solution of the distributional fixed point equation
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Y (z)
d
= zV

λ1(z)−1
1 Y (1)(z)+zV

λ1(z)−1
2 Y (2)(z)+· · ·+zV λ1(z)−1

m Y (m)(z), (6.70)

where Y (1)(z), . . . , Y (m)(z), (V1, . . . , Vm) are independent, Y (j)(z)
d
= Y (z),

and where (V1, . . . , Vm) is supported on the simplex Δ = {(s1, . . . , sm) : sj ≥
0, s1 + · · ·+ sm = 1} with density

f(s1, . . . , sm) =
((t+ 1)m− 1)!

(t!)m
(s1 · · · sm)t.

In particular one first shows that for suitable z ∈ C

Wn(z)

EWn(z)

d−→ Y (z)

(compare with [68]). Finally, by applying Cauchy’s formula one then derives
a limit theorem for Xn,k.

Theorem 6.46. Let m ≥ 2 and t ≥ 0 be given integers and let (Xn,k)k≥0 be
the profile of the corresponding random search tree with n keys.

Set I = {β > 0 : 1 < λ1(β2) < 2λ1(β)− 1}, I ′ = {βλ′1(β) : β ∈ I}, and let
β(α) > 0 be defined by β(α)λ′1(β(α)) = α. Then for every α ∈ I ′

Xn,�α log n�
EXn,�α log n�

d−→ Y (β(α)). (6.71)

A corresponding result holds for several different kinds of profiles according
to the m different kinds of nodes that appear in m-ary search trees. Theo-
rem 6.46 generalises to a functional limit theorem, too (see [68]).

6.5.2 The Height of Binary Search Trees and Related Trees

In the previous section we have discussed the profile of d-ary recursive trees,
generalised plane oriented recursive trees and m-ary search trees. For all these
classes of random trees we have observed a structure that is similar to that
of recursive trees. Since the height is closely related to the profile we expect
a similar phenomenon for the height. All these trees are so-called logn-trees,
that is, the height is of order logn. The second observation is that the height
is highly concentrated around its mean.

We start with d-ary recursive trees that include the class of binary search
trees. Besides the height Hn there is a second level of interest. The saturation
level Hn is the maximum level with In,k = dk, that is, up to this level the
tree is a complete d-ary tree.

Theorem 6.47. The height Hn and the saturation level Hn of random d-ary
recursive trees have expected value

EHn ∼ αd,+ logn and EHn ∼ αd,− logn, (6.72)
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where 0 < αd,− < d < αd,+ are the solutions of the equation

α log

(
de

(d− 1)α

)
=

1

d− 1
.

Furthermore there are exponential tail estimates of the form

P{|Hn − EHn| ≥ η} = O
(
e−cη
)

and P{|Hn − EHn| ≥ η} = O
(
e−cη
)

with some c > 0.

Remark 6.48 We want to note that in the binary case Φ(x) = (1 +x)2 (that
is equivalent to binary search trees) various results of that kind (and even
much more precise ones) are well known (see [49, 61, 181]). For example, it
is known that

EHn = α2,+ logn− 3α2,+

2(α2,+ − 1)
log logn+O(1).

Of course, we expect similar relations for general d-ary recursive trees.
The first breakthrough was due to Devroye [49] who related the height of bi-

nary search trees to branching random walks and could prove that Hn/ logn→
α2,+ = 4.331... a.s. Previously Pittel [172] had shown that Hn/ logn→ γ for
some γ ≤ α2,+. Based on numerical data Robson conjectured that the variance
VarHn is bounded. In fact, he could prove (see [185]) that there is an infi-
nite subsequence for which E|Hn − EHn| stays bounded. Eventually Robson’s
conjecture was independently solved by Reed [181] and (few month later) by
Drmota [62].

Nowadays the height constant is known in very general setting, for exam-
ple, in [27] it is shown that Hn/ logn → αd,+ for all polynomial classed of
increasing trees of degree d.

The analysis of the height Hn of d-ary recursive trees is very similar to
that of recursive trees. The generating functions

yk(x) =
∑
n≥1

P{Hn ≤ k}yn
xn

n!

with yn = (−1)nn!(d− 1)n
(−1/(d−1)

n

)
satisfy y0(x) = 0 and

y′k+1(x) = (1 + yk(x))d, yk+1(x) = 0

(compare also with Section 6.2.2). For convenience we will work with Yk(x) =
1 + yk(x) that satisfy Y ′k+1(x) = Yk(x)d and Yk+1(0) = 1. Note that by
definition

lim
k→∞

Yk(x) = Y (x) =
1

(1 − (d− 1)x)
1

d−1

.
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Thus, one might expect that the behaviour of the sequence Yk(1/(d− 1)) will
play an essential role in the analysis as it was with Yk(1) in the case of recursive
trees. This is actually true. In particular Lemma 6.33 and Lemma 6.34 have
direct counterparts. Hence the limit

α0 = lim
k→∞

Yk+1(1/(d− 1))

Yk(1/(d− 1))
(6.73)

exists. Furthermore, Lemma 6.37 generalises to

P{Hn ≤ k} = O

(
Yk( 1

d−1 )

n1/(d−1)

)
and P{Hn > k} = O

(
n

Yk( 1
d−1)d−1

)
.

(6.74)
The essential part of the proof is to show that α0 > 1. Here we use the

estimate

δk(x) = Y (x)− Yk(x) ≤ dk
∑
�>k

1

�!

(
1

d− 1
log

1

1− (d− 1)x

)�

,

which follows by induction with the help of the inequality δ′k+1(x) ≤ dY (x)d−1δk(x).

If we set xk = 1
d−1

(
1−A−k

)
with A = e1/αd,+ then this inequality implies

Yk(1/(d− 1)) ≥ Yk(xk) ≥ Ak/(d−1)
(

1−O
(
k−1/2
)
,
)

and consequently α0 ≥ A1/(d−1) > 1.
By combining (6.73) and (6.74) it follows (as in the case of recursive trees)

that

EHn = max
{
k : Yk(1/(d− 1)) ≤ n1/(d−1)

}
+O(1) ∼ logn

(d− 1) logα0

and that we have exponential tail estimates of the form

P{|Hn − EHn| ≥ η} = O
(
e−cη
)
.

It remains to show that α0 = A1/(d−1). Since αd,+ = ((d − 1) logA)−1,
this will imply EHn ∼ αd,+ logn. For this purpose we consider solutions of
the integral equation

y
1

d−1F (y/A) =
Γ
(

d
d−1

)
Γ
(

1
d−1

)d ∫
y1+···+yd=y,yj≥0

d∏
j=1

(
F (yj)y

1
d−1−1

j

)
dy, (6.75)

for 1 < A < e1/αd,+ and auxiliary functions

Y k(x) = Ak/(d−1)Φ

(
Ak

(
x− 1

d− 1

))
,
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where

Φ(u) =
1

(d− 1)
1

d−1Γ
(

1
d−1

) ∫ ∞
0

F (y) y
1

d−1−1e−uy dy.

These functions satisfy the recurrence Y
′
k+1(x) = Y

d

k(x) and can be used to
provide upper bounds for Yk(1/(d−1)) (compare with Lemmas 6.38–6.40, see
also [57]).

Remark 6.49 An even more refined analysis (see [57]) shows that

P{Hn ≤ k} = F
(
(d− 1)n/Yk(1/(d− 1))d−1

)
+ o(1)

uniformly for all k ≥ 0 as n → ∞, where F (y) satisfies the integral equation
(6.75) for A = e1/αd,+ .

The analysis of the saturation level Hn of d-ary recursive trees runs along
similar lines. Here one has to study the generating functions

yk(x) =
∑
n≥1

P{Hn ≥ k} yn
xn

n!

that satisfy the recurrence

y′k+1(x) = yk(x)d, yk+1(0) = 0

with initial condition y0(x) = y(x). The major difference between the analysis
of the height and the saturation level is that one cannot consider yk(1/(d−1)),
since the function yk(x) is singular at x = 1/(d− 1). Instead, one can study
the behaviour of the sequence yk(xk) that is determined by the equation

yk(xk) =
y(xk)

2
.

For details see [60] and [36].

Next we turn to generalised plane oriented recursive trees.

Theorem 6.50. The height Hn of random increasing trees defined by the gen-
erating series Φ(x) = (1− x)−r (for some real r > 0) has expected value

EHn ∼ αr logn, (6.76)

where αr > 0 is the solution of the equation

αr

(
logαr + log

r + 1

r
− 1

)
=

1

r + 1
.

Furthermore there are exponential tail estimates of the form

P{|Hn − EHn| ≥ η} = O
(
e−cη
)

with some c > 0.
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Here the generating function y(z) =
∑

n≥1 ynz
n/n! satisfies y′(z) =

(1 − y(z))−r and is explicitly given by y(z) = 1 −
(
1 − (r + 1)z

)1/(r+1)
with

coefficients yn = n!(−1)n−1(r + 1)n
(
1/(r+1)

n

)
. The height distribution is then

encoded in the generating functions

yk(x) =
∑
n≥0

ynP{Hn ≤ k}
xn

n!
,

which are given by y0(z) = 0 and recursively by

y′k+1(z) =
1

(1− yk(z))r
, yk+1(0) = 0.

By taking derivatives it follows that

y′′k+1(z) = r
(
y′k+1(z)

)1+ 1
r y′k(z).

If we set

Yk(z) = y′k(z) =
∑
n≥0

yn+1P{Hn+1 ≤ k}
zn

n!

then we have Y1(z) = 1 and the recurrence relation

Y ′k+1(z) = r Yk+1(z)1+
1
r Yk(z), Yk+1(0) = 1. (6.77)

This equation looks like a mixture of the corresponding generating functions
for recursive trees and d-ary recursive trees. Therefore a similar analysis ap-
plies (see also [60, 57]) and we obtain the result.

Remark 6.51 If r = A
B > 0 is a rational number (with positive coprime

integers A,B) then we have (uniformly for all k ≥ 0 as n→∞)

P{Hn ≤ k} = G
(
(r + 1)n/(y′k(r/(r + 1)))1+

1
r

)
+ o(1)

with

G(y) =
Γ
(

A
A+B

)
Γ
(

1
A+B

)A ∫
z1+···+zd=1,zj≥0

d∏
j=1

(
F (yzj)z

1
A+B−1

j

)
dz

and where F (y) satisfies the integral equation

y
1

d−1F (ye−1/αr) =
Γ
(

1 + 1
A+B

)
Γ
(

1
A+B

)A+B+1

×
∫

y1+···+yA+B+1=y,yj≥0

B+1∏
j=1

(
F (yje

−1/αr )y
1

A+B−1

j

)

×
A+B+1∏
�=B+2

(
F (y�)y

1
A+B−1

�

)
dy.
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Finally we consider fringe balanced m-ary search trees.

Theorem 6.52. The height Hn and the saturation level Hn of random fringe
balanced m-ary search trees (with parameter t) have expected value

EHn ∼ αm,t,+ logn and EHn ∼ αm,t,− logn, (6.78)

where 0 < αm,t,− < αm,t,+ are given by

αm,t,− =

(m−1)(t+1)−1∑
j=0

1

β1 + t+ 1 + j
,

αm,t,+ =

(m−1)(t+1)−1∑
j=0

1

β2 + t+ 1 + j
,

where β1 > 0 and β2 < 0 are the solutions of the equation

(m−1)(t+1)−1∑
j=0

log(β+t+1+j)−log

(
(m(t+ 1))!

(t+ 1)!

)
=

(m−1)(t+1)−1∑
j=0

β

β + t+ 1 + j
.

(6.79)
Furthermore there are exponential tail estimates of the form

P{|Hn − EHn| ≥ η} = O
(
e−cη
)

and P{|Hn − EHn| ≥ η} = O
(
e−cη
)

with some c > 0.

In this case the generating functions

yk(x) =
∑
n≥0

P{H(m,t)
n ≤ k} xn and yk(x) =

∑
n≥0

P{H(m,t)

n ≥ k} xn

satisfy the recurrence relation

y
(m(t+1)−1)
k+1 (x) =

(m(t+ 1)− 1)!

(t!)m

(
y
(t)
k (x)
)m
, (6.80)

y
(m(t+1)−1)
k+1 (x) =

(m(t+ 1)− 1)!

(t!)m

(
y
(t)
k (x)
)m
, (6.81)

with initial conditions

y0(x) = 1, yk(0) = y′k(0) = · · · = y
(m−1)
k (0) = 1,

resp.

y0(x) =
x

1− x, yk(0) = y′k(0) = · · · = y
(m−1)
k (0) = 0.

Thus, we are again in a similar situation as in the above cases (for details we
refer to [36]).





7

Tries and Digital Search Trees

Digital trees like tries or digital search trees are important in many computer
science applications like data compression, pattern matching or hashing. For
example, the popular Lempel-Ziv compression scheme [208] is strongly related
to digital search trees.

The basic idea of the Lempel-Ziv algorithm is to partition a sequence over
a finite alphabet into phrases (blocks) of variable sizes such that a new block is
the shortest substring not seen in the past as a phrase. For example, the string
110010100010001000 is parsed into (1)(10)(0)(101)(00)(01)(000)(100). This
algorithm can be implemented efficiently by using the digital tree structure
(compare with Figure 1.13). Assume that the first phrase of the Lempel-Ziv
scheme is an empty phrase that is stored in the root. When a new phrase is
created, the search starts at the root and proceeds down the tree as directed
by the input symbols exactly in the same manner as in the digital search tree
construction. The search is completed when a branch is taken from an existing
tree node to a new node that has not been visited before. Then, an edge and
a new node are added to the tree. Phrases created in such a way are stored
directly in the nodes of the tree. The example string produces exactly the
digital search tree depicted in Figure 1.13.

Digital trees have been widely studied in the literature (see [146, 197] and
the references therein). Here we will concentrate on the profile and comment
shortly on the height. The motivation of studying the profiles of such trees
is multifold. Of course, digital trees are used in various applications (for ex-
ample, the profile Xn,k represents the number of phrases of length k in the
Lempel-Ziv’78 built over n phrases). Second, the profile is a fine shape mea-
sure closely connected to many other cost measures (height, saturation level,
depth, path length, etc.). And finally, the analytic problems are mathemati-
cally challenging and lead to interesting distributional results. It is remarkable
that the profile process is almost deterministic. In contrast to the previously
studied classes of trees (Galton-Watson trees in Chapter 4 and recursive trees
in Chapter 6) the normalised profile Bn,k/EBn,k converges to 1 and there is
a central limit theorem.
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The following treatment on tries is based on the work by Park, Hwang,
Nicodème, and Szpankowski [169]. The corresponding result for digital search
trees follows some recent work by Drmota and Szpankowski [70].

7.1 The Profile of Tries

Tries are prototype data structures useful for many indexing and retrieval
purposes. They were first proposed by de la Briandais [44] in the late 1950s
for information processing; Fredkin [86] suggested the current name is part of
retrieval. Due to their simplicity and efficiency, tries found widespread use in
diverse applications (see [87, 130, 146, 197]).

Tries are a natural choices of data structures when the input records in-
volve a notion of alphabets or digits. They are often used to store such data
so that future retrieval can be made efficient. Recall that (m-ary) tries can be
constructed in the following way. Suppose that a sequence of n strings over an
m-ary alphabet, m ≥ 2, is given. If n = 0, then the trie is empty. If n = 1 then
a single (external) node holding this string is allocated. If n ≥ 1 then the trie
consists of a (internal) root node directing strings to the m subtrees according
to the first letter of each string, and strings directed to the same subtree are
themselves tries (see [130, 146, 197] for more details). For simplicity, we only
deal with binary tries here. Unlike other search trees, such as digital search
trees and binary search trees, where records or keys are stored in the internal
nodes, the internal nodes in tries are branching nodes used merely to direct
records to each sub trie. The keys are all stored in external nodes that are
leaves of such tries. A trie has more internal nodes than external nodes (fixed
to be n), differing from almost all other search trees.

7.1.1 Generating Functions for the Profile

Our first and main goal is to study the profile of tries, where we have to
distinguish, as in the case of binary search trees, between the internal and
the external profile. We write Bn,k to denote the number of external nodes
(leaves) at distance k from the root (external profile) and the number of
internal nodes at distance k from the root is denoted by In,k (internal profile).

In the example (depicted in Figure 1.14) we have B8,0 = B8,1 = 0, B8,2 =
B8,3 = 1, B8,4 = 2, B8,5 = 6 and I8,0 = 1, I8,1 = 2, I8,2 = I8,3 = 3, I8,4 = 2.

We also assume the simplest probabilistic model, namely the standard
Bernoulli model. More precisely, we assume that the input is a sequence of
n independent and identically distributed random variables, each being com-
posed of an infinite sequence of Bernoulli random variables with mean p, where
0 < p < 1 is the probability of a 1 and q = 1 − p is the probability of a 0.
The corresponding trie constructed from these n bit-strings is called a random
trie. This simple model may seem to be too idealised for practical purposes,
however, the typical behaviours of such a model often hold for more general
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models such as Markovian or dynamical sources, although the technicalities
are usually more involved (see for example [41, 50, 51, 111]).

We start with the external profile Bn,k. Let

Pn,k(u) = EuBn,k

be the corresponding probability generating function. Then by using the re-
cursive definition of tries we have

Pn,k(u) =

n∑
j=0

(
n

j

)
pjqn−jPj,k−1(u)Pn−j,k−1(u), (n ≥ 2, k ≥ 1) (7.1)

with initial conditions P0,k(u) = 1 for k ≥ 0, P1,0(u) = u, P1,k(u) = 1 for
k ≥ 1, and Pn,0(u) = 1 for n ≥ 1. Recall that the first digit determines
whether the corresponding string is put to the left or to the right subtree.
Due to the independence assumption the number of strings where the first
digit is 0 follows a binomial distribution. The splitting probabilities are thus
given by

(
n
j

)
pjqn−j .

From (7.1) one gets directly a recurrence relation for the exponential gen-
erating functions

Gk(x, u) =
∑
n≥0

Pn,k(u)
xn

n!

of the form

Gk(x, u) = Gk−1(px, u)Gk−1(qx, u) + (P1,k(u)− P1,k−1(u))x, (k ≥ 1),
(7.2)

with initial condition G0(x, u) = ex + x(u − 1). With the help of the initial
conditions of P1,k(u) it follows that

G1(x, u) = ex + (epxqx+ eqxpx− 1) (u− 1) + pqx2(u− 1)2

and
Gk(x, u) = Gk−1(px, u)Gk−1(qx, u), (k ≥ 2). (7.3)

The corresponding probability generating functions for the internal profile,

P
[I]
n,k(u) = EuIn,k ,

satisfy the same recurrence

P
[I]
n,k(u) =

n∑
j=0

(
n

j

)
pjqn−jP

[I]
j,k−1(u)P

[I]
n−j,k−1(u), (n ≥ 2, k ≥ 1),

but with initial conditions P
[I]
n,0(u) = u for n ≥ 2 and P

[I]
n,k(u) = 1 for n ≤ 1

and k ≥ 0. Similarly to the external profile we introduce the exponential
generating functions
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G
[I]
k (x, u) =

∑
n≥0

P
[I]
n,k(u)

xn

n!
,

that satisfy

G
[I]
k (x, u) = G

[I]
k−1(px, u)G

[I]
k−1(qx, u), (k ≥ 1), (7.4)

with initial condition G
[I]
0 (x, u) = uex − (1 + x)(u − 1).

We will come back to the relations (7.3) and (7.4) in Section 7.1.3. In order
to get a first impression of the behaviour of such profiles we will study the
expected profile (see Section 7.1.2). Set

Ek(x) =
∑
n≥0

EBn,k
xn

n!
=

[
∂Gk(x, u)

∂u

]
u=1

.

Then (7.3) implies

Ek(x) = eqxEk−1(px) + epxEk−1(qx) (k ≥ 2).

Setting

Δk(x) = e−xEk(x) =
∑
n≥0

EBn,k
xn

n!
e−x

this rewrites to

Δk(x) = Δk−1(px) +Δk−1(qx) (k ≥ 2) (7.5)

with initial conditions Δ0(x) = xe−x and Δ1(x) = pxe−px + qxe−qx − xe−x.
Note that if x is a positive real number then Δk(x) can be considered as

the expected value of the external profile (at level k) if the number n of input
strings is Poisson distributed with parameter x. The mapping

(an)n≥0 �→ Ã(x) =
∑
n≥0

an
xn

n!
e−x

is also called Poisson transform. In the context of tries the Poisson transform
has turned out to be natural; the relation (7.5) is remarkably easy. With the
help of the Mellin transform we will be able to provide an asymptotic solution
of Δk(x) (see Section 7.1.2). The final step is then to derive asymptotics for
EBn,k from that of Δk(x), that is, we have to invert the Poisson transform.
This is of independent interest (compare also with Jacquet and Szpankowski
[113]). For example, the Poisson transform of the sequence an = n equals
Ã(x) = x, and the the Poisson transform of the sequence bn = n2 is B̃(x) =
x + x2. In these two examples we have Ã(n) = an and B̃(n) ∼ bn. Such a
property is surely not generally true (for example, for an = 2n) but the crucial
observation is that (under suitable assumptions) Ã(n) and an are very close
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(see [113]). Thus, inversion of the Poisson transform is mostly relatively easy.
We can expect that EBn,k is approximated by Δk(n), but one has to keep
track of the second parameter k.

From a computational point of view depoissonisation is done with Cauchy
integration

an =
1

2πi

∫
|x|=r

exÃ(x)
dx

xn+1
,

where the radius r is usually chosen to be n, since x = n is the saddle point
of the function exx−n. Thus, if Ã(x) has a regular behaviour, for example
polynomial growth, then the integral is concentrated at x = n and we (usually)
get

an ∼
1

2πi

∫
|x|=n, | arg(x)|≤ε

exÃ(x)
dx

xn+1

∼ Ã(n) · 1

2πi

∫
|x|=n, | arg(x)|≤ε

ex
dx

xn+1

∼ Ã(n),

as expected.

7.1.2 The Expected Profile of Tries

In order to state our main result we need the following notations. For a real
number α with (log 1

p )−1 < α < (log 1
q )−1, let

ρ = ρ(α) =
1

log(p/q)
log

1− α log(1/p)

α log(1/q)− 1
. (7.6)

Equivalently, α and ρ satisfy the equation

α =
p−ρ + q−ρ

p−ρ log 1
p + q−ρ log 1

q

.

Furthermore, we set

β(ρ) =
p−ρq−ρ log(p/q)2

(p−ρ + q−ρ)2
, (7.7)

and

α1 =
1

log(1/p)
, α0 =

2

log 1
p + log 1

q

,

α2 =
p2 + q2

p2 log 1
p + q2 log 1

q

, α3 =
2

log(1/(p2 + q2))
.

Then we have the following relations.
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Theorem 7.1. Let EBn,k denote the expected external profile in binary ran-
dom tries with underlying (non-zero) probabilities p > q = 1− p. Then:

1. If α1 + ε ≤ k
log n ≤ α2 − ε (for some ε > 0) then we have uniformly

EBn,k = G
(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k )kn−ρn,k√

2πβ(ρn,k)k

(
1 +O
(
k−1/2
))
,

where G(ρ, x) is a non-zero periodic function with period 1 and ρn,k =
ρ(k/ logn).

2. If k = α2

(
logn+ ξ

√
α2β(−2) logn

)
, where ξ = o((log n)

1
6 ) then

EBn,k = 2pqn2(p2 + q2)k−1Φ(ξ)

(
1 +O

(
1 + |ξ|3√

logn

))
,

where Φ(x) denotes the normal distribution function.
3. If k

log n ≥ α2 + ε (for some ε > 0) then uniformly

EBn,k = 2pqn2(p2 + q2)k−1
(
1 +O(n−η)

)
for some η > 0.

Theorem 7.2. Let E In,k denote the expected internal profile in binary ran-
dom tries with underlying (non-zero) probabilities p > q = 1− p. Then:

1. If α1 + ε ≤ k
log n ≤ α0 − ε (for some ε > 0) then we have uniformly

E In,k = 2k−G
(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k)kn−ρn,k√

2πβ(ρn,k)k

(
1 +O
(
k−1/2
))
,

where G(ρ, x) is a non-zero periodic function with period 1 and ρn,k =
ρ(k/ logn).

2. If k = α0

(
logn+ ξ

√
α0β(0) logn

)
, where ξ = o((log n)

1
6 ) then

E In,k = 2kΦ(−ξ)
(

1 +O

(
1 + |ξ|3√

logn

))
.

3. If α0 + ε ≤ k
log n ≤ α2 − ε (for some ε > 0) then uniformly

E In,k = G
(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k)kn−ρn,k√

2πβ(ρn,k)k

(
1 +O
(
k−1/2
))
.

4. If k = α2

(
logn+ ξ

√
α2β(−2) logn

)
, where ξ = o((log n)

1
6 ) then

E In,k =
1

2
Φ(ξ)n2(p2 + q2)k

(
1 +O

(
1 + |ξ|3√

logn

))
.
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5. If k
log n ≥ α2 + ε (for some ε > 0) then uniformly

E In,k =
1

2
n2(p2 + q2)k−1

(
1 +O(n−η)

)
for some η > 0.

Remark 7.3 The results stated above are not optimal. For example, the re-
striction α1 + ε ≤ k

log n ≤ α2 − ε (in the first part of Theorem 7.1) can be
weakened to

α1 (logn− log log logn−Kn) ≤ k ≤ α2

(
logn−Kn

√
logn
)
,

where Kn is any sequence tending to infinity (compare with [169]).

If we set α = k/ logn then we can rewrite

(p−ρ + q−ρ)kn−ρ = nα log(p−ρ+q−ρ)−ρ.

Thus, for α0 < α < α2 the behaviour of EBn,k and E In,k is governed by a
power of n depending on the ratio α = k/ logn. The maximum exponent is
obtained for

α =
1

h
=

1

p log 1
p + q log 1

q

,

where h = p log 1
p + q log 1

q denotes the entropy of the Bernoulli source. Actu-

ally, the expected number of nodes at level k = 1
h logn is of order n/

√
logn.

Thus, as in the case of recursive trees (or binary search trees), almost all nodes
are concentrated around this typical level.

Let Dn denote the depth of a random node in a random trie with n keys.
Then the distribution of Dn is related to the external profile by

P{Dn = k} =
EBn,k

n
.

Hence, a direct application of Theorem 7.1 provides an unusual local limit
theorem. (Here we also use the notation h2 = p(log 1

p )2 + q(log 1
q )2.)

Theorem 7.4. Let Dn denote the depth of a random node in a binary random
trie with underlying (non-zero) probabilities p > q = 1− p. Then we have

P{Dn = k} =
G
(
−1, logp/q p

kn
)

√
2π(h2 − h2)/h3 logn

exp

(
−
(
k − 1

h logn
)2

2(h2 − h2)/h3 logn

)

×
(

1 +O

(
1√

logn
+

∣∣k − 1
h logn
∣∣3

(logn)2

))

uniformly for k and n with
∣∣k − 1

h logn
∣∣ = o
(
(logn)2/3

)
.
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The unusualness in this result is the periodic factor. Thus, although the depth
Dn follows a central limit theorem (see [110, 111]) it does not follow a corre-
sponding local central limit theorem (compare also with [169]).

The proof of Theorem 7.1 relies on a precise analysis of the recurrence (7.5)
for Δk(x) that is based on the Mellin transform and analytic depoissonisation.
Let Δ∗k(s) denote the Mellin transform

Δ∗k(s) =

∫ ∞
0

Δk(x)xs−1 dx

that exists for s ∈ C with �(s) > −2 (if k ≥ 1). Then (7.5) rewrites to

Δ∗k(s) = (p−s + q−s)Δ∗k−1(s), (k ≥ 2),

with initial condition

Δ∗1(s) = Γ (s+ 1)(p−s + q−s − 1).

Thus, for k ≥ 2 we explicitly have

Δ∗k(s) = Γ (s+ 1)(p−s + q−s − 1)(p−s + q−s)k−1.

Hence, by the inverse Mellin transform (see [81])

Δk(x) =
1

2πi

∫ ρ+i∞

ρ−i∞
Γ (s+ 1)g(s)(p−s + q−s)kx−s ds (7.8)

with ρ > −2 and where

g(s) = 1− 1

p−s + q−s
.

We are mainly interested in the behaviour ofΔk(x) for x = n, since by analytic
depoissonisation we expect that EXn,k ∼ Δk(n).

For convenience we set

T (s) = p−s + q−s.

For the asymptotic analysis of the integral (7.8) it is natural to choose ρ = ρn,k

as the saddle point of the function

T (s)kn−s = ek log T (s)−s log n

that is given by the relation

∂

∂s
(k logT (s)− s logn) = 0.

Equivalently we have
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k

logn
=

p−ρ + q−ρ

p−ρ log 1
p + q−ρ log 1

q

,

that is, ρ = ρn,k = ρ(k/ logn).
However, we have to distinguish between several cases. We start with the

range α1 < k/ logn < α2. Here we have −2 < ρn,k < ∞ and we can choose
ρ = ρn,k. Another observation is that on the line �(s) = ρ there will be
infinitely many saddle points

sj = ρ+
2πij

log p
q

.

This is due to the fact that T (sj) = e−2πij(log p)/(log p/q)T (ρ) and consequently
the behaviour of T (s)kz−s around s = sj is almost the same as that of
T (s)kz−s around s = ρ. This phenomenon gives a periodic leading factor
in the asymptotics of Δk(n) and also of μn,k = EBn,k.

Lemma 7.5. Suppose that α1 + ε ≤ k
log n ≤ α2− ε (for some ε > 0). Then we

have

Δk(n) = G
(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k )kn−ρn,k√

2πβ(ρn,k)k

(
1 +O

(
1√
k

))
,

where
G(ρ, x) =

∑
j∈Z

g(ρ+ itj)Γ (ρ+ itj + 1)e−2jπix

is a non-zero periodic function with period 1 and tj = 2jπ/ log(p/q).

Proof. For convenience we set Jk(n, s) = n−sΓ (s+ 1)g(s)T (s)k. We split the
integral (7.8) into two parts where we use the substitution s = ρ + it. Let
us start with the range |t| ≥ √

logn and recall that by Stirling’s formula
Γ (ρ+ 1 + it) = O

(
|t|ρ+1/2e−π|t|/2

)
:

1

2π

∫
|t|≥

√
log n

Jk(n, ρ+ it) dt = O

(
n−ρT (ρ)k

∫ ∞
√

log n

|Γ (ρ+ it) dt

)

= O

(
n−ρT (ρ)k

∫ ∞
√

log n

tρ+1/2e−πt/2

)
= O
(
n−ρT (ρ)k(logn)ρ/2+1/4e−π

√
log n/2
)

= O
(
n−ρT (ρ)ke−

√
log n
)
.

Next set

Tj =
1

2π

∫
|t−tj|≤π/ log(p/q)

Jk(n, ρ+ it) dt,
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where tj = 2πj
log p

q
. We have to study these integrals for all |j| ≤ j0 =

�
√

logn log(p/q)/(2π)�.
Since there exists c0 > 0 with

p−ρ−it + q−ρ−it ≤ T (ρ)e−c0(t−tj)
2

for |t− tj | ≤ π/ log(p/q), we obtain an upper bound of the integral (for j = 0)

T ′j =
1

2π

∫
k−2/5≤|t−tj |≤π/ log(p/q)

Jk(n, ρ+ it) dt

= O

(
|Γ (ρ+ itj)|n−ρT (ρ)k

∫ ∞
k−2/5

e−c0t2 dt

)
= O
(
|Γ (ρ+ itj)|n−ρT (ρ)kk−3/5e−c0k1/5

)
.

For j = 0 we can replace the factor |Γ (ρ+ itj)| by 1.
Finally, for |t− tj | ≤ k−2/5 we use the approximation

Jk(n, ρ+ it) = Γ (ρ+ it)g(ρ+ it)nρ+itT (ρ+ it)k

= Γ (ρ+ it)g(ρ+ it)e−itj log(pkn)n−ρ+i(t−tj)T (ρ+ i(t− tj))k

= Γ (ρ+ itj)g(ρ+ itj)e−itj log(pkn)n−ρT (ρ)ke−
1
2 β(ρ)(t−tj)

2

×
(
1 +O(|t − tj |) +O(k|t− tj |3)

)
and standard saddle point techniques to derive the approximation

T ′′j =
1

2π

∫
|t−tj |≤k−2/5

Jk(n, ρ+ it) dt

= Γ (ρ+ itj)g(ρ+ itj)
n−ρT (ρ)k√

2πβ(ρ)k
e−itj log(pkn)

(
1 +O(k−1/2)

)
.

Hence we finally get

Δk(n) =
∑
|j|≤j0

Tj +O
(
n−ρT (ρ)ke−

√
log n
)

=
∑
|j|≤j0

Γ (ρ+ itj)g(ρ+ itj)e−itj log(pkn) n
−ρT (ρ)k√
2πβ(ρ)k

(
1 +O(k−1/2)

)
+O
(
n−ρT (ρ)ke−

√
log n
)

= G
(
ρ, logp/q p

kn
) n−ρT (ρ)k√

2πβ(ρn,k)k

(
1 +O(k−1/2)

)
,

as proposed.
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For the depoissonisation procedure we also need some information about
the asymptotic behaviour of Δk(neiθ). The above proof extends to the range
|θ| ≤ π/2− ε (for some ε > 0). In this range we have uniformly

Δk(neiθ) =
T (ρ)k√
2πβ(ρ)k

∑
|j|≤j0

g(ρ+ itj)Γ (ρ+ itj)(neiθ)−ρ−itj p−iktj (7.9)

×
(

1 +O
(
k−1/2
))
.

Furthermore, we also ovserve the following upper bound.

Lemma 7.6. There exits a constant c > 0 such that

|exΔk(x)| ≤ erΔk(r)e−crθ2

uniformly for r ≥ 0 and |θ| ≤ π, where x = reiθ.

Proof. Set x = reiθ . By (7.5) we can represent Δk(x) by

Δk(x) =

k−1∑
�=0

(
k − 1

�

)
Δ1

(
p�qk−1−�x

)
.

Since exΔ1(x) is a power series with non-negative coefficients, we have
|exΔ1(x)| ≤ erΔ1(r). Consequently, by using the inequality 1−cos θ ≥ 2ϑ2/π2

(for |θ| ≤ π) it follows for k ≥ 2

|exΔk(x)| ≤
k−1∑
�=0

(
k − 1

�

)
|ex(1−p�qk−1−�)|erp�qk−1−�

Δ1

(
p�qk−1−�r

)
=

k−1∑
�=0

(
k − 1

�

)
|e(1−p�qk−1−�)r cos θ|erp�qk−1−�

Δ1

(
p�qk−1−�r

)
≤

k−1∑
�=0

(
k − 1

�

)
|e(1−p�qk−1−�)r(1−2ϑ2/π2)|erp�qk−1−�

Δ1

(
p�qk−1−�r

)
≤ e−2rθ2(1−pk−1)/π2

erΔk(r)

≤ e−2rθ2(1−p)/π2

erΔk(r).

This proves the lemma with c = 2(1− p)/π2.

By using these preliminaries the proof of the first part of Theorem 7.1
is completed by inverting the Poisson transform. As explained above we use
Cauchy integration with the contour |x| = n:

EBn,k =
n!

2πi

∫
|x|=n

exΔk(x)
dx

xn+1

=
n!n−n

2π

∫
|θ|≤π

eneiθ

Δk(neiθ)e−inθ dθ.



318 7 Tries and Digital Search Trees

Fix 0 < θ0 < π/2. Then Lemma 7.6 implies∣∣∣∣∣∣∣
n!n−n

2π

∫
θ0≤|θ|≤π

eneiθ

Δk(neiθ)e−inθ dθ

∣∣∣∣∣∣∣ ≤ Δk(n)
n!n−nen

2π

∫
θ0≤|θ|≤π

e−cnθ2

dθ

= O
(
Δk(n)e−cθ2

0n
)
.

For the remaining part of the integral we use (7.9) and obtain

n!n−n

2π

∫
|θ|≤θ0

eneiθ

Δk(neiθ)e−inθ dθ

=
n−ρT (ρ)k√

2πβ(ρ)k

∑
|j|≤j0

Γ (ρ+ itj)g(ρ+ itj)

× n!n−n

2π

∫
|θ|≤θ0

eneiθ−inθeiθ(ρ+itj) dθ ·
(

1 +O(k−1/2)
)

=
n−ρT (ρ)k√

2πβ(ρ)k

∑
|j|≤j0

Γ (ρ+ itj)g(ρ+ itj)

× n!n−nen

2π

∫
|θ|≤θ0

e−
1
2 nθ2 (

1 +O(n|θ|3) +O(|tjθ|)
)
dθ ·
(

1 +O(k−1/2)
)

=
n−ρT (ρ)k√

2πβ(ρ)k

∑
|j|≤j0

Γ (ρ+ itj)g(ρ+ itj)
(

1 +O(|tj |n−1/2) +O(k−1/2)
)

= Δk(n)
(

1 +O(k−1/2)
)
.

This completes the proof of Theorem 7.1 for the range α1 + ε ≤ k
log n ≤ α2− ε.

The range k
log n ≥ α2 + ε can be handled in a similar way. First of all

one has to shift the path of integration to the line �(s) = ρ < −2. Since the
integrand has a polar singularity at s = −2, we thus have

Δk(x) = −g(−2)x2(p2 + q2)k +
1

2π

∫ ∞
−∞

Jk(x, ρ+ it) dt.

By definition

g(−2) = 1− 1

p2 + q2
= − 2pq

p2 + q2
.

This suggests that the leading term of Δk(x) is of the form

2pqx2(p2 + q2)k−1,

which corresponds (by depoissonisation) to the proposed leading term
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2pqn2(p2 + q2)k−1

of EBn,k. Therefore we only have to concentrate on the remaining integral.
We set x = neiθ and obtain (by splitting up the integral into integrals Tj ,

etc.) ∫ ∞
−∞

Jk(x; ρ+ it) dt = O
(
n−ρT (ρ)kk−1/2

)
uniformly for |θ| ≤ θ0 (where θ0 < π/2) and −K ′ ≤ ρ ≤ −2− ε′ (where ε′ > 0
and K ′ > 2 are arbitrary constants). In fact, if we choose ρ sufficiently close
to −2 (depending of ε) we obtain

Δk(neiθ) = 2pqn2e2iθ(p2 + q2)k−1
(
1 +O(n−η)

)
uniformly for |θ| ≤ θ0 for some η > 0. Hence, together with Lemma 7.6 and
analytic depoissonisation we get

EBn,k = 2pqn2(p2 + q2)k−1
(
1 +O(n−η)

)
uniformly for k/ logn ≥ α2 + ε.

Finally suppose that k/ logn is close to α2:

k = α2

(
logn+ ξ

√
α2β(−2) logn

)
,

where ξ = o((log n)1/6). We move the line of integration to the saddle point

�(s) = ρ =
1

log(p/q)
log

1− α log(1/p)

α log(1/q)− 1
= −2− ξ√

α2β(−2) logn
+O
(
ξ2/ logn

)
.

First assume that k < α2 logn, so that ξ < 0 and ρ > −2. This means that
we do not pass the polar singularity, which is located at s = −2. Hence, as
above we obtain

Δk(neiθ) =
1

2π

∫
|t|≤(log n)−2/5

Jk(neiθ, ρ+ it) dt

+O
(
|Γ (ρ+ 1 + i(logn)−2/5)|n−ρT (ρ)ke−c0(log n)1/5

)
+O
(
k−1/2n−ρT (ρ)k

)
.

Since

|Γ (ρ+ 1 + i(logn)−2/5)| = O

(
1

|ξ|(log n)−1/2 + (log n)−2/5

)
= O((log n)2/5),

we can neglect the first error term.
Next we replace the factor Γ (s+ 1)g(s) in Jk(x, s) by
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− g(2)

s+ 2
.

Since the sum Γ (s+ 1)g(s) + g(2)/(s+ 2) is analytic, we have∫
|t|≤(log n)−2/5

(
Γ (s+ 1)g(s) +

g(2)

s+ 2

)
(neiθ)−ρ−itT (ρ+ it)k dt

= O

(
n−ρT (ρ)k

√
k

)
and consequently

Δk(neiθ) =
−g(−2)

2π

∫
|t|≤(log n)−2/5

(neiθ)−ρ−itT (ρ+ it)k

ρ+ 2 + it
dt

=
−g(−2)

2π
n−ρe−iθρT (ρ)k

∫
|t|≤(log n)−2/5

eθt−β(ρ)kt2/2+O(k|t|3)

ρ+ 2 + it
dt

=
−g(−2)

2π
n−ρe−iθρT (ρ)k

∫ ∞
−∞

e−t2/2

ξ0 + it

(
1 +O

( |t|+ |t|3√
logn

))
dt,

where
ξ0 = (ρ+ 2)

√
β(ρ)k = −ξ +O(ξ2(logn)−1/2).

Since ξ0 > 0, we obtain

1

2π

∫ ∞
−∞

e−t2/2

ξ0 + it
dt =

1

2π

∫ ∞
−∞

e−t2/2

∫ ∞
0

e−v(ξ0+it) dv dt

=
1

2π

∫ ∞
0

e−vξ0

∫ ∞
−∞

e−t2/2−itv dt dv

=
1√
2π
e−v2/2−vξ0 dv

= eξ
2
0/2Φ(−ξ0).

The error term is estimated similarly:

1√
log n

∫ ∞
−∞

(|t|+ |t|3)e−t2/2

|(ρ+ 2)
√
β(ρ)k + it|

dt

= O

(
1√

logn

∫ ∞
0

(v + v3)e−v2/2−vξ0 dv

)
= O

(
1√

logn
eξ

2
0/2Φ(−ξ0)(1 + |ξ0|3)

)
.

Thus we get

Δk(neiθ) = −g(−2)(neiθ)−ρT (ρ)keξ
2
0/2Φ(−ξ0)

(
1 +O

(
1 + |ξ0|3√

logn

))
+O
(
k−1/2n−ρT (ρ)k

)
.
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By using the local expansions

n−ρT (ρ)k = n2T (2)ke−ξ2/2+O(|ξ3|(log n)−1/2),

eξ
2
0/2Φ(−ξ0) = eξ

2/2Φ(ξ)
(

1 +O
(
|ξ|3(logn)−1/2

))
we end up with the expansion

Δk(neiθ) = −g(−2)(neiθ)2T (2)kΦ(ξ)

(
1 +O

(
1 + |ξ0|3√

logn

))
+O
(
k−1/2n2T (2)ke−ξ2/2

)
,

that holds uniformly for |θ| ≤ θ0. By combining this expansion with Lemma 7.6
(together with analytic depoissonisation) we finally obtain the proposed
asymptotic expansion for EBn,k, if k < α2 logn. The missing case k ≥ α2 logn
can be treated in a similar way. Therefore we have also completed the proof
in the second case of Theorem 7.1.

The proof of Theorem 7.2 is very similar to the proof of Theorem 7.1. The
corresponding Poisson transform Δk(x) is given by

Δk(x) = 2k − 1

2πi

∫ ρ+i∞

ρ−i∞
(s+ 1)Γ (s)T (s)kx−s ds,

where ρ > 0. Due to the (additional) polar singularity at ρ = 0 there is a
second phase transition. However, the analysis uses exactly the same methods.

7.1.3 The Limiting Distribution of the Profile of Tries

We next consider the limiting distribution of the profile that is Gaussian in
the range of interest. We first observe that in the range α1 + ε ≤ k

log n ≤ α2− ε
the variances VarBn,k and Var In,k have asymptotic representations of the
form

VarBn,k = H
(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k )kn−ρn,k√

2πβ(ρn,k)k

(
1 +O
(
k−1/2
))

and

Var In,k = H
(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k)kn−ρn,k√

2πβ(ρn,k)k

(
1 +O
(
k−1/2
))

where H(ρ, x) and H(ρ, x) are non-zero periodic functions with period 1 (we
do not give proofs here, for details see [169]). In particular, VarBn,k → ∞
and Var In,k →∞ in this range. Remarkably, there is no phase transition for
VarBn,k → ∞ for k ∼ α0 logn which means that for α1 <

k
log n < α0 the

expected value and the variance of the internal profile do not have the same
order of magnitude. Nevertheless, there is a central limit theorem even in this
range.
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Theorem 7.7. Suppose that α1 + ε ≤ k
log n ≤ α2 − ε (for some ε > 0). Then

Bn,k − EBn,k√
VarBn,k

d−→ N(0, 1) and
In,k − E In,k√

Var In,k

d−→ N(0, 1).

We present an outline of the proof of Theorem 7.7 (for details see [169]). It

is based on an analysis of the generating function Gk(x, u) resp. G
[I]
k (x, u). Re-

call that Gk(x, u) satisfies the recurrence Gk(x, u) = Gk−1(px, u)Gk−1(qx, u)
(for k ≥ 2). The principle idea of the proof is to introduce the functions

Δk(x, u) = log(e−xGk(x, u))

and the Mellin transforms

Δ∗k(s, u) =

∫ ∞
0

Δk(x, u)xs−1 dx.

Since G1(x, u) = ex + (epxqx+ eqxpx− 1) (u − 1) + pqx2(u − 1)2, it follows
that the Mellin transform Δ∗1(s, u) exists for �(s) > −2. Thus,

Δ∗k(s, u) = Δ∗1(s, u)T (s)k−1

also exists for s in this range. Consequently, we have

log(e−xGk(x, u)) = Δk(x, u) =
1

2πi

∫ ρ+i∞

ρ−i∞
Δ∗1(s, u)T (s)k−1x−s ds, (7.10)

where we can choose ρ as the saddle point ρn,k for x with modulus |x| = n.
Thus, the plan of the proof is to use a saddle point method to obtain

asymptotics for Δk(x, u) and consequently for Gk(x, u). Second, one has to
depoissonise Gk(x, u) to obtain asymptotics for EuBn,k (for |u| = 1) which
will lead to the central limit theorem.

We collect some properties that are used for the proof (see [169]).

Lemma 7.8. There exists a constant c > 0 such that

|Gk(reiθ, u)| ≤ er−crθ2

uniformly for r ≥ 0, |θ| ≤ π, and |u| = 1.

The proof is similar to the proof of Lemma 7.6.

Lemma 7.9. Let Vk(x) = Δ
(2)
k (x)−Δk(x)2, where

Δ
(2)
k (x) = e−x

∑
n≥0

E(B2
n,k)

xn

n!
.

Suppose that α1+ε ≤ k
log n ≤ α2−ε (for some ε > 0) and set σn,k =

√
VarBn,k

and ρ0 = max{1, ρn,k}. Then we have



7.1 The Profile of Tries 323

Gk(neiθ, eiϕ) = exp
(
n− n

2
θ2 +Δk(n)iϕ−Δ′k(n)ϕθ − Vk(n)

2
ϕ2

+O
(
n|θ|3 + ρ20σ

2
n,k|ϕ|θ2 + ρ0σ

2
n,kϕ

2|θ|+ σ2
n,k|ϕ|3
))

uniformly for |θ| ≤ n2/5 and |ϕ| = o(σ
−2/3
n,k ).

The proof is based on the explicit representation (7.10), local expansions,

proper estimates for derivatives of Δk(x) and Δ
(2)
k (x), and a saddle point

analysis (see [169]).
By using these two properties one obtains (after working out the asymp-

totics of the integrals)

E eiBn,kϕ =
n!

2πi

∫
|x|=n

Gk(x, eiϕ)
dx

xn+1

= eiΔk(n)ϕ− 1
2 ϕ2(Vk(n)−nΔ′k(n)2)

(
1 +O(σ−1

n,k + σ2
n,k|ϕ|3)

)
and, thus

E exp

(
Bn,k −Δk(n)√
Vk(n)− nΔ′k(n)2

iϕ

)
= e−ϕ2/2

(
1 +O

(
1 + |ϕ|3
σn,k

))
,

uniformly for ϕ = o(σ
1/5
n,k ). Since EBn,k ∼ Δk(n) and VarBn,k ∼ Vk(n) −

nΔ′k(n)2 (see [169]), the result for the external profile follows. The proof of
the central limit theorem for the internal profile is very similar to that of the
external profile. For details we again refer to [169].

7.1.4 The Height of Tries

The height Hn of tries was already studied by Flajolet and Steyaert [85],
Devroye [48], and Pittel [173], and Szpankowski [196]. The limiting behaviour
was finally determined by Pittel [174] (even in a slightly more general setting).

Theorem 7.10. The distribution of the height Hn of random tries is asymp-
totically given by

P{Hn ≤ k} = exp

(
−1

2
e−2(α3k−log n)

)
+ o(1)

uniformly for all k ≥ 0 as n→∞ (where α3 = 2/ log(1/(p2 + q2))).

The analytic methods that have been presented to derive asymptotic prop-
erties of the profile can also be used to handle the height. Let Gk(x) denote
the generating function

Gk(x) =
∑
n≥0

P{Hn ≤ k}
xn

n!
.
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Then we have (as for the profile)

Gk(x) = Gk−1(px)Gk−1(qx), (k ≥ 2),

and can we proceed as in Section 7.1.3.

7.1.5 Symmetric Tries

The case of symmetric binary tries with underlying probabilities p = q = 1
2

is very easy to analyse. In this case the generating functions Gk(x, u) and

G
[I]
k (x, u) are explictly given by

Gk(x, u) =

(
ex/2k−1

+ (u− 1)
x

2k−1

(
ex/2k − 1

)
+ (u − 1)2

x2

4

)2k−1

,

and by

G
[I]
k (x, u) =

(
uex/2k

+ (1 − u)
(

1 +
x

2k

))2k

.

Hence, we also get explicit results.

Theorem 7.11. The expected values EBn,k and E In,k of the external and
internal profile of symmetric binary tries are explicitly given by

EBn,k = n
(
1− 2−k

)n−1 − n
(
1− 21−k

)n−1
,

E In,k = 2k
(

1−
(
1− 2−k

)n)− n (1− 2−k
)n−1

,

and asymptotically by

EBn,k ∼
{
n
(
1− 2−k

)n−1
if 2−kn→∞,

n
(
e−n/2k − e−n/2k−1

)
if 4−kn→ 0,

E In,k ∼
{

2k − n
(
1− 2−k

)n−1
if 2−kn→∞,

2k − (2k + n)e−n/2k

if 4−kn→ 0.

Furthermore, if

logn− log logn

log 2
≤ k ≤ 2 logn

log 2
,

then we have

Bn,k − EBn,k√
VarBn,k

d−→ N(0, 1),

In,k − E In,k√
Var In,k

d−→ N(0, 1),
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where the variances are asymptotically given by

VarBn,k ∼ Var In,k ∼ n
(
1− 2−k

)n−1
, if 2−kn→∞,

and by

VarBn,k ∼ n
(
e−n/2k − e−n/2k−1

)
+ 2−kn2e−n/2k−1

− 21−kn2
(
e−n/2k − e−n/2k−1

)2
and

Var In,k ∼ (2k + n)e−n/2k − 2k
(
1 + 2−k

)2
e−n/2k−1

,

if 4−kn→ 0.

Accordingly, the generating function for the height distribution is given by

Gk(x) =
(

1 +
x

2k

)2k

,

which leads to the explicit height distribution

P{Hn ≤ k} =
n!

2nk

(
2k

n

)
.

7.2 The Profile of Digital Search Trees

Although digital search trees are very well studied there are only partial results
on the profile (in particular in the symmetric case p = q = 1

2 [126], [130,
Section 6.3]; we will come back to this special case in Section 7.2.3). The closest
related quantity is the typical depth Dn that measures the path length from
the root to a randomly selected node; it is equal to the ratio of the average
profile to the number of nodes. Unfortunately, all estimations of the depth
[130, 142, 144, 177, 195] only deal with the typical depth around the most
likely value, namely k = (1/h) logn+O(1), where h = −p log p− q log q is the
entropy rate.

7.2.1 Generating Functions for the Profile

Let Bn,k resp. In,k denote the (random) number of external resp. internal
nodes at level k in a digital search tree, when the total number of internal
nodes equals n, that is, we have the empty string and n − 1 strings that are
generated by a memoryless source with parameters p > q = 1 − p. By the
definition of the probability generating function, Pn,k(u) = EuBn,k , satisfies
the following recurrence relation
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Pn+1,k(u) =
n∑

�=0

(
n

�

)
p�qn−�Pn,k−1(u)Pn,k−1(u), (7.11)

while the corresponding exponential generating function

Gk(x, u) =
∑
n≥0

Pn,k(u)
xn

n!

satisfies the functional recurrence

∂

∂x
Gk(x, u) = Gk−1(px, u)Gk−1(qx, u), (k ≥ 1), (7.12)

with initial conditions G0(x, u) = u+ ex − 1 and Gk(0, u) = 1 (k ≥ 1).
Accordingly, the corresponding generating functions for the internal profile

G
[I]
k (x, u) =

∑
n≥0

EuIn,k
xn

n!

satisfy the same recurrence relation

∂

∂x
G

[I]
k (x, u) = G

[I]
k−1(px, u)G

[I]
k−1(qx, u), (k ≥ 1), (7.13)

with initial conditions G
[I]
0 (x, u) = 1 + u(ex − 1) and G

[I]
k (0, u) = 1 (k ≥ 1).

We are interested in the expected profiles EBn,k and E In,k. By taking
derivatives with respect to u and setting u = 1 we obtain for the exponential
generating function

Ek(x) =
∑
n≥0

EBn,k
xn

n!
,

that satisfies the functional recurrence

E′k(x) = eqxEk−1(px) + epxEk−1(qx), (7.14)

with initial condition E0(x) = 1 and Ek(0) = 0 (k ≥ 1).
The corresponding generating functions for the internal profile

E
[I]
k (x) =

∑
n≥0

E In,k
xn

n!

satisfy the recurrence (7.14), too, however with initial conditions E
[I]
0 (x) =

ex − 1 and E
[I]
k (0) = 0 (k ≥ 1).
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7.2.2 The Expected Profile of Digital Search Trees

In order to state the results for the expected profile of digital search trees
we use the same notation as for tries. For a real number α with (log 1

p )−1 <

α < (log 1
q )−1 we define ρ = ρ(α) by (7.6) and β(ρ) by (7.7). We also use the

abbreviation

α0 =
2

log 1
p + log 1

q

.

The results for the expected profile of digital search trees are formally
similar to those of tries (compare with Theorems 7.1 and 7.2).

Theorem 7.12. Let EBn,k denote the expected external profile in (asymmet-
ric) digital search trees with underlying (non-zero) probabilities p > q = 1−p.
If n and k are positive integers with 1

log 1
p

+ ε ≤ k
log n ≤ 1

log 1
q

− ε (for some

ε > 0) then we uniformly have

EBn,k = G
(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k )kn−ρn,k√

2πβ(ρn,k)k

(
1 +O
(
k−1/2
))
,

where G(ρ, x) is a non-zero periodic function with period 1 and ρn,k =
ρ(k/ logn).

Theorem 7.13. Let E In,k denote the expected internal profile in (asymmet-
ric) digital search trees with underlying (non-zero) probabilities p > q = 1−p.
Let k and n be positive integers such that k/ logn satisfies (log 1

p )−1 <

k/ logn < (log 1
q )−1. Then the following assertions hold:

1. If 1
log 1

p

+ ε ≤ k
log n ≤ α0 − ε (for some ε > 0) then we have uniformly

E In,k = 2k−G
(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k)kn−ρn,k√

2πβ(ρn,k)k

(
1 +O
(
k−1/2
))
,

where G(ρ, x) is a non-zero periodic function with period 1.

2. If k = α0

(
logn+ ξ

√
α0β(0) logn

)
, where ξ = o((log n)

1
6 ), then

E In,k = 2kΦ(−ξ)
(

1 +O

(
1 + |ξ|3√

logn

))
.

3. If α0 + ε ≤ k
log n ≤ 1

log 1
q

− ε (for some ε > 0) then we have uniformly

E In,k = G
(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k)kn−ρn,k√

2πβ(ρn,k)k

(
1 +O
(
k−1/2
))

with the same function G(ρ, x) as in 1.
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A direct consequence of these properties is a local limit theorem for the
depth Dn of a random internal node. The result is precisely the same as
Theorem 7.4 (only the periodic function is different). As in the case of tries
the depth satisfies a central limit theorem (see [112]) but not a local central
limit theorem.

The proofs of Theorems 7.12 and 7.13 are also similar to the proofs of the
corresponding theorems (Theorems 7.1 and 7.2) for the expected profile of
tries. However, we have to add one further step, since the Mellin transforms
Δ∗k(s) cannot be written in a direct explicit form.

As for tries the first step is to consider the Poisson transform

Δk(x) = e−x
∑
n≥0

EBn,k
xn

n!
= Ek(x)e−x, (k ≥ 0).

It is clear that the above recurrence translates to

Δk(x) +Δ′k(x) = Δk−1(px) +Δk−1(qx), (k ≥ 1), (7.15)

with initial conditions Δ0(x) = e−x and Δk(0) = 0 (k ≥ 1).
The second step is to use the Mellin transform

Δ∗k(s) =

∫ ∞
0

Δk(x)xs−1 dx.

By induction it is easy to prove that Δk(x) can be represented as a finite

linear combination of functions of the form e−p�1q�2x with �1, �2 ≥ 0 and 0 ≤
�1 + �2 ≤ k. Hence, Δ∗k(s) surely exists for all s with �(s) > 0. Furthermore,
Bn,k = 0 for k > n. Thus, Ek(x) = O(xk) for x→ 0 which ensures that Δ∗k(s)
actually exists for s with �(s) > −k. We can also write

Δ∗k(s) = Γ (s)Fk(s),

where Fk(s) is now a finite linear combination of functions of the form
p−�1sq−�2s with �1, �2 ≥ 0 and 0 ≤ �1 + �2 ≤ k. Thus, Fk(s) can be con-
sidered as an entire function. The relation (7.15) translates to

Fk(s)− Fk(s− 1) = (p−s + q−s)Fk−1(s) = T (s)Fk−1(s), (k ≥ 1), (7.16)

with initial condition F0(s) = 1. Note that the relation (7.16) not only holds
for �(s) > k where the Mellin transform exists. Since Fk(s) analytically con-
tinues to an entire function, (7.16) holds for all s.

At this formal level the essential difference between tries and digital search
trees is that the recurrence (7.16) cannot be solved in a direct way. Never-
theless the asymptotic behaviour is of the same type. We have to add a third
step to our analysis. We consider the power series

f(w, s) =
∑
k≥0

Fk(s)ws.
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It turns out that f(w, s) can we represented (see Lemma 7.14) as

f(w, s) =
g(w, s)

g(w,−1)
,

where g(w, s) satisfies the relation

g(w, s) = 1 + w
∑
j≥0

g(w, s− j)(p−s+j + q−s+j). (7.17)

Granted the above, an asymptotic analysis follows. We start with a singularity
analysis of g(w, s), in particular we will show (see Lemma 7.17) that g(w, s)
(usually) has a polar singularity at w = 1/(p−s +q−s). Thus it will be possible
to get proper asymptotics for Fk(s). In fact we get Fk(s) ∼ f(s)(p−s + q−s)k

(for a proper function f(x) and for s in the interesting range). Actually this
resembles the exact expression for tries. This is also the reason why the overall
behaviour of the profile of biased tries and biased digital search trees is almost
of the same form. Only the periodic functions are slightly different. The final
two steps (inverting the Mellin transform and depoissonisation) are almost
identical to the methods presented in Section 7.1.2.

Before we study the generating function f(w, s) =
∑

k≥0 Fk(s)wk, we will
collect some basic properties of Fk(s). We recall that Fk(s) can be considered
as an entire function.

Let A be an functional operator that is defined by

A[f ](s) =
∑
j≥0

f(s− j)T (s− j), (7.18)

where
T (s) = p−s + q−s. (7.19)

In the next lemma we find an explicit representation of Fk(x) through the
operator A.

Lemma 7.14. The functions Fk(s) are recursively given by

Fk(s) = A[Fk−1](s)−A[Fk−1](0) (k ≥ 1) (7.20)

with initial function F0(s) = 1. Furthermore, if we set Rk(s) = Ak[1](s) then
we have the formal identity

∑
k≥0

Fk(s)wk =

∑
�≥0R�(s)w

�∑
�≥0R�(0)w�

. (7.21)

Finally for k ≥ 1 we have Fk(−�) = 0 for � = 0, 1, 2, . . . , k − 1.
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Proof. Set F̃k(s) = 1 and recursively

F̃k(s) = A[F̃k−1](s)−A[F̃k−1](0) (k ≥ 1).

It is easy to see that F̃k(s) is a well defined entire function. In particular it
follows that F̃k(s) is (as it is for Fk(s)) a finite linear combination of a function
of the form p−�1sq−�2s with �1, �2 ≥ 0 and �1 + �2 ≤ k. Further (by definition)
these functions satisfy F̃k(0) = 0 (for k ≥ 1) and fulfil the relation

F̃k(s)− F̃k(s− 1) = T (s)F̃k−1(s)

for k ≥ 0 and all s.
Now we can proceed by induction to show that Fk(s) = F̃k(s). By def-

inition we have F0(s) = F̃0(s). Now suppose that Fk(s) = F̃k(s) holds for
some k ≥ 0. Then with the help of the above considerations it follows that
Fk+1(s) = F̃k+1(s) +G(s), where G(s) satisfies

G(0) = 0 and G(s)−G(s− 1) = 0, (�(s) > −k). (7.22)

By the above observations G(s) has to be a finite linear combination of func-
tions of the form p−�1sq−�2s. However, the only periodic function of this form
that meets conditions (7.22) is the zero function. Hence, Fk+1(s) = F̃k+1(s).

Now we prove (7.21). First, (7.21) is equivalent to

k∑
�=0

F�(s)Rk−�(0) = Rk(s), (k ≥ 0),

or to

Fk(s) = Rk(s)−
k−1∑
�=0

F�(s)Rk−�(0), (k ≥ 0).

We will prove this relation by induction. Of course, it is satisfied for k = 0.
Now suppose that is holds for some k ≥ 0. Then from (7.20) we find

Fk+1(s) = A[Fk](s)−A[Fk](0)

= A[Rk](s)−A[Rk](0)

−
k−1∑
�=0

(A[F�](s)−A[F�](0))Rk−�(0)

= Rk+1(s)−Rk+1(0)−
k−1∑
�=0

F�+1(s)Rk−�(0)

= Rk+1(s)−
k∑

�=0

F�(s)Rk+1−�(0).

This completes the induction proof.
Finally, since Fk(s) = −Δ∗k(s)/Γ (s) is analytic for s with �(s) > −k and

1/Γ (−�) = 0, it also follows that Fk(−�) = 0 for � = 0, 1, . . . , k − 1.
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Remark 7.15 The proof of (7.20) (and consequently that of (7.21)) makes
use of the fact that Fk(0) = 0 for k ≥ 1. However, we also have Fk(−r) = 0
for k > r. In particular, if we set s = −r in (7.21) we get

r∑
k=0

Fk(−r)wk =

∑
�≥0Rk(−r)wk∑
�≥0Rk(0)wk

,

and consequently

∑
k≥0

Fk(s)wk =

∑
�≥0Rk(s)wk∑

�≥0Rk(−r)wk

r∑
k=0

Fk(−r)wr . (7.23)

Our next goal is to study the function g(w, s) =
∑

�≥0R�(s)w
�, where we

now consider w as a complex variable, too. Note that g(w, s) satisfies the (at
the moment formal) identity

g(w, s) = 1 + wA[g(w, ·)](s) = 1 +
∑
j≥0

g(w, s− j)T (s− j). (7.24)

In the next lemma we establish a crucial property of g(w, s).

Lemma 7.16. There exists a function h(w, s) that is analytic for all w and
s with

wT (s−m) = 1 for all m ≥ 1

such that

g(w, s) =
h(w, s)

1− wT (s)
. (7.25)

Thus, g(w, s) has a meromorphic continuation where w0 = 1/T (s) is a polar
singularity.

Proof. We recall that Rk(s) = Ak[1](s). In particular, the first few functions
Rk(s) are given by

R0(s) = 1,

R1(s) =
p−s

1− p +
q−s

1− q ,

R2(s) =
p−2s

(1− p)(1− p2)
+

p−sq−s

(1− p)(1 − pq)

+
p−sq−s

(1− q)(1− pq) +
q−2s

(1− q)(1 − q2)
.

With the help of (7.18) we can derive corresponding representations for general
k. Hence, by using the assumption p > q it follows that

|Rk(s)| ≤ 1∏
j≥1(1 − pj)

(p−�(s) + q−�(s))k.
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Thus, if |w| < T (�(s))−1 then the series

g(w, s) =
∑
�≥0

R�(s)w
� =

⎛⎝∑
�≥0

w�A�

⎞⎠ [1](s) (7.26)

converges absolutely and represents an analytic function. We can rewrite
(7.26) to

g(w, s) = (I− wA)−1[1](s),

or to

(I− wA)[g(w, ·)](s) = g(w, s)− w
∑
j≥0

g(w, s− j)T (s− j) = 1, (7.27)

which is the same as (7.24).
If we substitute g(w, s) in (7.27) by

g(w, s) =
h(w, s)

1− wT (s)
,

we get a relation for h(w, s) of the form

h(w, s) = 1 +
∑
j≥1

h(w, s− j) wT (s− j)
1− wT (s− j) . (7.28)

Recall that we already know that h(w, s) exists for |w| < T (�(s))−1. We
will now use (7.28) to show that h(w, s) can be analytically continued to the
range |w| < T (�(s)− 1)−1 (and even to the range where wT (s−m) = 1) so
that we also get a meromorphic continuation as proposed.

For this purpose we introduce another operator B by

B[f ](s) =
∑
j≥1

f(w, s− j) wT (s− j)
1− wT (s− j) . (7.29)

For convenience set U(w, s) = wT (s)/(1 − wT (s)). By induction it follows
that

Bk[1](s) =
∑
i1≥1

∑
i2≥1

· · ·
∑
ik≥1

U(w, s− i1)U(w, s− i1 − i2)

· · ·U(w, s− i1 − i2 − · · · − ik)

=
∑

mk≥k

mk−1∑
mk−1=k−1

mk−1−1∑
mk−2=k−2

· · ·
m2−1∑
m1=1

U(w, s−m1)U(w, s−m2) · · ·U(w, s−mk).
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Hence, we get the upper bound

|Bk[1](s)| ≤
∑

mk≥k

∑
mk−1≥k−1

· · ·

∑
m1≥1

|U(w, s−m1)U(w, s−m2) · · ·U(w, s−mk)|

=
∑

m1≥1

|U(w, s−m1)| ·
∑

m2≥2

|U(w, s−m2)|

· · ·
∑

mk≥k

|U(w, s−mk)|.

By using the fact that T (s−m) = O(qm) it follows directly that the series

S :=
∑
m≥1

|U(w, s−m)| =
∑
m≥1

|wT (s−m)|
|1− wT (s−m)|

converges if wT (s −m) = 1 for all m ≥ 1. Thus for any choice of w and s
there are only finitely many exceptional points where wT (s−m) = 1. Let k0

be any value with ∑
m≥k0

|U(w, s−m)| ≤ 1

2
.

Then we have for all k ≥ k0

|Bk[1](s)| ≤ Sk02−(k−k0) = (2S)k02−k.

Hence, we can set

h(w, s) =
∑
k≥0

Bk[1](s), (7.30)

which obviously satisfies (7.28). Furthermore, we have the upper bound
|h(w, s)| ≤ 2(2S)k0 .

Finally, we are in the position to derive an asymptotic representation for
Fk(s).

Lemma 7.17. For every real interval [a, b] there exist k0, η > 0 and ε > 0
such that

Fk(s) = f(s)T (s)k
(
1 +O
(
e−ηk)
))

(7.31)

uniformly for all s with �(s) ∈ [a, b], |�(s)−2�π log(q/p)| ≤ ε for some integer
� and k ≥ k0, where f(s) is an analytic function that satisfies f(−r) = 0 for
r = 0, 1, 2, . . ..

Furthermore, if |�(s)−2�π log(q/p)| > ε for for all integers � then we have

Fk(s) = O
(
T (σ)k e−ηk)

)
(7.32)

uniformly for �(s) ∈ [a, b].
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Proof. Suppose first that s is a real number with −r − 1 < s < −r for some
integer r ≥ 0. Here we use the representation

f(w, s) =

r+1∑
k=0

Fk(−r − 1)wk g(w, s)

g(−r − 1, w)

=

r+1∑
k=0

Fk(−r − 1)wk h(w, s)

h(−r − 1, w)

1− wT (−r − 1)

1− wT (s)
.

By Lemma 7.16 there exists η > 0 such that h(w, s) is analytic for |w| ≤
eη/T (s). Since T (−r− 1) < T (s), it also follows that h(w,−r − 1) is analytic
in that region. Furthermore, since h(w,−r−1) is non-zero for positive realw <
1/T (−r− 2) (compare with (7.30)), we obtain that the radius of convergence
of the series

∑
k≥0 Fk(s)wk equals w0 = 1/T (s).

With the help of this observation we can also deduce that the function
f(w, s) has no other singularities on the circle |w| = 1/T (s). Suppose that

h(w,−r − 1) has a zero w1 with |w1| < 1/T (s). If
∑r+1

k=0 Fk(−r − 1)wk
1 =

0 then w1 has to be a zero of h(w, s), too: h(w1, s) = 0. However, if we
slightly decrease s then certainly h(w1, s − η) = 0. In this case the function
f(w, s) would be singular for w = w1 although its radius of convergence is
1/T (s − η) > 1/T (s) > |w1|. This is, of course, a contradiction and, thus,∑r+1

k=0 Fk(−r − 1)wk
1 = 0 too. Actually, it also follows that the order of the

zeros are the same. Furthermore, by a slight variation of the above argument,
we also deduce that f(w, s) has no singularities on the circle |w| = 1/T (s)
other than w0 = 1/T (s), as proposed.

Hence, by using a contour integration on the circle |w| = eη/T (s) and the
residue theorem it follows that

Fk(s) = f(s)T (s)k +O
(
|T (s)e−η|k

)
,

where

f(s) =
r+1∑
k=0

Fk(−r − 1)T (s)−k h(1/T (s)), s

h(1/T (s),−r− 1)

(
1− T (−r − 1)

T (s)

)
.

These estimates are uniform for s ∈ [a, b], where −r − 1 < a < b < r.
Furthermore, we get the same result if s is sufficiently close to the real axis.
Thus, if a ≤ �(s) ≤ b and |�(s)| ≤ ε for some sufficiently small ε > 0 then we
obtain (7.31), too.

Next, suppose that s is real (or sufficiently close to the real axis) and close
to an integer −r ≤ 0, say −r− η ≤ s ≤ −r+ η (for some η > 0). Here we use
the representation

∑
k≥0

Fk(s)wk =

r∑
k=0

Fk(−r)wk g(w, s)

g(w,−r)
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=
r∑

k=0

Fk(−r)wk h(w, s)

h(w,−r)
1− wT (−r)
1− wT (s)

=

r∑
k=0

Fk(−r)wk h(w, s) − h(w,−r)
h(w,−r)

1− wT (−r)
1− wT (s)

+

r∑
k=0

Fk(−r)wk +

r−1∑
k=0

Fk(−r)wk+1 T (s)− T (−r)
1− wT (s)

.

Now if we subtract the finite sum
∑r

k=0 Fk(−r) then we can safely multiply
by Γ (s) (that is singular at s = −r) and obtain a function of the form

r∑
k=0

Fk(−r)wk Γ (s)(h(w, s) − h(w,−r))
h(w,−r)

1− wT (−r)
1− wT (s)

+
r−1∑
k=0

Fk(−r)wk+1 Γ (s)(T (s)− T (−r))
1− wT (s)

,

which we can handle in the same way as above. Actually, we proved (7.31) for
k ≥ r with f(−r) = 0.

Finally, if �(s) is positive (and �(s) sufficiently close to 2�π/ log(q/p) for
some integer �) then we can also use∑

k≥0

Fk(s)wk =
h(w, s)

h(0, w)

1− wT (0)

1− wT (s)

and obtain the proposed result. (Note that h(w, 0) is analytic for |w| <
1/T (0).)

Next suppose that s = σ + it, where t is not necessarily small. Then

T (s) = eit log p
(
p−σ + q−σeit log(q/p)

)
.

Consequently |T (s)| = T (ρ), if and only if t = 2jπ/ log(q/p) = tj for some
integer j. Hence, if |t − 2jπ/ log(q/p)| ≤ ε for some integer j we can do the
same contour integration as above and again get (7.31).

Finally, if |t−2jπ/ log(q/p)| > ε for all integers j then we trivially estimate
Fk(s) by

|Fk(s)| ≤ ρ−k · max
|w|=ρ

|g(w, s)|,

where ρ is chosen in a way that g(w, s) is analytic for |w| ≤ ρ. Since there is
η > 0 with

|T (s−m)| = |p−σ+m + eit log(q/p)q−σ+m| ≤ e−2ηT (σ −m),

it follows that h(w, s) exists for |w| ≤ eη/T (σ). Hence, we can actually set
ρ = eη/T (σ) and obtain (7.32). In order to complete the proof, note that
Δ∗k(s) = −Γ (s)Fk(s) exists for �(s) > −k and that Fk(−r) = 0 for r =
0, 1, 2, . . . and k ≥ r. Thus, f(−r) = 0, too.
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Putting these observations together it follows that we can represent Δ∗k(s)
as

Δ∗k(s) = Γ (s)f(s)T (s)k
(
1 +O(e−ηk)

)
if |�(s) − tj | ≤ ε for some integer j, where Γ (s)f(s) is an entire function.
Furthermore, we have proper upper bounds in the remaining range. Thus, we
are precisely in the same situation as in the proof of Theorem 7.1. With the
help of the Mellin inversion formula (with the line of integration �(s) = ρn,k)
and by approximating the integral by infinitely many saddle point integrals
around tj we obtain

Δk(neiθ) =
T (ρ)k√
2πβ(ρ)k

∑
|j|≤j0

f(ρ+ itj)Γ (ρ+ itj)(neiθ)−ρ−itjp−iktj

×
(

1 +O
(
k−1/2
))

(7.33)

uniformly for |θ| ≤ θ0 (for some 0 < θ0 < π/2).
It remains to have an a priori upper bound for Δk(neiθ) that is valid for

all |θ| ≤ π. Here we cannot use Lemma 7.6, since the recurrence relation is
different. However, it can be shown that for every real ρ there exists a constant
C = C(ρ) and an integer k0 = k0(ρ) such that

|exΔk(x)| ≤ C(1− cθ2)−krmax{−ρ,0}T (ρ)ker(1−cθ2) (7.34)

for k ≥ k0 and uniformly for all r ≥ 0 and |θ| ≤ π, where x = reiθ. We
indicate a proof for ρ ≤ 0. Obviously there exists k0 and C such that (7.34)
holds for k = k0. Then by definition we have recursively (for k ≥ k0)

|exΔk+1(x)| =

∣∣∣∣∫ x

0

eξ (Δk(pξ) +Δk(qξ)) dξ

∣∣∣∣
=

∣∣∣∣∫ r

0

ete
iθ (
Δk(pteiθ) +Δk(qteiθ)

)
dt

∣∣∣∣
≤ C(1− cθ2)−k T (ρ)k

×
∫ r

0

(
eqt cos θ(pt)−ρept(1−cθ2) + ept cos θ(qt)−ρeqt(1−cθ2)

)
dt

≤ C(1− cθ2)−kT (ρ)k+1

∫ r

0

t−ρet(1−cθ2) dt

≤ C(1− cθ2)−k−1T (ρ)k+1 r−ρer(1−cθ2).

A similar proof works for ρ ≥ 0.
Finally by combining (7.33) and (7.34) with another Cauchy integration

one obtains

EBn,k =
n!

2πi

∫
|x|=n

exΔk(x)
dx

xn+1
∼ Δk(n)

in the range of interest which also completes the proof of Theorem 7.12.
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For the internal profile In,k we use the Poisson transform

Δk(x) = e−x
∑
n≥0

E In,k
xn

n!

that satisfies

Δk(x) +Δ
′
k(x) = Δk−1(px) +Δk−1(qx), (k ≥ 1), (7.35)

with initial conditions Δ0(x) = 1 − e−x. The Mellin transforms Δ
∗
k(s) exist

for −k − 1 < �(s) < 0 and can be represented as

Δ
∗
k(s) = −Γ (s)F k(s),

where F 0(s) = 1 and

F k(s)− F k(s− 1) = T (s)F k−1(s), (k ≥ 1).

The corresponding explicit recurrence is

F k(s) = A[F k−1](s)−A[F k−1](−1), (k ≥ 1),

and we have ∑
k≥0

F k(s)wk =

∑
�≥0R�(s)w

�∑
�≥0R�(−1)w�

and F k(−�) = 0 for � = 1, 2, . . . , k. As above it follows that (for |�(s)− tj| ≤ ε
for some integer j)

F k(s) = f(s)T (s)k
(
1 +O(e−ηk)

)
,

where f(−r) = 0 for r = 1, 2, . . .. Thus,

Δ
∗
k(s) = −Γ (s)f(s)T (s)k

(
1 +O(e−ηk)

)
has a polar singularity at s = 0 which induces the phase transition at the
level k = α0 logn. More precisely, if k < α0 logn one has to shift the line of
integration �(s) = ρ (−k − 1 < ρ < 0), where the Mellin transform exists,
to �(s) = ρn,k > 0 so that the residue 2k (at ρ = 0) has to be taken into
account. In principle one can proceed as in the case of tries.

7.2.3 Symmetric Digital Search Trees

The symmetric case p = q = 1
2 is different, since log 1

p and log 1
q coincide. Of

course, the corresponding generating functions have as simpler structure. We
have

∂

∂x
Gk(x, u) = Gk−1

(x
2
, u
)2
, (k ≥ 1),
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with initial conditions G0(x, u) = u+ ex− 1 and Gk(0, u) = 1 (for k > 0) and

∂

∂x
G

[I]
k (x, u) = G

[I]
k−1

(x
2
, u
)2
, (k ≥ 1),

with initial conditions G
[I]
0 (x, u) = 1 + u(ex − 1) and G

[I]
k (0, u) = 1. Thus, we

obtain
E′k(x) = 2ex/2Ek−1

(x
2

)
, (7.36)

with E0(x) = 1 and Ek(0) = 0 for k ≥ 1 or

E
′
k(x) = 2ex/2Ek−1

(x
2

)
, (7.37)

with Ek−1(0) = ex − 1 and Ek(0) = 0.
In this special case there is a simple explicit solution:

Lemma 7.18. Set γ0 = 1 and

γ� =

�∏
j=1

(
1− 1

2j

)
(� > 0).

Then we explicitly have

Ek(x) = 2kex
k∑

m=0

(−1)m2−(m
2 )

γmγk−m
e−x2m−k

(7.38)

and

Ek(x) = 2kex

(
1−

k∑
m=0

(−1)m2−(m+1
2 )

γmγk−m
e−x2m−k

)
, (7.39)

or equivalently

EBn,k = 2k
k∑

m=0

(−1)m2−(m
2 )

γmγk−m

(
1− 1

2k−m

)n

(7.40)

and

E In,k = 2k − 2k
k∑

m=0

(−1)m2−(m+1
2 )

γmγk−m

(
1− 1

2k−m

)n

. (7.41)

There are several ways to prove these relations. The simplest way is to use
induction. It should be noted that the explicit formula (7.40) for EBn,k has
appeared several times in the literature [142, 143, 146, 177].

For the asymptotic analysis of EBn,k and E In,k we introduce the function

F (z) = 1−
∑
m≥0

(−1)m2−(m+1
2 )

γγm
e−z2m

, (7.42)
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where

γ =

∞∏
j=1

(
1− 1

2j

)
.

By definition we obviously have

F (z) = 1− 1

γ
e−z +O

(
e−2z
)

(z →∞).

The asymptotic behaviour for z → 0+ is much more involved and is covered
in the following lemma.

Lemma 7.19. The Laplace transform L(s) =
∫∞
0
F (z)e−sz dz is given by

L(s) =
1

s
−
∑
m≥0

(−1)m2−(m+1
2 )

γ γm (s+ 2m)

=
1

s

∞∏
j=0

1

1 + s2−j
.

Furthermore, for any fixed r ≥ 0 the r-th derivative F (r)(z) is asymptotically
given by

F (r)(z) = Cr(z)2−
1
2 (log2

1
z )

2−log2
1
z log2 log2

1
z (7.43)

for z → 0+, where Cr(z) is a function of at most polynomial growth for
z → 0+. In particular limz→0+ F (z) = 0.

Remark 7.20 Set L(s) = sL(s) which equals the Laplace transform of F ′(z).
Then L(s) satisfies the functional equation

L(s) = s
∑
j≥1

2jL(s2j) (7.44)

which follows from the fact that∑
j≥1

2j

(1 + 2s)(1 + 22s) · · · (1 + 2js)
=

1

s
.

This relation (7.44) translates directly to the functional equation

F (z) =
∑
j≥1

F ′(z2−j).

Proof. Since F (z) is bounded for z ≥ 0, the Laplace transform L(s) exists for
s with �(s) > 0 and is given by∫ ∞

0

F (z)e−sz dz =
1

s
−
∑
m≥0

(−1)m2−(m+1
2 )

γ γm (s+ 2m)
.
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Since
1

s

∞∏
j=0

1

1 + s2−j
=

1

s
−
∑
m≥0

(−1)m2−(m+1
2 )

γ γm (s+ 2m)
,

we obtain the above representation of L(s). With the help of the standard
notation

Q(x) =

∞∏
j=1

(
1− x

2j

)
we also have

L(s) =
1

sQ(−2s)
.

Note that the Laplace transforms of the derivatives F (r)(z) are given by
srL(s).

In order to obtain the asymptotic expansion (7.43) we use the integral
representation for the inverse Laplace transform

F (r)(z) =
1

2πi

∫ c+i∞

c−i∞
srL(s)esz ds,

where c is an arbitrary positive number (which will be properly chosen in
the sequel). The idea is to use a kind of saddle point approximation of the
integrand. For this purpose we need an asymptotic formula for Q(−2x) for
x→∞:

Q(−2x) = exp

(
log2(x)

2 log(2)
+

log x

2
+ f(log2(x)) +O (1/x)

)
, (7.45)

where f(x) is a differentiable periodic function with period 1. This follows with
the help of the Mellin transform applied to the logarithms. For −1 < �(s) < 0
we have

M(u) =

∫ ∞
0

logQ(−2x)xu−1 dx =
1

1− 2u
g(u)

with

g(u) =

∫ ∞
0

log(1 + x)xu−1 dx =
1

u2
+ h(u),

where h(u) has a meromorphic continuation to the whole complex plane with
single poles at the positive integers k ≥ 1 and residues res(h;u = k) =
(−1)k/k. The inverse Mellin transform gives

Q(−2x) =
1

2πi

∫ c+i∞

c−i∞
M(u)x−u du

with −1 < c < 0. By shifting the line of integration to the right and collecting
the contributions from the triple pole at u = 0 and the single poles at u =
ki/ log 2 (k ∈ Z\{0}), which constitute the periodic function, we obtain (7.45)
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(compare with [81]). It is also easy to extend the asymptotic relation (7.45)
to a complex one of the form | arg(x)| ≤ δ and |x| → ∞, where δ is a small
positive number.

Next we evaluate the r-th derivative F (r)(z) asymptotically. Let 0 < z < 1
be given. We will compute the integral

F (r)(z) =
1

2πi

∫ c+i∞

c−i∞

sr−1

Q(−2s)
esz ds,

for

c = c(z) =
log(1/z)

z log 2
=

log2(1/z)

z
.

With the help of the usual Laplace method we obtain (after some algebra)

F (r)(z) ∼ c′e−f(log2 c(z))c(z)r+ 1
2 (log c(z))−

3
2 elog2

1
z−

log 2
2 (log2 c(z))2 ,

which completes the proof of Lemma 7.19.

The main result on the expected profile of digital search trees is now
formulated in terms of F (z) resp. F ′(z).

Theorem 7.21. We have

EBn,k = 2kF ′(n2−k) + F ′′(n2−k) +O
(
n2−k
)

(7.46)

and
E In,k = 2kF (n2−k) + F ′(n2−k) +O

(
n2−k
)

(7.47)

uniformly for all n, k ≥ 1.

Remark 7.22 These expansions are only of use if n2−k ≤ 2k, that is, for
k ≥ 1

2 log2 n. However, for small k there are no interesting phenomena. The
range of interest is

log2 n− log log n ≤ k ≤ log2 n+
√

2 log2 n,

and this range is covered by Theorem 7.21. Nevertheless, with slightly more
care it is easy to obtain more precise expansions, e.g.

EBn,k = 2kF ′(n2−k) + F ′′(n2−k)− n

2k+1
F ′′′(n2−k) +O

(
n4−k
)

+O
(
2−k
)
.

Proof. We just have to use the explicit representations of Lemma 7.18 and
approximate the leading terms by 2kF ′(n2−k) resp. by 2kF (n2−k).

In particular, we first show that the terms for m ≥ k/3 do not count:∣∣∣∣∣∣
∑

m>k/3

(−1)m2−(m
2 )

γmγk−m

(
1− 2m−k

)n∣∣∣∣∣∣�
∑

m>k/3

2−(m
2 )

� 2−(�k/3�
2 ).
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In a next step we use the approximation (for m ≤ k/3)(
1− 2m−k

)n
= e−n2m−k

(
1 +O
( n

4k−m

))
= e−n2m−k

+O
( n

4k−m

)
,

and obtain an error term of the form

∑
m≤k/3

(−1)m2−(m
2 )

γmγk−m
·O
( n

4k−m

)
= O
( n

4k

)
.

Finally, we approximate the ratio

γ

γm
= 1− 1

2k−m
+ O

(
1

4k−m

)
and get an even smaller error of order O

(
4−k
)
.

Summing up we get

EBn,k = 2k
k∑

m=0

(−1)m2−(m
2 )

γmγk−m

(
1− 2m−k

)n
= 2k
∑

m≤k/3

(−1)m2−(m
2 )

γγm

(
1− 1

2k−m

)
e−n2m−k

+O
(

2k n

4k

)
+O
(

2k2−(�k/3�
2 )
)

2k
∞∑

m=0

(−1)m2−(m
2 )

γγm

(
1− 2m

2k

)
e−n2m−k

+O
( n

2k

)
= 2kF ′(n2−k) + F ′′(n2−k) +O

(
n2−k
)
.

This completes the proof of (7.46). The proof of (7.47) is exactly the same.



8

Recursive Algorithms and the Contraction

Method

Recursive Algorithms follow the Divide-and-Conquer-Principle. The idea be-
hind this principle is to break a problem into two or several subproblems
which are easier to solve (heuristically because they are just smaller prob-
lems) and then to construct the solution of the original problem by combining
the solutions of the subproblems appropriately. If this idea is iteratively (or
recursively) applied then one speaks of a recursive algorithm and, moreover,
these kinds of algorithms give rise to a (hidden) tree structure.

The most prominent example in this context is the widely used sorting
algorithm Quicksort which was invented by C. A. R. Hoare [100, 101]. It is
the standard sorting procedure in Unix systems, and the basic idea can be
described easily:

A list of n real numbers A = (x1, x2, . . . , xn) is given. Select a pivot
element xj from this list. Divide the remaining numbers into sets
A≤, A> of numbers smaller (or equal) and larger than xj . Next apply
the same procedure to each of these two sets if they contain more
than one element. Finally, we end up with a sorted list of the original
numbers.

This sorting procedure can be encoded with a binary tree with n (internal)
nodes. The first selected element xj is put to the root, whereas recursively
A≤ produces a left subtree of xj and A> the right subtree of xj . (An empty
string produces an empty tree which is usually encoded as an external node.)

For example, if one always uses the first element of the list as the pivot
element then the tree structure behind Quicksort is precisely the binary search
tree associated to the same input data (see Figure 8.1 and compare with
Section 6.1.2). In particular, the number of comparisons needed for Quicksort
equals the internal path length of the corresponding binary search tree, and
the maximum number of recursive calls equals the height of the tree. The
analysis of Quicksort is therefore – despite of a reformulation – the same as
the analysis of binary search trees.
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1

2

3

4

5

6

7

8

Fig. 8.1. Tree representation of Quicksort applied to the input list
(4, 6, 3, 5, 1, 8, 2, 7)

In Computer Science one mainly does a “worst case” analysis or an “av-
erage case” analysis. While for the worst case one just takes the supremum
of the complexity over all possible inputs (of a given size), for an average
case analysis a certain probability measure is assumed on the set of possible
inputs. This is often the uniform distribution if the possible inputs form a
finite set. For example, the standard model for Quicksort is to assume that
all permutations of the input data are equally likely.

At this point one should also mention that various tree types serve for the
organisation of data (for example, digital search trees or binary search trees).
Many of them indeed have a recursive structure. This indicates that there
is a close relation between these recursive algorithms and algorithms on tree
structures. Anyway, the analysis of recursive algorithms covers the analysis of
many interesting random tree structures.

The purpose of this chapter is to describe a very powerful method for the
average case analysis of recursive algorithms, the so-called contraction method.
The method is tailored to derive convergence in distribution for parameters of
recursive structures. It was introduced in Rösler [186] and later independently
extended in Rösler [187] and Rachev and Rüschendorf [179] and has been
developed to a fairly general tool during the last years.

The procedure of this method runs a follows. One starts with a recurrence
satisfied by the quantities of interest and, based on information on the first two
moments, one does a proper normalisation of the quantities. The recurrence
for the scaled quantities leads to a fixed-point equation and a potential limit
distribution is characterised as the fixed-point of a measure valued map.

This chapter was very much inspired by Neininger’s habilitation thesis
[160].
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8.1 The Number of Comparisons in Quicksort

In order to introduce the contraction method we consider the complexity of
Quicksort. This was actually the first analysis that was based on the contrac-
tion method (see Rösler [186]).

Let Yn denote the number of comparisons which are needed to sort a
random permutation of {1, 2, . . . , n}. The recursive description of Quicksort
immediately translates to

Yn
d
= YIn + Y ∗n−1−In

+ n− 1, n ≥ 2, (8.1)

where Y0 = Y1 = 0, Y2 = 1, In is uniformly distributed on {0, 1, . . . , n − 1},
Yj

d
= Y ∗j , and In, Yj , Y ∗j (1 ≤ j ≤ n) are independent.
Equivalently we can consider the generating functions

yn(u) = EuYn

for which we get the recurrence

yn(u) =
un−1

n

n∑
j=1

yj−1(u)yn−j(u).

Consequently the differential equation for the double generating function
Y (x, u) =

∑
n≥0 yn(u)xn is

∂Y (x, u)

∂x
= Y (xu, u)2

with the side conditions

∂Y (0, u)

∂x
= 1 and Y (x, 1) =

1

1− x.

We will not analyse Quicksort using these relations. In fact, due to the argu-
ment xu on the right-hand-side and due to the non-linearity of the equation it
is not clear whether this partial differential equation can be analysed directly
(in both variables). Of course, one can consider derivatives with respect to u
and derive asymptotics for moments. Nevertheless, we want to note that the
corresponding generating functions for the profile and the height of binary
search trees have a similar structure (compare with Section 6.5).

Instead of using generating functions, we work with (8.1). For example,
it is easy to obtain explicit representations for the expected value EYn. The
recurrence

EYn = n− 1 +
1

n

n∑
j=1

(EYj−1 + EYn−j) (8.2)

can be explicitly solved and one also obtains an asymptotic expansion:
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EYn = 2(n+ 1)

n+1∑
h=1

1

h
− 4(n+ 1) + 2

= 2n logn+ n(2γ − 4) + 2 logn+ 2γ + 1 +O ((logn)/n) (8.3)

with γ = 0.57721... being Euler’s constant.
In fact, much more is known about this random variable.

Theorem 8.1. Let Yn denote the number of comparisons which are needed to
sort a random permutation of {1, 2, . . . , n}. Then we have

Yn − EYn

n

d−→ X,

where the distribution of the random variable X is defined by the fixed point
equation

X
d
= UX + (1 − U)X∗ + b(U), (8.4)

where U is uniformly distributed on [0, 1], X
d
= X∗, U,X,X∗ are independent,

and
b(x) = 2x log x+ 2(1− x) log(1− x) + 1.

The existence of a limiting distribution X (the Quicksort distribution)
was first observed by Régnier [182] via a martingale approach, whereas the
characterisation of X with a fixed point equation is due to Rösler [186]. It is
now also known that there exists a density ([201]), which is a bounded C∞

function; tail estimates are available, and orders of convergence are estimated
(compare with [77, 78, 79, 125]). However, no explicit representations for the
limiting distribution are known.

From the fixed point equation (8.4) it also possible to calculate moments
step by step, e.g. the variance of X is given by

VarX = 7− 2

3
π2.

We briefly describe Rösler’s approach. His main observation was that (8.4)
has a unique fixed point (because it constitutes a contraction with respect to
the Wasserstein metric �2).

Let M2 denote the space of measures on R with finite second moment and
zero first moment. Then the Wasserstein metric (or L2 metric) �2 is defined
as

�2(μ, ν) = inf ‖X − Y ‖2,
where ‖ · ‖2 denotes the L2-norm and the infimum is taken over all random
variables X with law μ = L(X) and all Y with law ν = L(Y ). It is well known
that (M2, �2) constitutes a Polish space and that a sequence μn converges to
μ in M2, if and only if μn converges weakly to μ and if the second moments
of μn converge to the second moment of μ.
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Let us consider the normalised random variables Xn = (Yn − EYn)/n.
From (8.1) we get

Xn
d
= XIn

In
n

+X∗n−1−In

n− 1− In
n

+ bn(In), n ≥ 2, (8.5)

where X0 = X1 = 0, In is uniformly distributed on {0, 1, . . . , n − 1}, and
Xj = X∗j , and In, Xj, X∗j (1 ≤ j ≤ n) are independent. Furthermore,

bn(j) =
n− 1

n
+

1

n
(EYj + EYn−1−j − EYn)

= 1 + 2
j

n
log

j

n
+ 2

(
1− j

n

)
log

(
1− j

n

)
+O

(
logn

n

)
.

Thus, if Xn has a limiting distribution X then it has to satisfy (8.4).
The first step is to show that (8.4) actually has a unique solution with

EY = 0.

Lemma 8.2. Let T : M2 →M2 be a map defined by

T (μ) = L(UX + (1− U)X∗ + b(U)),

where X,X∗, U are independent, L(X∗) = L(X) = μ, and U is uniformly
distributed on [0, 1]. Then T is a contraction with respect to the Wasserstein
metric �2 and, thus, there is a unique fixed point μ ∈M2 with T (μ) = μ.

Proof. Let μ, ν ∈ M2 and suppose that L(X∗) = L(X) = μ, L(Y ∗) = L(Y ) =
ν, and U is uniformly distributed on [0, 1] such that U,X,X∗ and U, Y, Y ∗ are
independent. Then T (μ) = L(UX + (1−U)X∗ + b(U)), T (ν) = L(UY + (1−
U)Y ∗ + b(U)), and consequently

�22(T (μ), T (ν)) ≤ ‖UX + (1− U)X∗ − UY − (1− U)Y ∗‖22
= ‖U(X − Y ) + (1− U)(X∗ − Y ∗)‖22
= E(X − Y )2 · EU2 + E(X∗ − Y ∗)2 · E(1 − U)2

=
2

3
E(X − Y )2.

Taking the infimum over all possible X,Y we obtain

�2(T (μ), T (ν)) ≤
√

2

3
· �2(μ, ν),

which completes the proof of the lemma.

The next step is to show that the Xn actually converge to X . (Recall that

�2(L(Xn),L(X)) → 0 implies Xn
d−→ X .)
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Lemma 8.3. We have

�22(L(Xn),L(X)) ≤ 2

n

n∑
j=1

(
j − 1

n

)2

�22(L(Xj−1),L(X)) + O

(
logn

n

)

and consequently lim
n→∞

�2(L(Xn),L(X)) = 0.

Proof. Let νn = L(Xn), where Xn is the normalised number of comparisons,
and let Y and Y ∗ be independent with L(Y ) = L(Y ∗) = μ, where μ is the
unique fixed point of T (μ) = μ. Next choose versions Xj , X∗j (which are
independent for 1 ≤ j ≤ n− 1) with

Var(Xj −X) = �22(νj − μ) and Var(X∗j −X∗) = �22(νj − μ)

and set Vx = Xj and V ∗x = X∗j for x ∈ ( j
n ,

j+1
n ]. Then, for U uniformly

distributed on [0, 1] and independent of Xj and X∗j , we have

νn = L
(�nU� − 1

n
VU +

n− �nU�
n

V ∗1−U + bn(�nU�)
)
.

Observe that

sup
0≤x≤1

|bn(�nx�) − b(x)| = O

(
logn

n

)
. (8.6)

By definition of the Wasserstein metric we have

�22(νn, μ) ≤ E

(
�nU� − 1

n
VU − UX +

n− �nU�
n

V ∗1−U

− (1− U)X∗ + bn(�nU�)− b(U)

)2

= E

(�nU� − 1

n
VU − UX

)2

+ E

(
n− �nU�

n
V ∗1−U − (1− U)X∗

)2

+ E (bn(�nU�)− b(U))
2

+ 2 E

((�nU� − 1

n
VU − UX

)(
n− �nU�

n
V ∗U − (1− U)X∗

))
+ 2 E

((�nU� − 1

n
VU − UX

)
(bn(�nU�)− b(U))

)
+ 2 E

((
n− �nU�

n
V ∗1−U − (1− U)X∗

)
(bn(�nU�)− b(U))

)
.

The first term can be rewritten to
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E

(�nU� − 1

n
VU − UX

)2

= E

⎛⎝ n∑
j=1

1( j−1
n , j

n ](U)

(
j − 1

n
Xj−1 − UX

)⎞⎠2

= E

⎛⎝ n∑
j=1

1( j−1
n , j

n ](U)

(
j − 1

n
(Xj−1 −X) +O

( |X |
n

))⎞⎠2

=

n∑
j=1

E

(
1( j−1

n , j
n ](U)

(
j − 1

n
(Xj−1 −X)

))2

+O

⎛⎝ n∑
j=1

E

(
1( j−1

n , j
n ](U)

j − 1

n
|Xj−1 −X |

|X |
n

)⎞⎠+O

(
1

n2

)

=
1

n

n∑
j=1

(j − 1)2

n2
�22(νj−1, μ) +O

⎛⎝ 1

n2

n∑
j=1

j − 1

n
�2(νj−1, μ)

⎞⎠+O

(
1

n2

)
.

The same holds for the second term. The third term is estimated using (8.6):

E (bn(�nU�)− b(U))
2

= O

(
(logn)2

n2

)
By using the independence assumptions and EXj = EX = 0 we also get

E

((�nU� − 1

n
VU − UX

)(
n− �nU�

n
V ∗U − (1− U)X∗

))

= O

⎛⎝ 1

n2

n∑
j=1

j − 1

n
�2(νj−1, μ)

⎞⎠+O

(
1

n2

)
.

Finally we have for the fifth (and similarly for the sixth) term

E

((�nU� − 1

n
VU − UX

)
(bn(�nU�)− b(U))

)

= O

⎛⎝ logn

n2

n∑
j=1

j − 1

n
�2(νj−1, μ)

⎞⎠+O

(
logn

n2

)
.

Thus, with aj = �22(νj , μ) one has

an =
2

n

n∑
j=1

(
j − 1

n

)2

aj−1 +O

(
logn

n2

) n∑
j=1

j − 1

n

√
aj−1

+O

(
(logn)2

n2

)
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and thus

an ≤
2

3
max

0≤j≤n−1
aj + C1

logn

n
max

0≤j≤n−1

√
aj + C2

log2 n

n2
.

for some positive constants C1, C2. It is now easy to show that an → 0. First
it follows that an ≤ A, where A satisfies a1 ≤ A and the inequality

A ≤ 2

3
A+ C1

logn

n

√
A+ C2

log2 n

n2

for all n ≥ 2. Consequently we also have

an ≤
2

3
max

0≤j≤n−1
aj + C3

logn

n

for a proper constant C3 which shows that an → 0, as proposed.

8.2 The L2 Setting of the Contraction Method

The method that has been discussed in Section 8.1 can be generalised in
several ways. For this purpose we specify a class of recursive sequences of
distributions that can be analysed by using L2 techniques. In order to be a
bit more general we develop the theory for random vectors in Rd.

8.2.1 A General Type of Recurrence

We consider a sequence of random, d-dimensional vectors (Yn)n≥0 which sat-
isfy the recurrence

Yn
d
=

K∑
r=1

Ar(n)Y
(r)

I
(n)
r

+ bn, (n ≥ n0), (8.7)

where (A1(n), . . . , AK(n), bn, I
(n)), (Y

(1)
n ), . . . , (Y

(K)
n ) are independent, A1(n),

. . . , AK(n) are random d × d matrices, bn is a random d-dimensional vector,

I(n) is a vector of random integers I
(n)
r ∈ {0, . . . , n}, and (Y

(1)
n ), . . . , (Y

(K)
n )

are identical distributed as (Yn). We have n0 ≥ 1 and Y0, . . . , Yn0−1 are given
initialising random vectors. The number K ≥ 1 is deterministic.

We rescale the random vector Yn in (8.7) by

Xn = C−1/2
n (Yn −Mn) (n ≥ 0), (8.8)

where Mn ∈ Rd and Cn is a symmetric, positive-definite d× d matrix. If the
first two moments of Yn are finite thenMn and Cn are typically of the order of
the expectation and the covariance matrix of Yn respectively. From recurrence
(8.7) we obtain for Xn the modified recurrence
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Xn
d
=

K∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), n ≥ n0, (8.9)

with

A(n)
r = C−1/2

n Ar(n)C
1/2

I
(n)
r

, (8.10)

b(n) = C−1/2
n

(
bn −Mn +

K∑
r=1

Ar(n)M
I
(n)
r

)
, (8.11)

and independence properties as in (8.7).

The contraction method aims to provide assertions of the following type:

Suppose that we (Xn) is characterised by (8.9). Then appropriate
convergence of the coefficients

A(n)
r

d−→ A∗r , b(n) d−→ b∗, (n→∞) (8.12)

implies convergence in distribution of the quantities (Xn) to a limit X .
The limit distribution L(X) is characterised by a fixed-point equation,
which is obtained from the modified recurrence by formally letting
n→∞:

X
d
=

K∑
r=1

A∗rX
(r) + b∗. (8.13)

Here, (A∗1, . . . , A
∗
K , b

∗), X(1), . . . , X(K) are independent and X(r) d
= X

for r = 1, . . . ,K.

To reformulate the fixed-point property, we denote by Md the space of all
probability measures on Rd and by T the measure valued map

T : Md →Md, μ �→ L
(

K∑
r=1

A∗rZ
(r) + b∗

)
, (8.14)

where (A∗1, . . . , A
∗
K , b

∗), Z(1), . . . , Z(K) are independent and L(Z(r)) = μ for
r = 1, . . . ,K. Then, X is a solution of the fixed-point equation (8.13), if and
only if its distribution L(X) is a fixed-point of the map T .

Remark 8.4 Maps of type (8.14) do not often have unique fixed-points in the
space of all probability distributions, and the characterisation of the set of all
fixed-points is – up to a few special cases – an open and important problem
(see Section 8.3).

In order to have a more precise study we define the following subsets of
Md:
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Md
s = {μ ∈Md : ‖μ‖s <∞}, s > 0, (8.15)

Md
s(M) = {μ ∈Md

s : Eμ = M}, s ≥ 1, (8.16)

Md
s(M,C) = {μ ∈Md

s(M) : Cov(μ) = C}, s ≥ 2, (8.17)

where M ∈ Rd and C is a symmetric, positive-definite d × d matrix, and
where ‖μ‖s, Eμ and Cov(μ) denote the s-th absolute moment, expectation
and covariance matrix, respectively, of a random variable with distribution μ.

The core of the method is to endow an appropriate subset M∗ ⊂Md, e.g.,
on one of the sets in (8.15)–(8.17), with a complete metric δ such that the
restriction of T toM∗ is a contraction on the metric space (M∗, δ) in the sense
of Banach’s fixed-point theorem. This implies the existence of a fixed-point
L(X) of T , being unique inM∗. In a second step one shows convergence of the
rescaled quantities L(Xn) to L(X) in the metric δ, δ(L(Xn),L(X)) → 0 for
n → ∞, based on an appropriate convergence of the coefficients as in (8.12).
If δ is chosen such that convergence in δ implies weak convergence then the
desired convergence in distribution follows.

8.2.2 A General L2 Convergence Theorem

One crucial point is to choose a proper metric for which one can show that
the mapping T is a contraction. A natural choice is the minimal Lp metric �p
(for some p > 0) that is defined by

�p(μ, ν) := inf {‖X − Y ‖p : L(X) = μ, L(Y ) = ν} , μ, ν ∈ Md
p,

where ‖X‖p := (E ‖X‖p)min{(1/p),1} denotes the Lp norm of a random vector
X and ‖X‖ denotes its Euclidean norm. The Wasserstein metric �2 is a special
but important case.

Furthermore, the spaces (Md
p, �p) for p > 0 as well as (Md

p(M), �p) for

M ∈ Rd, p ≥ 1 are complete metric spaces and convergence in �p is equiva-
lent to weak convergence plus convergence of the p-th absolute moment. For
μ, ν ∈ Md

p there always exist vectors X , Y on a joint probability space with
L(X) = μ, L(Y ) = ν and �p(μ, ν) = ‖X − Y ‖p. Such vectors are called opti-
mal couplings of μ and ν. For these and further properties of the minimal Lp

metric �p see Dall’Aglio [43], Major [148], Bickel and Freedman [16], Rachev
[178], and Rachev and Rüschendorf [180].

In order to obtain contraction properties of the map (8.14) we denote by

‖A‖op = sup
‖x‖=1

‖Ax‖

the operator norm of a square matrix A, by AT the transpose of the matrix
A, and by

lip(T ) = inf
μ,ν∈M∗, μ�=ν

�p(T (μ), T (ν))

�p(μ, ν)

the Lipschitz constant of T if it is finite. Actually, in the case p = 2 the
Lipschitz constant can be estimated easily.
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Lemma 8.5. Let (A∗1, . . . , A
∗
K , b

∗) be an L2-integrable vector of random d× d
matrices A∗1 . . . , A

∗
K and a random d-dimensional vector b∗ with Eb∗ = 0 and

assume that T is as in (8.14). Then the restriction of T to Md
2(0) is Lipschitz

continuous in �2, and for the Lipschitz constant lip(T ) we have

lip(T ) ≤
∥∥∥∥∥E
(

K∑
r=1

(A∗r)TA∗r

)∥∥∥∥∥
1/2

op

. (8.18)

Proof. Clearly, if μ ∈ Md
2(0), then T (μ) has a finite second moment and

ET (μ) = 0. We just have to apply the independence conditions and the as-
sumption E b = 0. Thus, T : Md

2(0) →Md
2(0) is a well-defined map. Let μ, ν ∈

Md
2(0) be given and (W (1), Z(1)), . . . , (W (K), Z(K)) be optimal couplings of

(μ, ν) for r = 1, . . . ,K so that (A1, . . . , Ak, b), (W (1), Z(1)), . . . , (W (K), Z(K))
are independent. Then

�22(T (μ), T (ν)) ≤ E

⎛⎝∥∥∥∥∥
K∑

r=1

Ar(W (r) − Z(r))

∥∥∥∥∥
2
⎞⎠

= E

(
K∑

r=1

(
Ar(W (r) − Z(r))

)T
·
(
Ar(W (r) − Z(r))

))

+ E

⎛⎝ ∑
1≤r �=s≤K

(
Ar(W (r) − Z(r))

)T
·
(
As(W (r) − Z(r))

)⎞⎠
= E

(
K∑

r=1

(
W (r) − Z(r)

)T
·
(
AT

r Ar(W (r) − Z(r))
))

= E

(
K∑

r=1

(
W (r) − Z(r)

)T
·
(

E(AT
r Ar)(W (r) − Z(r))

))

= E

((
W (1) − Z(1)

)T
·
((

K∑
r=1

E(AT
r Ar)

)
(W (1) − Z(1))

))

≤
∥∥∥∥∥

K∑
r=1

E(AT
r Ar)

∥∥∥∥∥
op

E

(∥∥∥W (1) − Z(1)
∥∥∥2)

=

∥∥∥∥∥
K∑

r=1

E(AT
r Ar)

∥∥∥∥∥
op

�22(μ, ν).

Note that we have used the independence of W (r) − Z(r) and W (s) − Z(s)

for r = s together with the fact that E(W (r) − Z(r)) = 0. The additional
expectation E(AT

r Ar) is also justified by independence.
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The second step of the contraction method is to show convergence in �2
for sequences (L(Xn)) of the form (8.9). The following Theorem provides
sufficient conditions (see [187, Theorem 3.1] and [158, Theorem 4.1]).

Theorem 8.6. Assume (Xn) is a sequence of centred d-dimensional, L2-
integrable random vectors, satisfying the recurrence (8.9) with L2-integrable

random d× d matrices A
(n)
r , 1 ≤ r ≤ K, a random L2-integrable centred vec-

tor b(n), and a vector of random integers I(n) = (I
(n)
1 , . . . , I

(n)
K ) with values in

I
(n)
r ∈ {0, 1, . . . , n}. Assume that we have(

A
(n)
1 , . . . , A

(n)
K , b(n)

)
L2−→ (A∗1, . . . , A

∗
K , b

∗) (n→∞), (8.19)

E

(
K∑

r=1

∥∥(A∗r)TA∗r
∥∥

op

)
< 1, (8.20)

E

(
1{I(n)

r ≤�}

∥∥∥(A(n)
r )TA(n)

r

∥∥∥
op

)
→ 0, (n→∞), (8.21)

for all integers � ≥ 0 and r = 1, . . . ,K. Then we have

�2(L(Xn),L(X)) → 0 (n→∞),

where L(X) is the fixed-point of map T defined in (8.14), which is unique in
Md

2(0) .

Before giving the proof we comment on the conditions of Theorem 8.6 and
their applicability.

Condition (8.19) means that the convergence of the coefficients in (8.12)
has to hold in L2. For this reason we are allowed to construct (A∗1, . . . , A

∗
K , b

∗)

according to (A
(n)
1 , . . . , A

(n)
K , b(n)) on a joint probability space, i.e., (8.19)

means

�2(L(A
(n)
1 , . . . , A

(n)
K , b(n)),L(A∗1, . . . , A

∗
K , b

∗)) → 0. (8.22)

Condition (8.20), by Jensen’s inequality, is stronger than the contraction
condition ∥∥∥∥∥E

(
K∑

r=1

(A∗r)TA∗r

)∥∥∥∥∥
op

< 1 (8.23)

from Lemma 8.5. Whether condition (8.20) in Theorem 8.6 can be replaced
by the weaker condition (8.23) is unknown (compare with the discussion in
[163]).

Condition (8.21) is a technical condition, which is usually easy to verify
in application. In Section 8.1 we have not made explicit use of this condition

but have checked the convergence Xn
d−→ X directly (see Lemma 8.3).
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For the application of Theorem 8.6 to recursive sequences (Yn) as in (8.7)
one has to note, that for the scaling in (8.8) we have to choose Mn = EYn

in order to guarantee the conditions EXn = 0 and Eb(n) = 0. Since, on the
other hand b(n) in (8.11) contains the quantities Mn and in (8.19) we need
to derive a limit for b(n), this implies that for the application of Theorem
8.6 an asymptotic expansion of the mean EYn has to be known. In contrast,
the covariance matrix Cov(Yn) can be guessed in its first order asymptotic
expansion such that Theorem 8.6 applies. Since convergence in �2 implies
convergence of the second moment, Theorem 8.6 then automatically implies
an asymptotic expansion of the covariance matrix Cov(Yn).

Proof. We already observed that Jensen’s inequality (8.20) implies (8.23), that
is, we have a contraction. Namely, by the definition of b(n) we have E b(n) = 0.
Thus, the L2-convergence of (b(n)) implies E b∗ = 0. Therefore we can apply
Lemma 8.5 so that there is a unique distributional fixed-point X of map T in

(8.14). Let X
(r)
n

d
= Xn, X(r) d

= X so that (X
(r)
n , X(r)) are optimal couplings

of (Xn, X) for all n ∈ N and r = 1, . . . ,K and that (A1, . . . , AK , bn, I
(n)),

(X
(1)
n , X(1)), . . . , (X

(K)
n , X(K)) are independent.

In a first step we derive an estimate of �22(Xn, X) in terms of �22(X0, X), . . . ,
�22(Xn−1, X). This inequality will be sufficient to deduce that �2(Xn, X) → 0.
From (8.9) and (8.14) and from the independence conditions it follows that
(for n ≥ n0)

�22(Xn, X) ≤
∥∥∥∥∥

K∑
r=1

(
A(n)

r X
(r)

I
(n)
r

−A∗rX(r)
)

+ b(n) − b∗
∥∥∥∥∥

2

=

K∑
r=1

∥∥∥A(n)
r X

(r)

I
(n)
r

−A∗rX(r)
∥∥∥2 +
∥∥∥b(n) − b∗

∥∥∥2 .
By assumption we have

∥∥b(n) − b∗
∥∥ d−→ 0, so we only have to take care of the

first term:

K∑
r=1

∥∥∥A(n)
r X

(r)

I
(n)
r

−A∗rX(r)
∥∥∥2

=
K∑

r=1

∥∥∥A(n)
r

(
X

(r)

I
(n)
r

−X(r)
)

+
(
A(n)

r −A∗r
)
X(r)
∥∥∥2

=

K∑
r=1

∥∥∥A(n)
r

(
X

(r)

I
(n)
r

−X(r)
)∥∥∥2 +

K∑
r=1

∥∥∥(A(n)
r −A∗r

)
X(r)
∥∥∥2 (8.24)

+ 2

K∑
r=1

(
A(n)

r

(
X

(r)

I
(n)
r

−X(r)
))T

·
((
A(n)

r −A∗r
)
X(r)
)
.

By (8.19), independence, and ‖X‖2 < ∞ it follows that, as n → ∞, and for
r = 1, . . . ,K,
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r −A∗r

)
X(r)
∥∥∥2 d−→ 0.

For the first term in (8.24) we have the estimate∥∥∥A(n)
r

(
X

(r)

I
(n)
r

−X(r)
)∥∥∥2

= E

(
X

(r)

I
(n)
r

−X(r)
)T
·
(

(A(n)
r )TA(n)

r

(
X

(r)

I
(n)
r

−X(r)
))

≤ E

(∥∥∥(A(n)
r )TA(n)

r

∥∥∥2
op
·
∥∥∥X(r)

I
(n)
r

−X(r)
∥∥∥) .

Since the operator norm is a Lipschitz continuous map and by the L2 conver-

gence of (A
(n)
r ), we have E

∥∥∥A(n)
r −A∗r

∥∥∥2
op
→ 0 and consequently

lim
n→∞

E

∥∥∥(A(n)
r )TA(n)

r

∥∥∥2
op

= E
∥∥(A∗r)TA∗r

∥∥2
op

for r = 1, . . . ,K.
For the third term in (8.24) we use the estimate

E

(
A(n)

r

(
X

(r)

I
(n)
r

−X(r)
))T

·
((
A(n)

r −A∗r
)
X(r)
)

≤ E

(∥∥∥A(n)
r

(
X

(r)

I
(n)
r

−X(r)
)∥∥∥ · ∥∥∥(A(n)

r −A∗r
)
X(r)
∥∥∥)

≤
∥∥∥A(n)

r

(
X

(r)

I
(n)
r

−X(r)
)∥∥∥

2
·
∥∥∥(A(n)

r −A∗r
)
X(r)
∥∥∥

2

= o
(∥∥∥A(n)

r

(
X

(r)

I
(n)
r

−X(r)
)∥∥∥

2

)
= o

(∥∥∥A(n)
r

(
X

(r)

I
(n)
r

−X(r)
)∥∥∥2

2

)
+ o(1)

= ηr,n

∥∥∥A(n)
r

(
X

(r)

I
(n)
r

−X(r)
)∥∥∥2

2
+ o(1),

where ηr,n → 0 as n→∞. Putting things together and by using the notation

Mr,n =
∥∥(A∗r)TA∗r

∥∥2
op

+ ηr,n

we get

�22(Xn, X) ≤
K∑

r=1

E

(
Mr,n

∥∥∥X(r)

I
(n)
r

−X(r)
∥∥∥2)+ o(1)

=

K∑
r=1

E

(
n∑

i=0

1{I(n)
r =i}Mr,n

∥∥∥X(r)
i −X(r)

∥∥∥2)+ o(1)

=

n∑
i=0

(
K∑

r=1

E

(
1{I(n)

r =i}Mr,n

))
�22(Xi, X) + o(1).
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By assumption there exist n0 and ξ < 1 such that

K∑
r=1

EMr,n =

K∑
r=1

E
∥∥(A∗r)TA∗r

∥∥2
op

+

K∑
r=1

ηr,n ≤ ξ

for n ≥ n0. Thus, with an = �22(Xn, X) and An = maxn0≤j≤n aj we obtain
for n ≥ n0 and some constant R > 0

an ≤ ξAn +R.

Since An is monotone, this also implies An ≤ ξAn +R and consequently

An ≤
R

1− ξ = O(1).

Hence, the sequence an is bounded. Set A = supn≥0 an < ∞ and L =
lim supn→∞ an. Then for every ε > 0 there exists n1 ≥ n0 with an ≤ L+ ε for
n ≥ n1. Now for n ≥ n1 we obtain (as above and by using (8.21))

an ≤
K∑

r=1

E

(
1{I(n)

r ≤�}

∥∥∥(A(n)
r )TA(n)

r

∥∥∥
op

+ ηr,n

)
A+ ξ(L + ε) + o(1)

and consequently
L ≤ ξ(L+ ε).

If L > 0, this is a contradiction for 0 < ε < L(1 − ξ)/ξ. Hence, L = 0. This
completes the proof of the theorem.

8.2.3 Applications of the L2 Setting

We apply Theorem 8.6 to some examples from computer science and related
areas in detail.

Quicksort

We already discussed the number Yn of key comparisons needed by the sorting
algorithm Quicksort when applied to a uniform random permutation of length
n. The recurrence (8.7) applies here with d = 1, K = 2, A1(n) = A2(n) = 1,

I
(n)
1 uniformly distributed on {0, . . . , n−1}, I(n)

2 = n−1−I(n)
1 and bn = n−1.

Recall that we have to work in the space M2(0), that is, we have to know
something of the first moment in order to reduce (8.7) to (8.9). This is provided
by (8.3). It then is natural to normalise by the 1/n:

Xn =
Yn − EYn

n
.
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As we have observed in Section 8.1 this leads to the recurrence (8.5) that is
of the form (8.9). The limit equation for X is given by (8.4). Thus, A∗1 = U ,
A∗2 = 1 − U and b∗ = 1 + 2U logU + 2(1 − U) log(1 − U). The conditions of
Theorem 8.6 can be checked directly. For example, the Lipschitz constant can
be estimated by

(
E‖(A∗1)2‖op + E‖(A∗2)2‖op

)1/2
=

(
2

∫ 1

0

u2 du

)1/2

=

√
2

3
.

Thus, everything works precisely as in Section 8.1.
We apply the general concept to a slightly different parameter, the number

of key exchanges Kn. Of course, key exchanges are only necessary if the keys
are not in the right order. We again get a recurrence of the form (8.7), where
the parameters d, K, A1(n), A2(n), I(n) are given as for the key comparisons,
however bn now depends on I(n) as

P(bn = j | I(n)
1 = k) =

(
k
j

)(
n−1−k

j

)(
n−1

k

) , 0 ≤ j ≤ k < n,

that is, the probability that there are exactly j exchanges when the rank of the
pivot element is k + 1 (compare also with Sedgewick [190, p. 55] and Hwang
and Neininger [107, section 6]). We have

EKn =
n+ 1

3
Hn −

7

9
n+

1

18
, (n ≥ 2).

The limiting fixed point equation for the normalised random variable (Kn −
EKn)/n equals

X
d
= UX(1) + (1− U)X(2) + U(1− U) +

1

3
U logU +

1

3
(1 − U) log(1− U).

Again all conditions are satisfied, the only difference is in the term b∗.

Wiener Index of Random Binary Search Trees

The Wiener index of a connected graph is the sum of the distances between
all pairs of nodes in the graph, where the distance is the minimal number
of edges connecting the nodes in the graph. The Wiener index has its origin
in mathematical chemistry but has independently been investigated in graph
theory (see [97, 55]). The Wiener index Wn of a random binary search tree
does not satisfy the recurrence (8.7) with dimension d = 1. However, it can
be covered by (8.7) in dimension d = 2 as follows (see [159]). Suppose that
Yn denotes the internal path length (which is precisely the number of key
comparisons in Quicksort). Then we have
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Wn
d
= W

(1)
In

+ (n− In)YIn +W
(2)
n−1−In

+ (In + 1)Yn−In−1

+ 2I(n)(n− 1− I(n)) + n− 1,

Yn
d
= Y

(1)
In

+ Y
(2)
n−1−In

+ n− 1.

This means, that we choose d = 2, K = 2, I
(n)
1 uniformly distributed on

{0, . . . , n− 1}, I(n)
2 = n− 1− I(n)

1 as well as

A1(n) =

(
1 n− I(n)

1

0 1

)
, A2(n) =

(
1 n− I(n)

2

0 1

)
,

bn =

(
2I

(n)
1 I

(n)
2 + n− 1
n− 1

)
.

The expectation can be computed by

EWn = 2n2Hn − 6n2 + 8nHn − 10n+ 6Hn

= 2n2 logn+ (2γ − 6)n2 + o(n2). (8.25)

This leads, together with the expansion of the mean of Yn in (8.3), to the
applicability of Theorem 8.6. In particular we use the normalised random
vector

Xn =

(
Wn − EWn

n2
,
Yn − EYn

n

)
.

The corresponding limit equation (8.13) and (8.14), respectively, are given by

A∗1 =

(
(1 − U)2 U(1− U)

0 1− U

)
, A∗2 =

(
(1− U)2 U(1− U)

0 1− U

)
,

b∗ =

(
6U(1− U) + 2U logU + 2(1− U) log(1− U)

1 + 2U logU + 2(1− U) log(1− U)

)
,

where U is uniformly distributed in [0, 1].
Interestingly, the contraction method can only be applied in this case,

since we have the relation 2γ− 6 = (2γ− 4)− 2 for the constants in the linear
resp. in the quadratic terms of (8.3) and (8.25).

Profile of Random Recursive Trees and Binary Search Trees

In Sections 6.3 and 6.5 we have discussed the profiles of recursive trees and
binary search trees and indicated that the contraction method is a proper tool
to obtain limiting relations.

Let Xn,k denote the number of nodes of distance k to the root in random
recursive trees of size n. Then Xn,0 = 1− δn,0 (with Kronecker’s δ) and
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Xn,k
d
= X

(1)

I
(n)
1 ,k−1

+X
(2)

I
(n)
2 ,k

, n ≥ 1, 1 ≤ k ≤ n, (8.26)

where I
(n)
1 is uniformly distributed on {0, . . . , n− 1}, I(n)

2 = n− 1− I(n)
1 and

independence properties as in (8.7).
Similarly the external profile of random binary search trees satisfies Bn,0 =

δn,0 and

Bn,k
d
= B

(1)

I
(n)
1 ,k−1

+B
(2)

I
(n)
2 ,k−1

, n ≥ 1, 1 ≤ k ≤ n, (8.27)

where I
(n)
1 and I

(n)
2 = n− 1− I(n)

1 are as above.
The expectations are given by

EXn,k =
|sn,k+1|
(n− 1)!

∼ (log n)k

k!Γ
(

k
log n + 1

) (8.28)

and by

EBn,k =
2k

n!
|sn,k| ∼

(2 logn)k

n k!Γ
(

k
log n

) (8.29)

where |sn,k| are the (sign-less) Stirling numbers of first kind (see Section 6.1.1).
By considering the normalised profiles

Xn,k

EXn,k
and

Bn,k

EBn,k
(8.30)

and setting k ∼ α logn one observes that the recurrences (8.26) and (8.27),
rewritten to the normalised profiles, stabilise to stochastic fixed point equa-
tions

X(α)
d
= αUαX(α)(1) + (1 − U)αX(α)(2)

for recursive trees, respectively to

Y (α)
d
=
α

2
Uα−1Y (α)(1) +

α

2
(1− U)α−1Y (α)(2)

for binary search trees (see Theorems 6.18 and 6.41 and Section 6.3.3).
The first problem is to check whether these fixed point equations have

unique solutions. By using the L2 setting the Lipschitz constant in the recur-
sive tree case is given by

lip(T1) ≤ α2 + 1

2α+ 1

and for the binary search tree case by

lip(T2) ≤ α2

4α− 2
.
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This means that we have contraction for 0 < α < 2 in the recursive tree case
and for 2−

√
2 < α < 2 +

√
2 in the binary search tree case.

Actually it can be shown that the normalised profiles (8.30) converge to
X(α) resp. to Y (α) in these ranges in the L2 sense (compare with [87]). In this
setting it is impossible to do it better. There are, however, solution X(α) for
0 < α < e and Y (α) for α− < α < α+ (where α− = 0.373... and α+ = 4.311...
are the solution of the equation α log

(
2e
α

)
= 1) but X(α) and Y (α) have finite

second moments only for 0 < α < 2 resp. for 2−
√

2 < α < 2 +
√

2 (for details
see [87]).

In order to extend these limit theorems to the maximum ranges 0 < α < e
resp. α− < α < α+ one has to use a different setting. For example, by using
the Zolotarev metric ζs for a suitable s > 1 (see Section 8.3.1) it is possible
to prove convergence of the normalised profiles in the ranges of interest (for
details see again [87]).

8.3 Limitations of the L2 Setting and Extensions

The L2 setting is relatively easy but has several limitations. For example, it
does not apply if (for simplicity we just consider the case d = 1)

E

(
K∑

r=1

(A∗r)2

)
= 1, (8.31)

that is, the contraction condition (8.23) resp. (8.20) is not satisfied. In partic-
ular, there are many applications that lead to the limit equation

X
d
=

K∑
r=1

A∗rX
(r), (8.32)

with

K∑
r=1

(A∗r)2 = 1. (8.33)

From the convolution property of the normal distribution it follows that nor-
mally distributed random variables with lawN(0, σ2) are solutions of the limit
equation (8.32) under (8.33). Thus, it seems, that one cannot prove a central
limit theorem even if there is one. Since the limit equation has no unique fixed
point, there is definitely no metric for which T is a contraction.

Another principal problem of the contraction method is the occurrence of
degenerate limit equations. For example, if we rescale a recurrence of the form

Yn
d
= YIn + bn, (n ≥ n0), (8.34)
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we might end up with the degenerate limit equation

X
d
= X. (8.35)

This limit equation does not give any information about a potential limit dis-
tribution and the concept of the contraction method needs to be significantly
extended to deal with such cases.

8.3.1 The Zolotarev Metric

In order to overcome the problem of limit equations with no unique solution
one has to choose a proper subspace. For example, if we work with Md

s(M,C)
instead of Md

s(M) then the (co-)variance is fixed, and equation (8.32) under
(8.33) will have a unique limit. Furthermore one has to use another metric
that makes T a contraction on that subspace.

Actually, this program was realised by Neininger and Rüschendorf [161].
They used the Zolotarev metric ζs (introduced by Zolotarev [209]) which is
defined for random vectors X , Y in Rd by

ζs(X,Y ) = sup
f∈Fs

|E[f(X)− f(Y )]| (8.36)

where s = m+ α with 0 < α ≤ 1, m ∈ N0, and

Fs := {f ∈ Cm(Rd,R) : ‖f (m)(x)− f (m)(y)‖ ≤ ‖x− y‖α},

denotes the space of m times continuously differentiable functions from Rd

to R such that the m-th derivative is Hölder continuous of order α. We use
the short notation ζs(L(X),L(Y )) = ζs(X,Y ). We have ζs(X,Y ) < ∞, if
all mixed moments of orders 1, . . . ,m of X and Y are equal and if the s-
th absolute moments of X and Y are finite. Furthermore, (Md

s , ζs) for 0 <
s ≤ 1, (Md

s(M), ζs) for 1 < s ≤ 2 and (Md
s(M,C), ζs) for 2 < s ≤ 3 are

complete metric spaces with M ∈ Rd, and C being a symmetric, positive
definite d× d matrix. Furthermore, the Lipschitz constant of the mapping T
can be estimated by

lip(T ) ≤ E

(
K∑

r=1

‖A∗r‖s
op

)
.

For example, if (8.33) is satisfied then T : M1
s(0, 1) →M1

s(0, 1) is a contrac-
tion for all 2 < s ≤ 3.

There is a direct extension of Theorem 8.6 to the Zolotarev setting with
many applications to statistics of recursive algorithms and related subjects
(see [161, 162]) also leading to central limit theorems under very general con-
ditions. It is even possible to work in a suitable Banach space setting (see
[68]).
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8.3.2 Degenerate Limit Equations

Degenerate limit equations X
d
= X do not give any information on the nature

of the potential limiting distribution. Nevertheless, in a quite general class of
problems (see [162]) it is possible to prove a central limit theorem. The idea is
to keep track of the recurrence and to show that an accompanying sequence of
normal distributions is close to Xn. It applies to equations of the form (8.34)
under some regularity conditions on In and under the assumption that the
variance of Yn is of logarithmic order.
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Planar Graphs

At first sight planar graphs and trees have nothing in common despite the
trivial fact that trees are planar. Nevertheless there are strong similarities in
the combinatorial and asymptotic analysis of trees and planar graphs. Pla-
nar graphs contain several (hidden) tree or tree-like structures. The tree-
decomposition into cut-vertices and blocks (2-connected components) is the
most prominent one. The reduction to 3-connected components is more in-
volved but uses so-called series-parallel networks that are obtained from series-
parallel extensions of trees. Thus, it is natural that properly extended tree
counting techniques and analytic techniques that have been developed for
trees apply. However, these extensions are not straight forward. Several graph
theoretical and and also topological concepts have to be combined with com-
binatorics on trees. There are also different levels of complexity in the asymp-
totics analysis. From this point of view outerplanar graphs and series-parallel
graphs – these are two subclasses of planar graphs that we will study first
– are more tree-like than the class of all planar graphs, since the singular-
ity structure of the corresponding generating functions is of square root type√
R− x, whereas the class of all planar graphs has a dominant singularity of

the form (R−x)3/2. Geometrically this indicates that outerplanar graphs and
series-parallel graphs are more or less governed by a one-dimensional topology
(as trees) but the class of all planar graphs by a two-dimensional one.

In this chapter we focus on labelled planar graphs R and use a generating
function approach. As in the case of trees we then consider the uniform ran-
dom model on the subclasses Rn with n vertices. We will shortly call them
random planar graphs. There are of course different models that could be used
for a random model for planar graphs. For example, there are many results on
random planar maps that we will not discuss in detail (this goes back to Tutte
[30, 203, 204, 205], see also [137] and the references therein). The difference
between planar maps and planar graphs is that a planar map is an already
embedded planar graph. If a planar graph has several non-equivalent embed-
dings on the 2-sphere then each of them corresponds to different planar maps
although the underlying planar graph is the same. Of course, it is also inter-
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esting to consider unlabelled planar graphs. However, this model is actually
much more involved than the labelled one – at least from the combinatorial
point of view. At the moment there are only some results on outerplanar
unlabelled graphs (see [19]).

The counting problem of several classes of planar graphs and planar maps
goes back to Tutte [30, 203, 204, 205]. Interestingly the study of random
planar graphs is a recent one. Random planar graphs were introduced by
Denise et al [47], and since then they have been widely studied. Several natural
parameters defined on Rn have been studied, starting with the number of
edges, which is probably the most basic one. Partial results where obtained in
[22, 47, 89, 167], until it was shown by Giménez and Noy [91] that the number
of edges in random planar graphs asymptotically obeys a normal limit law with
linear expectation and variance. The expectation is asymptotically κn, where
κ ≈ 2.21326 is a well-defined analytic constant. This implies that the average
degree of the vertices is 2κ ≈ 4.42652. McDiarmid et al showed that with
high probability a planar graph has a linear number of vertices of degree k,
for each k ≥ 1.

In this chapter we present a systematic combinatorial and asymptotic
study of labelled random planar graphs. As already indicated the (asymp-
totic) counting problem is solved by using generating functions and singularity
analysis. We also focus on the degree distribution. More precisely, for every
k we will determine the limiting probability dk that a random vertex in a
random planar graph has degree k. This is based on recent work by Drmota,
Giménez and Noy [63, 64] and extends the results of [150]. Related results
have also been obtained by Bernasconi, Panagiotou and Steger [13, 14]. In-
terestingly the degree distribution of labelled planar graphs is different from
the degree distribution of labelled trees, where we have observed a Poisson
law (see Section 3.2.1). For planar graphs the degree distribution behaves as
dk ∼ ck−1/2qk as k →∞ (for some constant q < 1; see Theorem 9.46).

9.1 Basic Notions

There are several ways to introduce planar graphs. Historically they are con-
sidered as graphs that can be embedded into the plane (or into the 2-sphere)
without edge crossings. For example, Kuratowski’s theorem says that planar
graphs are characterised by the property that no minor1 is isomorphic to K5

or to K3,3.2

1 H is a minor of G if it can be obtained from G by contracting edges, removing
edges, and removing isolated nodes.

2 A complete graph Kn is an undirected graph with n vertices where each vertex
is connected to all other vertices by an edge. A complete bipartite graph Km,n

consists of 2 vertex sets of m and n vertices, where each vertex of the first vertex
set is connected to all vertices of the second vertex set by an undirected edge.
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Nevertheless, it is of special interest to look at (one of) the embedding(s)
G̃ of a planar graph G into the plane R2. The complement of the embedding
R2 \ G̃ consists then of several connected components, the so-called faces of
G̃. For example, if G is connected then the number of vertices v, the number
of edges e and the number of faces f satisfy the (Euler) relation

v − e+ f = 2.

In particular this means that the number of faces is independent of the em-
bedding.

If there is a unique embedding into the plane then one can introduce the
dual graph G∗. The vertices of G∗ are the faces of G, and two faces of G are
joined by an edge (in G∗) if they have a common edge (in G). G∗ is then
another planar graph with a unique embedding and G∗∗ is isomorphic to G.

We will also distinguish between connected, 2-connected, and 3-connected
(planar) graphs. A graph is 2-connected if it is connected and one has to
remove at least two vertices (and all incident edges) to disconnect it. Similarly,
a graph is 3-connected if it is 2-connected and one has to remove at least
three vertices to disconnect it. (There is only the triangle K3 which has to be
considered separately. It is defined to be 2- but not 3-connected.3 Figure 9.1
shows a connected, a 2-connected and a 3-connected planar graph. 3-connected
planar graphs are of special interest since Whitney’s theorem says that they
have a unique embedding. Thus the counting problem of 3-connected planar
maps and the counting problem of 3-connected planar graphs is the same.

Fig. 9.1. A connected, a 2-connected and a 3-connected planar graph

3 Generally the complete graph Kn is defined to be (n − 1)-connected but not
n-connected.
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There is an intimate relation between connected, 2-connected and
3-connected planar graphs as we will see in the sequel. In fact, if one is inter-
ested in the number of (labelled) planar graphs then one should first study
3-connected graphs (or equivalently 3-connected maps), knowing that there is
a general procedure to generate 2-connected ones and finally connected planar
graphs.

We will also consider two subclasses of planar graphs, namely so-called
outerplanar graphs and series-parallel graphs.

An outerplanar graph is a planar graph that can be embedded into the
plane so that all vertices are incident to the external face. Equivalently they
are characterised as those graphs not containing a minor isomorphic to K4 or
K2,3.

A graph is series-parallel if it does not contain the complete graph K4

as a minor. Since both K5 and K3,3 have a minor isomorphic to K4, by
Kuratowski’s theorem a series-parallel graph is planar. Furthermore, every
outerplanar graph is series-parallel. The notation series-parallel comes from
the fact that this kind of graphs can be seen as the result of consecutive
series-parallel edge extensions applied to a tree. In a series extension an edge
is replaced by a chain of arbitrary finite length, whereas in a parallel extension
an edge is replaced by a multiple edge. Since we are only interested in simple
graphs we restrict ourselves to those graphs where the final result of this
procedure has no multiple edges.

In what follows we will first solve the counting problem for labelled out-
erplanar, series-parallel and planar graphs. The complexity of the counting
problem of these three classes increases. In particular series-parallel networks
play an important role in describing the relation between 2-connected and
3-connected planar graphs.

However, the main goal of this chapter is to characterise the degree distri-
bution of these three classes of planar graphs.

For all these problems we use (again) the concept of generating functions
and singularity analysis.

9.2 Counting Planar Graphs

In this section we present the solution of the counting problem for labelled
planar graphs. On the level of generating functions this is classical. However,
the corresponding asymptotics are not obvious at all. In particular the cases
of 2-connected and connected planar graphs have been resolved quite recently
by Bender, Gao and Wormald [9] and Giménez and Noy [91].

9.2.1 Outerplanar Graphs

As explained above an outerplanar graph is a planar graph that can be em-
bedded into the plane so that all vertices are incident to the external face.
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Fig. 9.2. Connected outerplanar graph

We first solve the counting problem on the level of generating functions.

Theorem 9.1. Let bn denote the number of 2-connected labelled outerplanar
graphs, cn the number of connected labelled outerplanar graphs and gn the
number of all labelled outerplanar graphs. Furthermore, let

B(x) =
∑
n≥0

bn
xn

n!
, C(x) =

∑
n≥0

cn
xn

n!
, and G(x) =

∑
n≥0

gn
xn

n!

be the corresponding (exponential) generating functions. These functions are
determined by the following system of equations:

G(x) = eC(x), (9.1)

C′(x) = eB
′(xC′(x)), (9.2)

B′(x) = x+
1

2
xA(x), (9.3)

A(x) = x(1 +A(x))2 + x(1 +A(x))A(x) (9.4)

=
1− 3x−

√
1− 6x+ x2

4x
.

Proof. Equation (9.1) is obvious, since every (labelled) outerplanar graph
uniquely decomposes into a system of (labelled) connected outerplanar graphs.
Thus, the exponential generating functions are related by G(x) = eC(x).

The second equation (9.2) follows a general principle, too (compare with
[184]). First of all note that
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B′(x) =
∑
n≥1

bn+1
xn

n!

can be considered as the generating function of the 2-connected outerplanar
graphs with n+ 1 vertices, where one vertex (without label) is distinguished
as a root. Similarly we interprete C ′(x).

The right hand side

eB
′(xC′(x)) =

∞∑
k=0

1

k!
B′(xC′(x))k

can be interpreted as the exponential generating function of a finite set of
rooted 2-connected outerplanar graphs, where the root vertices are identified
to form a new connected rooted outerplanar graph, and every vertex differ-
ent from the root is replaced by a rooted connected outerplanar graph (see
Figure 9.3). It is clear that every graph of that kind constitutes a rooted con-
nected outerplanar graph. Furthermore every rooted connected outerplanar
graph G can be decomposed uniquely in the above way, as we indicate next.

Recall that a cut-vertex v of a graph G is defined by the property that the
number of components of G\{v} is larger than that of G (G\{v} means that
we remove v and all incident edges). Of course, a graph is 2-connected, if and
only if it is connected and contains no cut-vertices. In what follows we will
make use of the following reduction procedure. Let G be a connected graph
and v a vertex of G and let G1, . . . , GJ denote the connected components of
G \ {v}. Then the subgraphs

G′j = G \ ((G1 ∪ · · · ∪Gj−1 ∪Gj ∪ · · · ∪GJ) \ {v}) (1 ≤ j ≤ J)

can be considered as subgraphs of G that can be glued together at the
(cut-)point v to recover G. Furthermore, set G′′j = G \ Gj which is again
a connected graph. Then we can also recover G by gluing G′j and G′′j at v.
Of course, if v is not a cut-point then J = 1, G1 = G \ {v}, G′1 = G, and
G′′1 = {v}.

Let vroot denote the root vertex of a connected outerplanar graph. If we
delete an arbitrary vertex v = vroot (in the above sense) then the graph
decomposes into k ≥ 1 components G1, G2, . . . GJ , where we assume that the
root vroot is contained in G1. Without loss of generality we can assume that v
is not a cut-vertex. We reduce G to G′1 and have in mind that we can recover
G by gluing G′1 and G′′1 at v. We can also think of cutting off G2, . . . , GJ .
Note that G′′1 is a connected graph that can be considered as rooted at v. By
repeating this reduction procedure we end up with a graph G̃ that contains
the root vroot and has no cut-vertex different from vroot. Finally we delete the
root vroot and obtain k ≥ 1 connected (outerplanar) graphs G̃1, . . . , G̃k. Set
Bj = G̃′j , 1 ≤ j ≤ k. Then Bj , 1 ≤ j ≤ k, is a 2-connected planar graph that

is rooted at vroot, and G̃ is obtained by identifying all Bj at the root vertices.
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We now restart the reduction procedure but we only cut at points v = vroot

that are contained in G̃. Then we again end up at G̃ and this provides the
required (unique) decomposition (see Figure 9.3).

This decomposition procedure recovers an underlying tree structure of
G that consists of 2-connected subgraphs which are linked at cut-vertices.
Figure 9.3 can be seen from this point of view, too. Accordingly the equation
C′(x) = eB

′(xC′(x)) has an interpretation in terms of simply generated trees
or equivalently of Galton-Watson branching processes (see Remark 9.2).

B' B'

B'

xC'

xC'
xC'

xC'

xC' xC'

xC'

C'

Fig. 9.3. Connection between 2-connected and connected outerplanar graphs

In order to prove the next relations (9.3) and (9.4) we introduce so-called
dissections. A dissection is a convex polygon together with a set of non-
crossing diagonals. In our context we will further assume that one edge of
the polygon is rooted (or marked, see Figure 9.4). Alternatively we can inter-
pret a dissection as a 2-connected outerplanar graph with a rooted edge on
the infinite face. Let A denote the set of dissections with at least 3 vertices
and let an, n ≥ 1, be the number of dissections with n + 2 vertices, that is,
the vertices of the marked edge are not counted. Further, let

A(x) =
∑
n≥1

anx
n

denote the corresponding generating function.
Dissections have a very easy recursive structure. One considers the face f

that contains the rooted edge and looks at the valency � of f which has to be
at least 3. The dissection can be then decomposed into the original rooted edge
plus �−1 dissections (or just single edges) situated around f (see Figure 9.5).
In terms of generating functions this reads as

A(x) = x(1 +A(x))2 + x2(1 +A(x))3 + · · · =
x(1 +A(x))2

1− x(1 +A(x))
.
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Fig. 9.4. Dissection of a convex polygon and a 2-connected outerplanar graph

Obviously this is the same equation as (9.4).
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Fig. 9.5. Recursive decomposition of dissections

Finally we consider 2-connected labelled outerplanar graphs. There is ex-
actly one 2-connected outerplanar graph with two vertices, namely a single
edge. However, if n ≥ 3 then we have

bn =
(n− 1)!

2
an−2.

First, it is clear that bn can also be considered as the number of 2-connected
outerplanar graphs with n vertices, where one vertex is marked (or rooted)
and the remaining n− 1 vertices are labelled by 1, 2, . . . , n− 1. We just have
to identify the vertex with label n with the marked vertex. Next consider a
dissection with n vertices. There are an−2 dissections of that kind. We mark
the vertex v1 of the root edge e = (v1, v2) (where the vertices are numbered
counter clockwise). Then there are exactly (n−1)! ways to label the remaining
n− 1 vertices by 1, 2, . . . , n− 1. Finally since the direction of the outer circle
is irrelevant, we have to divide the resulting number (n− 1)!an−2 by 2 to get
back bn. Of course, this is exactly the relation (9.4).
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Remark 9.2 Note that the above description of outerplanar graphs contains
two tree-like constructions.

First, the relation (9.2) between rooted connected graphs and rooted 2-
connected corresponds to a tree-like decomposition. Set y(x) = xC ′(x) and
Φ(x) = eB

′(x). Then (9.2) rewrites to y(x) = xΦ(y(x)) which is precisely the
functional equation of simply generated (or Galton-Watson) trees. Figure 9.3
depicts the tree-structure at the root.

Second, the recursive description of dissections could be alternatively given
by a corresponding tree approach. We start with a planted root outside the
dissection and connect it with an internal node inside f by an edge that cuts
the rooted edge. In a similar way (see Figure 9.6) we continue. For example,
if the face f has valency 4 then the node inside f has 3 = 4− 1 subtrees that
correspond to the 3 sub-dissections around f .

Fig. 9.6. Dissections and trees

This gives a bijection between dissections and planted plane trees, where
all internal nodes have out-degree ≥ 2. However, one has to be careful by
transferring statistics between these two objects. A dissection with r faces and
n+ 2 (non-rooted) edges corresponds to a tree with r internal nodes (different
from the root) and n+ 1 leaves.

By using the system of equations (9.1)–(9.4) we derive asymptotic expan-
sions for bn, cn, and gn.

Theorem 9.3. The numbers bn, cn and gn of 2-connected, connected and all
labelled outerplanar graphs are asymptotically given by

bn = b · n− 5
2 (3 + 2

√
2)nn!

(
1 +O

(
1

n

))
,
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cn = c · n− 5
2 ρnn!

(
1 +O

(
1

n

))
,

gn = g · n− 5
2 ρnn!

(
1 +O

(
1

n

))
,

where ρ = y0e
−B′(y0) = 0.1365937... and y0 = 0.1707649... satisfies the equa-

tion 1 = y0B
′′(y0), and

b =
1

8
√
π

√
114243

√
2− 161564 = 0.000175453...,

c = 0.0069760...,

g = 0.017657...

are positive constants.

Proof. First note that A(x) and B′(x) can be explicitly computed:

A(x) =
1− 3x−

√
1− 6x+ x2

4x
,

B′(x) =
1 + 5x−

√
1− 6x+ x2

8
.

Both of them have a radius of convergence ρ = 3 − 2
√

2 = 0.171572875....
Furthermore, the asymptotic expansion for bn is immediate.

Next observe that the function v(x) = xC ′(x) satisfies the functional equa-
tion v = xeB

′(v). By applying Theorem 2.19 it follows that the solution
v(x) gets singular at ρ = 0.1365937..., which is given by ρ = v0e

−B′(v0),
and v0 = 0.1707649... satisfies the equation 1 = v0B

′′(v0). Note that
v0 = v(ρ) = ρC ′(ρ) < ρ1 = 3 − 2

√
2 which ensures that the singularity of

B′(x) has no influence to the singular behaviour of C ′(x). In fact we obtain
from Theorem 2.19 that

[xn]xC′(x) =
ncn
n!

= c · n− 3
2 ρn

(
1 + O

(
1

n

))
,

where

c =

√
1

2π(B′′(y0)2 +B′′′(y0))
= 0.0069760...

Furthermore the function xC ′(x) has a square root type singular expansion
of the form

xC′(x) = g(x)− h(x)

√
1− x

ρ
,

where h(ρ) = 2
√
π · c. Consequently we get a singular expansion for C(x) of

the form
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C(x) = g1(x) + h1(x)

(
1− x

ρ

) 3
2

with g1(ρ) = C(ρ) and h1(ρ) = 2
3h(ρ).

Finally, since G(x) = eC(x), the function G(x) has (up to constants) the
same singular behaviour as C(x)

G(x) = g2(x) + h2(x)

(
1− x

ρ

) 3
2

with h2(ρ) = eg1(ρ)h1(ρ), which leads directly to the asymptotic expansion
for gn.

In order to evaluate the constants we note that C(x) can be represented
as

C(x) = xC ′(x) (1− log(C ′(x))) +B(xC ′(x)), (9.5)

where B(x) is explicitly given by

B(x) =
x

8
+

5

16
x2 − 1

32
(−6 + 2 x)

√
1− 6 x+ x2

+
1

2
log
(
−3 + x+

√
1− 6 x+ x2

)
.

By using these representations the constants g1(ρ) = C(ρ), h2(ρ) = eg1(ρ)h1(ρ),
and consequently g = 0.017657... can be computed.

In order to prove (9.5) we set F (x) = xC ′(x) and get

C(x) =

∫ x

0

F (s)

s
ds = F (x) log x−

∫ x

0

F ′(s) log s ds.

With help of the substitution t = F (s), where we also have s = te−B′(t), we
can evaluate the last integral to∫ x

0

F ′(s) log s ds =

∫ F (x)

0

log
(
te−B′(t)

)
dt

=

∫ F (x)

0

(log t−B′(t)) dt

= F (x) logF (x)− F (x) −B(F (x)).

This directly provides (9.5).

Note that the above counting procedure is quite flexible. For example, we
can take care of the number of edges, too. If gn,m denotes the number of
outerplanar graphs with n vertices and m edges, then we define

G(x, y) =
∑

n,m≥0

gn,m
xn

n!
ym.
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Similarly let A(x, y), B(x, y), C(x, y) be the corresponding generating func-
tions for dissections, 2-connected outerplanar graphs and 3-connected outer-
planar graphs. Note that in the case of dissections we make the convention
not to count the rooted edge. By using exactly the same counting procedure
as above we get the following relations:

G(x, y) = eC(x,y), (9.6)

∂C(x, y)

∂x
= exp

(
∂B

∂x

(
x
∂C(x, y)

∂x
, y

))
, (9.7)

∂B(x, y)

∂x
= xy +

1

2
xy A(x, y), (9.8)

A(x, y) = xy2(1 +A(x, y))2 + xy(1 +A(x, y))A(x, y) (9.9)

=
1− xy2xy2 −

√
1− 2xy − 4xy2 + x2y2

2xy(1 + y)
.

With the help of these equations and by precisely the same analytic consider-
ations as above, where we consider y as an additional parameter, we get, for
example, a representation for G(x, y) of the form

G(x, y) = g1(x, y) + h1(x, y)

(
1− x

ρ(y)

) 3
2

.

Hence, by Theorem 2.25 we derive that the number of edges Xn in a of size
n satisfies a central limit theorem. In particular we obtain

EXn = μn+O(1) and VXn = σ2n+O(1),

where μ = 1.56251... and σ2 = 0.22399... (compare with [20]).

9.2.2 Series-Parallel Graphs

We recall that a graph is series-parallel if it does not contain the complete
graph K4 as a minor. Equivalently a connected series-parallel graph can be
seen as the result of consecutive series-parallel edge extensions applied to
a tree. Thus, the basic element of a series-parallel graph is the result of a
series-parallel edge extensions of a single edge. Such graphs are also called
series-parallel networks. They have two distinguished vertices (or roots) that
are called poles. The consecutive series-parallel extension induces a recursive
description of series-parallel networks: they are either a parallel composition
of series-parallel networks or a series decomposition of series-parallel networks
or just the smallest network consisting of the two poles and an edge joining
them. Figure 9.7 shows the parallel decomposition of a series-parallel network
that occurs if the first step of the series-parallel edge extension was a parallel
extension. In a similar way the series decomposition works (see Figure 9.8).
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It is also easy to characterise 2-connected series-parallel graphs. They can
be either described as the result of consecutive series-parallel edge extensions
applied to an initial double edge or by a series parallel network where one
additional edge is used to join the poles.

0 8

Fig. 9.7. Series-parallel network and its parallel decomposition

0 8

Fig. 9.8. Series decomposition of a series-parallel network

Thus, it is relatively easy to count 2-connected series-parallel graphs using
generating function (see Theorem 9.4). But then a decomposition of connected
graphs into 2-connected part (that works as in the outerplanar case, see also
Figure 9.9) makes it possible to count connected series-parallel graphs on the
level of generating functions, too. However, in contrast to outerplanar graphs
we have to keep track of the number of edges from the very beginning.

Theorem 9.4. Let bn,m denote the number of 2-connected labelled series-
parallel graphs, cn,m the number of connected labelled series-parallel graphs
and gn,m the number of all labelled series-parallel graphs with n vertices and
m edges. Furthermore, let

B(x, y) =
∑

m,n≥0

bn,m
xn

n!
ym, C(x, y) =

∑
m,n≥0

cn,m
xn

n!
ym

and



378 9 Planar Graphs

Fig. 9.9. Connected Series-parallel graph

G(x, y) =
∑

m,n≥0

gn,m
xn

n!
ym

be the corresponding generating functions. Then these functions are deter-
mined by the following system of equations:

G(x, y) = eC(x,y) (9.10)

∂C(x, y)

∂x
= exp

(
∂B

∂x

(
x
∂C(x, y)

∂x
, y

))
, (9.11)

∂B(x, y)

∂y
=
x2

2

1 +D(x, y)

1 + y
=
x2

2
eS(x,y) (9.12)

D(x, y) = (1 + y)eS(x,y) − 1, (9.13)

S(x, y) = (D(x, y) − S(x, y))xD(x, y). (9.14)

Proof. The first two relations (9.10) and (9.11) can be proved in completely
the same way as in the proof of Theorem 9.1. We only have to be aware of the
number of edges (that are additive) and the fact that the tree-like decomposi-
tion of connected series-parallel graphs into 2-connected series-parallel graphs
works, too.

Next we denote by

D(x, y) =
∑
n,m

dn,m
xn

n!
ym

the exponential generating function of all series-parallel networks, more pre-
cisely, dn,m is the number of series-parallel networks with n+2 vertices and m
edges, where the n internal vertices (that are those vertices that are different
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from the poles) are labelled by {1, 2, . . . , n}. In the same way we define S(x, y)
for series-parallel networks that have a series decomposition into at least two
series-parallel networks and P (x, y) for series-parallel networks that have a
parallel decomposition into at least two series-parallel networks. For short, we
call these networks s- and p-networks. By definition we have

D(x, y) = S(x, y) + P (x, y) + y.

Furthermore, observe that the series decomposition of a s-network (and the
parallel decomposition of a p-network) is unique if we require that the com-
ponents are either edges or p-networks (or at most one edge and s-networks).
This unique decomposition translates directly into the system of equations

S(x, y) = x(P (x, y) + y)2 + x2(P (x, y) + y)3 + · · · (9.15)

=
x(P (x, y) + y)2

1− x(P (x, y) + y)
,

P (x, y) = (eS(x,y) − 1− S(x, y)) + y(eS(x,y) − 1). (9.16)

Of course, these two equations can be rewritten to the system (9.13) and
(9.14) if we use D − S instead of P + y.

Alternatively we can interprete the equations (9.13) and (9.14). The first
equation (9.13) expresses the fact that a series-parallel network is a parallel
composition of series networks (this is the exponential term), to which we
may add or not the edge connecting the two poles. The second equation (9.14)
means that a series network is formed by taking at first a non-series network
(this is the term D − S), and concatenating to it an arbitrary network.

Finally we have (9.12), since a series-parallel network with non-adjacent
poles (which is counted by eS(x,y)) can be obtained by distinguishing, orienting
and then deleting any edge of an arbitrary 2-connected series-parallel graph.
The factor x2 takes into account the two poles, the factor 1/2 the two possible
orientations and the derivative with respect to y the choice and deletion of an
arbitrary edge.

Remark 9.5 Note that the system (9.15) and (9.16) can be interpreted as
a tree-like composition with two kinds of nodes (S and P ) and two different
reproductions rules.

Furthermore, we want to note that D(x, y) solves a single equation

log

(
1 +D(x, y)

1 + y

)
=

xD(x, y)2

1 + xD(x, y)
, (9.17)

which will make the singularity analysis slightly easier.

Theorem 9.6. The numbers bn, cn and gn of 2-connected, connected and all
series-parallel graphs are asymptotically given by
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bn = b · n− 5
2 ρn

1n!

(
1 +O

(
1

n

))
,

cn = c · n− 5
2 ρn

2n!

(
1 +O

(
1

n

))
,

gn = g · n− 5
2 ρn

2n!

(
1 +O

(
1

n

))
,

where ρ1 = 0.1280038..., ρ2 = 0.11021... and

b = 0.0010131...,

c = 0.0067912...,

g = 0.0076388...

are positive constants.

Proof. Since D(x, y) satisfies a single equation (9.17), it follows that there is
a singular expansion of the form

D(x, y) = g(x, y)− h(x, y)

√
1− x

ρ(y)
,

where ρ(1) = ρ1 = 0.12800.... Since eS(x,y) = (D(x, y) + 1)/(1 + y), we get a
corresponding expansion for

∂B(x, y)

∂y
= g1(x, y)− h1(x, y)

√
1− x

ρ(y)
.

By Theorem 2.30 this implies that B(x, y) has a representation of the form

B(x, y) = g2(x, y) + h2(x, y)

(
1− x

ρ(y)

) 3
2

. (9.18)

Of course, by setting y = 1 this leads to the asymptotic expansion for bn with
ρ1 = ρ(1).

From (9.18) we also obtain a representation for

∂B(x, y)

∂x
= g3(x, y)− h3(x, y)

√
1− x

ρ(y)
,

where we can safely set y = 1. For notational simplicity we set B ′(x) = ∂B(x,1)
∂x

and C′(x) = ∂C(x,1)
∂x . Then the function v(x) = xC ′(x) satisfies the functional

equation v(x) = xeB
′(v(x)), that is, we are in a similar situation as in the proof

of Theorem 9.3. Again we observe that there exists v0 = 0.1279695... < ρ1
with v0B

′′(v0) = 1 (compare with [20]). Thus, by Theorem 2.19, the function
v(x) = xC ′(x) has a local representation of the form
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xC′(x) = g4(x)− h4(x)

√
1− x

ρ2
,

where ρ2 = v0e
−B′(v0) = 0.11021.... Consequently we obtain corresponding

representations for

C(x) = g5(x) + h5(x)

(
1− x

ρ2

) 3
2

,

and for

G(x) = eC(x) = g6(x) + h6(x)

(
1− x

ρ2

) 3
2

,

that induce corresponding asymptotic representations for cn and gn.

Remark 9.7 We want to remark that one has to be careful with the evaluation
of constants since we have been working with derivatives with respect to x and
y. Nevertheless it is not difficult to solve the above system of (differential)
equations numerically and check all necessary conditions, for example, that
there exists v0 < ρ1 with v0B

′′(v0) = 1.
However, due to the simplicity of the above equations, one can solve some

of the integrals explicitly. For example, in [20] it is shown that B(x, y) can be
represented in terms of D = D(x, y):

B(x, y) =
1

2
log(1 + xD)− xD(x2D2 + xD + 2− 2x)

4(1 + xD)
,

and C(x, y) can be represented in terms of ∂C(x,1)
∂x and B(x, y):

C(x, y) = x
∂C(x, 1)

∂x

(
1− log

∂C(x, 1)

∂x

)
−B
(
x
∂C(x, 1)

∂x
, y

)
.

Remark 9.8 As in the case of outerplanar graphs we also get a central limit
theorem for the number Xn of edges in a random series-parallel graph of size
n, with

EXn = μn+O(1) and VXn = σ2n+O(1),

where μ = 1.61673... and σ2 = 0.55347... (compare with [20]). By a slight vari-
ation of the proof of Theorem 9.6 we obtain a local representation of G(x, y)
of the form

G(x, y) = g6(x, y) + h6(x, y)

(
1− x

ρ2(y)

) 3
2

.

Thus, a direct application of Theorem 2.25 gives the result.
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9.2.3 Quadrangulations and Planar Maps

Before we can count planar graphs we have to know something on the relation
between quadrangulations and planar maps. A planar map is – informally
spoken – an embedded planar graph, and a quadrangulation is a planar map
where every face has valency 4 (also the external face).

Interestingly, there is a bijective relation between quadrangulations and
2-connected maps. Suppose a 2-connected mapM is given. LetM ∗ denote the
dual map, that is, the vertices ofM ∗ are the faces ofM and two vertices ofM ∗

are linked by an edge (of M ∗) if the corresponding faces of M have an edge in
common. For simplicity the vertices ofM ∗ are represented by points contained
in the corresponding faces of M . Now we construct a quadrangulation Q in
the following way. The vertices of Q are the vertices of M together with the
vertices ofM∗ (represented as points in the plane). Finally we connect a vertex
v of M with a vertex v∗ of M∗ by an edge (in Q) if v is contained on the
boundary of the face of M corresponding to v∗. Figure 9.10 shows an example
of this procedure.

Fig. 9.10. Quadrangulations and maps

A diagonal in a quadrangulation is an internal path of length 2 joining two
opposite vertices of the external face. A quadrangulation is simple if it has no
diagonal, if every cycle of length 4 (other than the external cycle that encircles
the whole graph) defines a face, and if it is not the trivial map reduced to a
single quadrangle. For example, the quadrangulation depicted in Figure 9.10
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is a simple one. It is a well known fact and an easy exercise (see [29, 156])
that the above described procedure leads to a simple quadrangulation, if and
only if the corresponding map is 3-connected.

Furthermore, it is easy to see that edge-rooted maps correspond to edge
rooted quadrangulations, where the rooted edge is directed and always on
the external face. These kinds of objects can now be counted with the help of
generating functions. Note further, that quadrangulations are bipartite graphs
so that we can distinguish between black and white vertices. This is uniquely
defined by assuming that the rooted (directed) edge starts from a black vertex.
With this convention the above bijection transfers vertices of the 2-connected
map to black vertices of the quadrangulation, edges to faces, faces to white
vertices, and the root degree (of the first vertex of the root edge) stays the
same.

Let fi,j,k be the number of edge-rooted 2-connected maps with i+1 vertices
and j + 1 faces where the (first) vertex of the rooted edge has degree k + 1.
Then fi,j,k is also the number of edge-rooted quadrangulations with i+1 black
vertices, and j + 1 white vertices where the (first) vertex of the rooted edge
has degree k + 1. The following lemma provides an explicit representation of
the trivariate generating function of these numbers.

Lemma 9.9. The generating function

F (x, y, w) =
∑
i,j,k

fi,j,kx
iyjwk

is given by

F (x, y, w) = − 1

2w
(1− (1 + v − u+ uv − 2v2u)w + v(1 − u)2w2)

+
1

2w
(1 − (1− u)w)

√
1− 2v(1 + u+ 2uv)w + v2(1− u)2w2,

where u = u(x, y) and v = v(x, y) are determined by the system

x = u(1− v)2, (9.19)

y = v(1− u)2. (9.20)

Remark 9.10 Note that the function F (x, y, 1) is given by

F (x, y, 1) = uv(1− u− v). (9.21)

This representation is due to Brown and Tutte [30]. In particular, it can be
used to prove an explicit formula for

fi,j =
∑
k≥0

fi,j,k =
(2i+ j − 2)!(2j + i− 2)!

i!j!(2i− 1)!(2j − 1)!
.
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For example, this can be derived from (9.21) with help of Lagrange’s inversion
formula (see [30]).

Interestingly there is also a bijection to two different tree classes, to so-
called description trees and skew ternary trees (see [109]).

Proof. Let wn,j,m denote the number of 2-connected edge-rooted planar maps
with n edges, and j+ 1 faces, where the external face has valency m. Further-
more set

wm(x, y) =
∑
n≥2

∑
j≥1

wn,m,jx
nyj ,

w(x, y, z) =
∑
m≥2

wm(x, y) zm =
∑

n,j,m

wn,j,mx
nyjzm.

Now consider the rooted edge e of the external face of the 2-connected map.
Of course, e belongs to the external face and to another face f . Denote by γ1

the remaining edges on the external face and by γ2 the remaining edges on
the face f . If one deletes the edge e, then M \ e might have k ≥ 0 cut-points
a1, . . . , ak that are exactly common points of γ1 and γ2 (different from the
two vertices incident to the rooted edge e, see Figure 9.11).

a

a

a

e

1

2

k

Fig. 9.11. 2-connected maps

A careful look at this recursive structure leads to the relation

w(x, y, z) = xyz
∑
k≥0

⎛⎝∑
m≥2

wm(x, y)(z + z2 + · · · zm−1) + xz

⎞⎠k+1

= xyz

∑
m≥2 wm(x, y)(z + z2 + · · · zm−1) + xz

1−
∑

m≥2 wm(x, y)(z + z2 + · · · zm−1)− xz .

This rewrites to
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w(x, y, z)2 + ((1 − z)(1− xz) + xyz − zw(x, y, 1))w(x, y, z)

−xz2y(x(1− z) + w(x, y, 1)) = 0.

Now let hi,j,m be the number of edge-rooted 2-connected planar maps with
i + 1 vertices, and j + 1 faces with an external face of valency m (where we
exclude the map that consists just of one edge). Then by Euler’s relation we
have

hi,j,m = wi+j,j,m

and consequently the corresponding generating function h(x, y, z) is given by

h(x, y, z) =
∑
i,j,m

hi,j,mx
iyjzm = w(x, y/x, z)

and satisfies the relation

h(x, y, z)2 + ((1− z)(1− xz) + yz − zh(x, y, 1))h(x, y, z) (9.22)

−yz2(x(1 − z) + h(x, y, 1)) = 0.

It is easy to check that (9.22) has a unique analytic solution if one assumes
that h(x, 0, z) = 0. Namely, if we set

h(x, y, z) =
∑
j≥0

hj(x, z)yj

(with h0(x, z) = h(x, 0, z) = 0) then (9.22) rewrites to a recurrence for
hj(x, z). Now observe that

h(x, y, z) = −1

2
(1− (1 + u− v + uv − 2u2v)z + u(1− v)2z2)

+
1

2
(1 − (1− v)z)

√
1− 2u(1 + v + 2uv)z + u2(1− v)2z2,

where u = u(x, y) and v = v(x, y) are defined by (9.19) and (9.20) is actually
an analytic solution of (9.22) that meets these conditions.

Finally we apply the above enumeration result to the dual maps. Here
vertices are transferred to faces, faces to vertices, and the valency of the outer
face to the degree of the degree of the root vertex. As a consequence we have
that h(x, y, w) = wF (x, y, w), where the extra factor w appears, because in
F we are counting the degree of the root vertex minus one. Of course, this
completes the proof of the lemma.

We now turn to simple triangulations or equivalently to 3-connected edge-
rooted maps. Let qi,j,k denote the number of 3-connected edge-rooted maps
with i + 1 vertices and j + 1 faces, where the (first) vertex of the root edge
has degree k + 1. Equivalently this is the number of simple quadrangulations
with i+ 1 black vertices and j + 1 white vertices, where the (first) vertex of
the root edge has degree k + 1.
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Lemma 9.11. The generating function

Q(x, y, w) =
∑

i,j,k≥1

qi,j,kx
iyjwk (9.23)

is given by

Q(x, y, w) = xyw

(
1

1 + x
+

1

1 + wy
− 1

)
− rs

(1 + r + s)3
−w1(r, s, w) + (r − w + 1)

√
w2(r, s, w)

2(s+ 1)2(sw + r2 + 2r + 1)
,

where w1(r, s, w) and w2(r, s, w) are polynomials given by

w1(x, r, s) =− rsw2 + w(1 + 4s+ 3rs2 + 5s2 + r2 + 2r + 2s3 + 3r2s+ 7rs)
(9.24)

+ (r + 1)2(r + 2s+ 1 + s2),

w2(x, r, s) =r2s2w2 − 2wrs(2r2s+ 6rs+ 2s3 + 3rs2 + 5s2 + r2 + 2r + 4s+ 1)
(9.25)

+ (r + 1)2(r + 2s+ 1 + s2)2

and r = r(x, y), and s = s(x, y) are determined by the system

r = x(s+ 1)2, (9.26)

s = y(r + 1)2. (9.27)

Observe, too, that the function Q(x, y, 1) is given by

Q(x, y, 1) = xy

(
1

1 + x
+

1

1 + y
− 1

)
− rs

(r + s+ 1)3
.

This formula is due to Mullin and Schellenberg [156]. In passing we also ob-
tain a representation of the function M(x, y) that counts the number of 3-
connected edge-rooted planar maps according to the (total) number of vertices
and edges:

M(x, y) = x2y2
(

1

1 + xy
+

1

1 + y
− 1− (1 + U)2(1 + V )2

(1 + U + V )3

)
, (9.28)

where U = U(x, y) and V = V (x, y) are defined by U = xy(1 + V )2 and
V = y(1 + U)2.

Proof. Let F (x, y, w) be the generating function used in Lemma 9.9. However,
we now use it as the generating function of rooted quadrangulations, where
the variables x, y and w mark, respectively, the number of black vertices minus
one, the number of white vertices minus one, and the degree of the first vertex
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of the rooted edge minus one. We recall that a diagonal is an internal path
of length 2 joining two opposite vertices of the external face. We will call a
diagonal black or white, according to the colour of the external vertices they
join.

We associate generating functions FN , FB and FW , respectively, to quad-
rangulations with no diagonal, to those with at least one black diagonal (at
the root vertex), and to those with at least one white diagonal (not at the
root vertex). By planarity only one of the two kinds of diagonals can appear
in a quadrangulation; it follows that

F (x, y, w) = FN (x, y, w) + FB(x, y, w) + FW (x, y, w).

A quadrangulation with a diagonal can be decomposed into two quadrangu-
lations, by considering the maps to the left and to the right of this diagonal.
In order to make this decomposition unique we assume that we decompose at
the leftmost diagonal when there are several of them. This gives raise to the
equations

FB(x, y, w) = (FN (x, y, w) + FW (x, y, w))
F (x, y, w)

x
,

FW (x, y, w) = (FN (x, y, w) + FB(x, y, w))
F (x, y, 1)

y
.

In the second case, only one of the two quadrangulations contributes to the
degree of the root vertex; this is the reason why the term F (x, y, 1) appears.
The x and the y in the denominators appear because the three vertices of the
diagonal are common to the two quadrangulations. Since we are considering
vertices minus one, we only need to correct the colour that appears twice at
the diagonal. Incidentally, no term w appears in the equations for the same
reason.

Let us write F = F (x, y, w) and F (1) = F (x, y, 1). From the previous
equations we deduce that

F = FN + FB + FW = (FN + FB)(1 +
F

x
),

F = FN + FB + FW = (FN + FW )(1 +
F (1)

y
),

so that

F + FN = (FN + FB) + (FN + FW ) = F

(
1

1 + F
x

+
1

1 + F (1)
y

)
,

and finally

FN = F

(
1

1 + F
x

+
1

1 + F (1)
y

− 1

)
. (9.29)
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Now we proceed to count simple quadrangulations. We use the following
combinatorial decomposition of quadrangulations with no diagonals, in terms
of simple quadrangulations: all quadrangulations with no diagonals, with the
only exception of the trivial one, can be decomposed uniquely into a simple
quadrangulation q and as many quadrangulations as internal faces q has.
More precisely, we replace each internal face f of a simple triangulation by an
arbitrary quadrangulation qf by identifying the external edges of qf with the
edges of f .

Next we translate the combinatorial decomposition of simple quadrangu-
lations into generating functions as follows.

FN (x, y, w) − xyw =
∑
i,j,k

qi,j,kx
iyj

(
F

xy

)k (
F (1)

xy

)i+j−1−k

=
∑
i,j,k

qi,j,k
xy

F (1)

(
F (1)

y

)i(
F (1)

x

)j (
F

F (1)

)k

=

=
xy

F (1)
Q

(
F (1)

y
,
F (1)

x
,
F

F (1)

)
, (9.30)

where we are using the fact that a quadrangulation counted by qi,j,k has
i + j + 2 vertices, i+ j − 1 internal faces, and k of them are incident to the
root vertex.

At this point we change variables as X = F (1)/y, Y = F (1)/x and W =
F/F (1). Then the equations (9.29) and (9.30) can be rewritten as

xy

F (1)
Q(X,Y, Z) = FN − xyw = F

(
1

1 + F
x

+
1

1 + F (1)
y

− 1

)
− xyw,

Q(X,Y,W ) = XYW

(
1

1 +WY
+

1

1 +X
− 1

)
− F (1)w. (9.31)

The last equation would be an explicit expression of Q in terms of X,Y,W ,
if there was not the term F (1)w = F (x, y, 1)w.

Note that F (1) = F (x, y, 1) = uv(1−u−v) was already determined. When
we substitute

R =
u

1− u− v and S =
v

1− u− v
then we have

F (1) =
RS

(1 +R+ S)3
, (9.32)

where R = R(X,Y ) and S(X,Y ) are algebraic functions defined by

R = X(S + 1)2, S = Y (R + 1)2. (9.33)

Recall that we have also substituted X = F (1)/y, Y = F (1)/x.
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Hence it remains only to obtain an expression for w = w(X,Y,W ) to get
an explicit expression for Q.

Recall that we have the h(y, x, w) = wF (x, y, w) (see the proof of
Lemma 9.9). Hence F = F (x, y, w) and F (1) = F (x, y, 1) satisfy the equation

(1−w)(1− yw)wF = −w2F 2 + (−xw +wF (1))wF + xw2(y(1−w) + F (1)).

By dividing both sides by F (1)2, and rewriting in terms of X = F (1)/y,
Y = F (1)/x and W = F/F (1), we obtain

(1−w)

(
1

F (1)
− w

X

)
wW = −w2W 2+

(
1− 1

Y

)
w2W+

w2

Y

(
1

X
(1− w) + 1

)
,

(1− w)(X − wF (1))wW

XF (1)
=
w2(−XYW 2 +XYW −XW + 1− w +X

XY
,

Y (1−w)(X−wF (1))W = wF (1)(−XYW 2+XYW−XW+1−w+X). (9.34)

Observe that this is a quadratic equation in w. Solving for w in (9.34) and
using (9.32) and (9.33) we get

w =
−w1(R,S,W ) + (R−W + 1)

√
w2(R,S,W )

2(S + 1)2(SW +R2 + 2R+ 1)
, (9.35)

where w1(R,S,W ) and w2(R,S,W ) are those polynomials stated in (9.24)
and (9.25).

Thus, together with equations (9.31) and (9.32), we have finally obtained
an explicit expression for the generating function Q(X,Y,W ) of simple quad-
rangulations in terms of W and algebraic functions R(X,Y ) and S(X,Y ).

9.2.4 Planar Graphs

The counting problem for labelled planar graphs is the most complex one. We
have to use results on 3-connected maps and network constructions as we will
see next.

Theorem 9.12. Let bn,m denote the number of 2-connected labelled planar
graphs, cn,m the number of connected labelled planar graphs and gn,m the
number of all labelled planar graphs with n vertices and m edges. Furthermore,
let

B(x, y) =
∑

m,n≥0

bn,m
xn

n!
ym, C(x, y) =

∑
m,n≥0

cn,m
xn

n!
ym,

and

G(x, y) =
∑

m,n≥0

gn,m
xn

n!
ym
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the corresponding generating functions. Then these functions are determined
by the following system of equations:

G(x, y) = exp (C(x, y)) , (9.36)

∂C(x, y)

∂x
= exp

(
∂B

∂x

(
x
∂C(x, y)

∂x
, y

))
, (9.37)

∂B(x, y)

∂y
=
x2

2

1 +D(x, y)

1 + y
, (9.38)

M(x,D(x, y))

2x2D(x, y)
= log

(
1 +D(x, y)

1 + y

)
− xD(x, y)2

1 + xD(x, y)
, (9.39)

M(x, y) = x2y2
(

1

1 + xy
+

1

1 + y
− 1− (1 + U(x, y))2(1 + V (x, y))2

(1 + U(x, y) + V (x, y))3

)
,

(9.40)

U(x, y) = xy(1 + V (x, y))2, (9.41)

V (x, y) = y(1 + U(x, y))2. (9.42)

Proof. As in the previous cases of outerplanar and series-parallel graphs the
first two relations (9.36) and (9.37) follow general principles.

Furthermore we already know that M(x, y) denotes the generating func-
tion that counts the number of 3-connected edge-rooted planar maps according
to the (total) number of vertices and edges (compare with (9.28)). Thus, it
remains to explain the relations (9.38) and (9.39) that provide a relation be-
tween 2- and 3-connected planar graphs. Here we follow the arguments given
by Walsh [207] and Bender, Gao and Wormald [9].

First of all, by Whitney’s theorem every 3-connected planar graph has a
unique embedding into the plane. In particular, if we take into account the
rooted edge and its direction, we thus obtain that the (exponential) generating
function

T •(x, y) =
1

2
M(x, y)

counts 3-connected labelled edge-rooted planar graphs. More precisely, every
rooted planar map with n vertices corresponds to n! labelled rooted graphs
and there are precisely two ways of rooting an embedding of a directed edge-
rooted graph in order to get a rooted map (compare with [9]).

Next we introduce so-called networks that extend the concept of series-
parallel networks. A network N is a (multi-)graph with two distinguished
vertices, called its poles (usually labelled 0 and∞) such that the (multi-)graph
N̂ obtained from N by adding an edge between the poles of N is 2-connected.

Let M be a network and X = (Ne, e ∈ E(M)) a system of networks
indexed by the edge-set E(M) of M . Then N = M(X) is called the superpo-
sition with core M and components Ne and is obtained by replacing all edges
e ∈ E(M) by the corresponding network Ne (and, of course, by identifying
the poles of Ne with the end vertices of e accordingly). A network N is called
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an h-network if it can be represented by N = M(X), where the core M has
the property that the graph M̂ obtained by adding an edge joining the poles
is 3-connected and has at least 4 vertices. Similarly N = M(X) is called a
p-network if M consists of 2 or more edges that connect the poles, and it is
called an s-network if M consists of 2 or more edges that connect the poles
in series.

Now Trakhtenbrot’s canonical network decomposition theorem [202] says
that any network with at least 2 edges belongs to exactly one of the 3 classes
of h-, p- or s-networks. Furthermore, any h-network has a unique decompo-
sition of the form N = M(x), and a p-network (or any s-network) can be
uniquely decomposed into components which are not themselves p-networks
(or s-networks).

Trakhtenbrot’s theorem was formulated for general networks but it also
applies to planar networks, since any composition N = M(X) of planar net-
works X = (Ne, e ∈ E(M)) is planar again. Furthermore, we can also adapt it
to a counting procedure for graphs without multi-edges (compare with [207]).

We introduce the following generating functions, where the exponent of x
counts the number of vertices and the exponent of y the number of edges. Of
course, the generating functions are exponential in x, since the vertices are
labelled. Let K(x, y) be the generating function corresponding to all planar
networks where the two poles are not connected by an edge (and where the
two poles are not counted), D(x, y) the generating function corresponding to
all planar networks with at least one edge, S(x, y) the generating function
corresponding to all s-networks, F (x, y) = D(x, y) − S(x, y) the generating
function corresponding to all non-s-networks (with at least one edge), and
N(x, y) the generating function corresponding to all non-p-networks.

These generating functions satisfy the following relations:

∂B(x, y)

∂y
=
x2

2
K(x, y), (9.43)

D(x, y) = (1 + y)K(x, y)− 1, (9.44)

K(x, y) = eN(x,y), (9.45)

S(x, y) = xD(x, y)(D(x, y) − S(x, y)), (9.46)

T •(x,D(x, y))

x2D(x, y))
= N(x, y)− S(x, y). (9.47)

The first relation (9.43) is just a rewriting of the definition of (planar) net-
works. We get a planar network (with no edge connecting the two poles)
by distinguishing, orienting and then deleting any edge from a 2-connected
planar graph. Obviously we have D(x, y) = (K(x, y) − 1) + yK(x, y), since
K(x, y) − 1 corresponds to all networks (with at least one edge), where the
poles are not connected by an edge and yK(x, y) corresponds to those, where
the poles are connected by an edge. This proves (9.44). Furthermore, we have
the decomposition
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K(x, y) = 1 +
∑
k≥2

1

k!
N(x, y)k +N(x, y).

The 1 corresponds to the network without edges, the sum
∑

k≥2
1
k!N(x, y)k

to all p-networks (by Trakhtenbrot’s theorem) and the remaining ones are
non-p-networks counted by N(x, y). Of course, this gives (9.45). Next we have
(again by Trakhtenbrot’s theorem)

S(x, y) = xF (x, y)2 + x2F (x, y)3 + · · · =
xF (x, y)2

1− xF (x, y)
.

After substituting F (x, y) = D(x, y) − S(x, y) this rewrites to (9.46) which
has also a natural interpretation. Finally, we have (9.47), since both sides
correspond to h-networks. This is immediately clear for U(x, y) − S(x, y),
and for the left-hand-side we again apply Trakhtenbrot’s theorem saying that
every h-network has a unique representation as a 3-connected graph (minus
the rooted edge), where every (remaining) edge is replaced by a network (with
at least one edge).

It is now immediate that (9.38) and (9.39) follow from (9.43)–(9.47).

Theorem 9.13. The numbers bn, cn and gn of 2-connected, connected and
all planar graphs are asymptotically given by

bn = b · n− 7
2 ρn

1 n!

(
1 +O

(
1

n

))
,

cn = c · n− 7
2 ρn

2 n!

(
1 +O

(
1

n

))
,

gn = g · n− 7
2 ρn

2 n!

(
1 +O

(
1

n

))
,

where ρ1 = 0.03819..., ρ2 = 0.03672841... and

b = 0.3704247487... · 10−5,

c = 0.4104361100... · 10−5,

g = 0.4260938569... · 10−5

are positive constants.

Proof. In a first step we consider the two equations for U and V . For notational
convenience we substitute y by z. Obviously, the two equations for U and V
can be reduced to a single one, say

U = xz
(
1 + z(1 + U)2

)2
.

Then by Theorem 2.19 U(x, z) has a singular representation of the form
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U(x, z) = g(x, z)− h(x, z)

√
1− z

τ(x)
,

that we rewrite now (also for V (x, z)) as

U(x, z) = u0(x) + u1(x)Z + u2(x)Z2 + u3(x)Z3 +O(Z3),

V (x, z) = v0(x) + v1(x)Z + v2(x)Z2 + v2(x)Z3 +O(Z3),

where Z abbreviates

Z =

√
1− z

τ(x)
.

Observe that u0(x) is the solution of the equation

x =
(1 + u)(3u− 1)3

16u

and τ(x) is then given by

τ(x) =
1

(4x2(1 + u0(x)))
2/3
.

The functions uj(x) and vj(x) are also analytic and can be explicitly given in
terms of u = u0(x). In particular we have

u0(x) = u v0(x) =
1 + u

3u− 1
,

u1(x) = −
√

2u(u+ 1) v1(x) = −2
√

2u(u+ 1

3u− 1
,

u2(x) =
(1 + u)(7u+ 1)

2(1 + 3u)
v2(x) =

2u(3 + 5u)

(3u− 1)(1 + 3u)
,

u3(x) = − (1 + u)(67u2 + 50u+ 11)u

4(1 + 3u)2
√

2u2 + 2u
v3(x) = −

√
2u(1 + u)(79u2 + 42u+ 7)

4(1 + 3u)2(3u− 1)
√
u(1 + u)

.

With the help of these expansions it follows that there is a cancellation of the
coefficient of Z in the expansion of

(1 + U)2(1 + V )2

(1 + U + V )3
= E0 +E2Z

2 +E3Z
3 +O(Z4),

where

E0 =
16(3u− 1)

27u(u+ 1)
, E2 =

16(3u2 + 1)(3u− 1)

81u2(u+ 1)2
,

E3 = 2

√
2p1(u) +

√
u(u+ 1)p2(u)

729
√
u(u+ 1)u2(1 + 3u)2(u+ 1)2
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with polynomials

p1(u) = 324u5 + 297u4 + 54u3 − 1296u2 − 1146u− 281,

p2(u) = 8748u4 − 5832u3 − 3888u2 + 648u+ 324.

Thus, M(x, z) can be represented as

M(x, z) = M0(x) +M2(x)Z2 +M3(x)Z3 +O(Z4).

Next we rewrite (9.39) to

D = (1 + y) exp

(
xD2

1 + xD
+
M(x,D)

2x2D

)
− 1 = Φ(x, y,D)

and suppose that y equals 1 (or is very close to 1). We observe that The-
orem 2.19 does not apply here, since the region of analyticity of the right
hand side is not large enough to find a solution of the system of equations
d0 = G(x0, 1, d0), 1 = Gd(x0, 1, d0). However, we can apply Theorem 2.31 and
obtain a local expansion for D = D(x, y) of the form

D(x, y) = D0(y) +D2(y)X +D3(y)X3 +O(X4), (9.48)

where

X =

√
1− x

R(y)

for some function R(y).
In fact, we can be much more precise (compare with [9, 91]). Let t = t(y)

be defined by the equation

y =
1 + 2t

(1 + 3t)(1− t) exp

(
− t

2(1− t)(18 + 36t+ 5t2)

2(3 + t)(1 + 2t)(1 + 3t)2

)
− 1 (9.49)

that exists in a suitable neighbourhood of y = 1. Then R(y) is given by

R(y) =
(1 + 3t(y))(1− t(y))3

16t(y)3
,

in particular R = R(1) = 0.038191..., and the coefficients in (9.48) are given
by

D0 =
3t2

(1− t)(1 + 3t)
,

D2 = −48t2(1 + t)(1 + 2t)2(18 + 6t+ t2)

(1 + 3t)β
,

D3 = 384t2(1 + t)2(1 + 2t)2(3 + t)2α3/2β−5/2,

with
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α = 144 + 592t+ 664t2 + 135t3 + 6t4 − 5t5,

β = 3t(1 + t)(400 + 1808t+ 2527t2 + 1155t3 + 236t4 + 17t5).

In view of (9.38) the representation (9.48) provides a local expansion for
∂B(x,y)

∂y of the form

∂B(x, y)

∂y
= B0(y) +B2(y)X +B3(y)X3 +O(X4)

= g1(x, y) + h1(x, y)X3/2

with certain analytic functions g1(x, y) and h1(x, y). Hence, by Theorem 2.30

B(x, y) and consequently ∂B(x,y)
∂x have an expansions of the form

B(x, y) = g2(x, y) + h2(x, y)X5/2,

∂B(x, y)

∂x
= g3(x, y) + h3(x, y)X3/2

with certain analytic functions g2(x, y), g3(x, y) and h2(x, y), h2(x, y).
Finally we have to solve (9.37). For simplicity set y = 1. Since RB ′′(R) ≈

0.0402624 < 1, Theorem 2.19 does not apply (see also [91]). The singularity
of the right-hand-side induces the singular behaviour of the solution xC ′(x).
Actually we just have to apply Theorem 2.31 and obtain a local expansion for
C′(x) of the form

C′(x) = g3(x) + h3(x)

(
1− x

ρ

) 3
2

,

where ρ = Re−B′(R) = 0.0367284..., and consequently we obtain correspond-
ing representations for

C(x) = g4(x) + h4(x)

(
1− x

ρ

) 5
2

and for

G(x) = g5(x) + h5(x)

(
1− x

ρ

) 5
2

.

Using these representations the asymptotic expansion for bn, cn, and gn fol-
low immediately. Again one has to be careful with the evaluation of constants
(compare with Remark 9.7). They can be either evaluated by numerical inte-
gration or by using explicit representations for B(x, y) and C(x, y) (compare
with [91]).

Remark 9.14 As in the previous cases of outerplanar and series-parallel
graphs the number Xn of edges in a random planar graph satisfies a central
limit theorem. For all planar graphs we have

EXn = μn+O(1) and VXn = σ2n+O(1),

where μ = 2.2132652... and σ2 = 0.4303471... (compare with [91]).
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9.3 Outerplanar Graphs

9.3.1 The Degree Distribution of Outerplanar Graphs

We already determined the degree distribution of several classes of random
trees. We next show that such distributions exist for planar graphs, too. Recall,
that we are interested in the limits

dk = lim
n→∞

dk;n,

where dk;n denotes the probability that a randomly chosen node in a random
planar graph has degree k.

In fact there are two different points of view to this problem. First, if X
(k)
n

denotes the (random) number of vertices of degree k in a random planar graph
of size n then

dk;n =
EX

(k)
n

n
.

Second, we can change the model. Recall that we are considering unrooted
labelled combinatorial objects. Suppose that gn is the number of objects of
size n. Then for each of these objects there are precisely n possible ways to
root these objects and we, thus, obtain ngn corresponding rooted objects. Now
the probability that a random vertex (in the unrooted model) has degree k
is precisely the same as the probability that the root vertex (in the rooted
model) has degree k. Thus, if we are only interested in the degree distribution
it is sufficient to look at the degree of the root. In what follows we will make
use of both points of view. We will start by looking at the degree of the root
(which is actually easier) and then we will have a closer look at the random

variable X
(k)
n . As a matter of fact these random variables (usually) obey a

central limit theorem with mean and variance asymptotically proportional to
n. Of course, this is a much more precise statement than just the existence of
a degree distribution.

Before we start with the calculations we make some general remarks on the
methods we use. Again, they are based on generating functions. Let Ck(x) be
the exponential generating function of a certain class4 of rooted vertex labelled
connected graphs, where the root bears no label and has degree k; that is, the
coefficient [xn/n!]Ck(x) equals the number of rooted connected graphs with
n+ 1 vertices, in which the root has no label and has degree k. Analogously
we define Bk(x) for 2-connected graphs. Also, let

B•(x,w) =
∑

Bk(x)wk , C•(x,w) =
∑

Ck(x)wk .

Suppose that we have the relation

4 In this context we can confine ourselves to outerplanar graphs, series-parallel
graphs or planar graphs.
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C′(x) = eB
′(xC′(x))

between the generating function for 2-connected and connected graphs (which
is certainly true for outerplanar graphs, series-parallel graphs or planar
graphs). If we introduce the degree of the root, then the equation becomes

C•(x,w) = eB
•(xC′(x),w). (9.50)

The reason is that only the 2-connected components containing the root vertex
contribute to its degree.

Our goal in each case is to estimate [xn]Ck(x), since the limit probability
that a given fixed vertex has degree k is equal to

dk = lim
n→∞

[xn]Ck(x)

[xn]C′(x)
. (9.51)

Another observation is that the asymptotic degree distribution is the same
for connected members of a class than for all members in the class. Let G(x)
be the generating function for all members of the class, and let Gk(x) be the
generating function of all rooted graphs of the class, where the root has degree
k. Then we have

G(x) = eC(x), Gk(x) = Ck(x)eC(x).

The first equation is standard, and in the second equation the factor Ck(x)
corresponds to the connected component containing the root, and the second
factor to the remaining components. The functions G(x) and C(x) have the
same dominant singularity. Given the singular expansions of G(x) and C(x)
at the dominant singularity in each of the considered cases, it follows that

lim
n→∞

[xn]Gk(x)

[xn]G′(x)
= lim

n→∞
[xn]Ck(x)

[xn]C′(x)
.

Hence, in each case we only need to determine the degree distribution for
connected graphs. A more intuitive explanation is that the largest component
in random planar graphs eats up almost everything. It is a fact that the
expected number of vertices not in the largest component is constant [149].

As in the counting procedure of outerplanar graphs we discuss first dissec-
tions and can then derive the results for 2-connected outerplanar graphs and
finally for connected graphs.

Recall that the generating function for dissections is given by

A(x) =
1− 3x−

√
1− 6x+ x2

4x
, (9.52)

and let Ak(x) denote the generating function, where the root vertex (the
first vertex of the rooted edge) has degree k and where the root vertices are
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not counted by x. Then by using the recursive structure of dissections we
immediately get

A2(x) = x(A(x) + 1) + (x(A(x) + 1))2 + (x(A(x) + 1))3 + · · ·

=
x(A(x) + 1)

1− x(A(x) + 1)

= x(2A(x) + 1).

Furthermore, we have inductively

Ak+1(x) = Ak(x)x(A(x) + 1) +Ak(x)(x(A(x) + 1))2 +Ak(x)(x(A(x) + 1))3 + · · ·
= Ak(x)x(2A(x) + 1).

Consequently we obtain for k ≥ 2

Ak(x) = (x(2A(x) + 1))k−1.

Due to the general relation between dissections and 2-connected outerplanar
graphs we have

Bk(x) =
x

2
Ak(x), k ≥ 2, B1 = x.

By summing a geometric series we have an explicit expression for B•, namely

B•(x,w) = xw +
∞∑

k=2

xk

2
(2A(x) + 1)k−1wk

= xw +
xw2

2

x(2A(x) + 1)

1− x(2A(x) + 1)w
. (9.53)

Theorem 9.15. For every k ≥ 2 the limiting probability dk that a vertex of a
two-connected outerplanar graph has degree k exists and we have

p(w) =
∑
k≥2

dkw
k =

2(3− 2
√

2)w2

(1 − (
√

2− 1)w)2
=
∑
k≥2

2(k − 1)(
√

2− 1)kwk.

Moreover p(1) = 1, so that the dk are indeed a probability distribution.

Remark 9.16 The degree distribution of dissections is precisely the same as
of outerplanar graphs (compare also with [13]).

Proof. Since B•(x, 1) = B′(x) and A(x) = 2(B′(x) − x)/x, we can represent
B•(x,w) as

B•(x,w) = xw +
xw2

2

4B′(x)− 3x

1− (4B′(x) − 3x)w
.

Hence, by applying Lemma 2.26 with f(x) = B′(x) and
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H(x, z) = xw +
xw2

2

4z − 3x

1− (4z − 3x)w

we obtain

p(w) = lim
n→∞

[xn]B•(x,w)

[xn]B′(x)
=

2(3− 2
√

2)w2

(1− (
√

2− 1)w)2
.

Note that ρ = 3 − 2
√

2 and that w is considered as an additional (complex)
parameter.

Theorem 9.17. Let dk be the limit probability that a vertex of a connected
outerplanar graph has degree k. Then

p(w) =
∑
k≥1

dkw
k = ρ · ∂

∂x
eB

•(x,w)
∣∣
x=ρC′(ρ) ,

where B• is given by equations (9.52) and (9.53).
Moreover p(1) = 1, so that the dk are indeed a probability distribution and

we have asymptotically, as k →∞

dk ∼ c1k1/4ec2

√
kqk,

where c1 = 0.667187..., c2 = 0.947130..., and q = 0.3808138....

Proof. We have ∑
k

Ck(x)wk = C•(x,w) = eB
•(xC′(x),w).

The radius of convergence 3−2
√

2 ofB(x) is larger than ρC ′(ρ) = τ ≈ 0.17076.
Hence we can apply Lemma 2.26 f(x) = xC ′(x) and H(x,w, z) = xeB

•(z,w),
where w is considered as a parameter. Then we have[

∂

∂x
eB

•(x,w)

]
x=ρC′(ρ)

= lim
n→∞

[xn]C•(x,w)

[xn]xC′(x)

= lim
n→∞

∑
k≥1

ρ−1 [xn]Ck(x)

[xn]C′(x)
wk

= ρ−1
∑
k≥1

dkw
k,

and the result follows.
For the second assertion let us note that B•(x, 1) = B′(x). If we recall

that ρC ′(ρ) = v0 and v0B
′′(v0) = 1, then

p(1) = ρ eB
′(v0)B′′(v0) = ρC ′(ρ)v−1

0 = 1.

In order to get an asymptotic expansion for dk we have to compute p(w)
explicitly:
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p(w) = ρ
v20(2A(v0) + 1)(2A+ 1 + 2v0A

′(v0))w2

2(1− v0(2A(v0) + 1)w)2

× exp

(
v0w +

v20(2A(v0) + 1)w2

2(1− v0(2A(v0) + 1)w)

)
.

This is a function that is admissible in the sense of Hayman [99]. Hence, it
follows that

dk ∼
p(rk)r−k

k√
2πb(rk)

,

where rk is given by the equation rkp
′(rk)/p(rk) = k and b(w) = w2p′′(w)/p(w)

+wp′(w)/p(w)−(wp′(w)/p(w))2. A standard calculation gives the asymptotic
expansion for the coefficients dk.

9.3.2 Vertices of Given Degree in Dissections

In Section 9.3.1 we have demonstrated that the limiting probabilities dk of
the probabilities that a random vertex has degree k exist. Equivalently this

says that the number X
(k)
n of vertices of degree d (in a random graph of size

n) satisfies
EX(k)

n ∼ dkn.

The purpose of this (and the following) sections is to obtain more precise in-

formation on X
(k)
n . In fact, we show that X

(k)
n satisfies a central limit theorem

which implies that X
(k)
n is concentrated around its mean.

Theorem 9.18. For k ≥ 2, let X
(k)
n denote the number of vertices of degree

k in random dissection with n+ 2 vertices. Then X
(k)
n satisfies a central limit

theorem with linear expected value and variance.

Actually we already know that the expected value is asymptotically given by

EX(k)
n = 2(k − 1)(

√
2− 1)k n+O(1),

since the degree distribution of dissections is the same as that of 2-connected
outerplanar graphs.

Before we start with the proof of Theorem 9.18 we reprove the relation
(9.4)

A(x) = x(1 +A(x))2 + x(1 +A(x))A(x)

by using a different recursive construction (see Figure 9.12) that provides this

relation and will be useful for the analysis of X
(k)
n .

As in the proof of Theorem 9.1 we observe that every dissection α has
a unique face f that contains the root edge. Suppose first that f contains
exactly three vertices, that is, f is a triangle, and denote the three edges of
f by e = (v1, v2), the root edge, and by e1 = (v2, v3) and e2 = (v3, v1). (We
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+

+
+ α

= +
1

1
1α

α
α

α

Fig. 9.12. Recursive decomposition of dissections

always label the vertices in counterclockwise order.) We can then decompose
α into three parts. We cut α at the three vertices v1, v2, v3 of f and get first
the root edge e, then a part α1 of α that contains e1, and finally a third part
α2 that contains e2. Obviously α1 and α2 are again connected planar graphs,
where e1 and e2 can be viewed as rooted edges. Since all vertices of α are
on the infinite face, the same holds for α1 and α2, however, α1 and α2 might
consist just of e1 or e2. Thus, α1 and α2 are either just one (rooted) edge or
again a dissection. By counting the number of vertices in the way described
above this case corresponds to the generating function x(1 +A(x))2.

If f contains more than three edges then we first cut f into two pieces
f1 and f2, where f1 consists of the root edge e = (v1, v2), the adjacent edge
e1 = (v2, v3), and a new edge enew = (v3, v1). We again cut α at the vertices
v1, v2, v3 and get, first, the root edge e, then a part α1 of α that contains e1
and a third part α̃2 that contains the new edge enew. As above α1 is either
e1 or is a dissection rooted at e1. Since f has more than three edges, α̃2 has
at least three vertices. Hence, we can consider α̃2 as a dissection rooted at
enew. Similarly to the above, this case corresponds to the generating function
x(1 +A(x))A(x).

The method of the proof of Theorem 9.18 is to provide a system of func-
tional equations for proper generating functions from which we can read

off the central limit theorem for X
(k)
n . For this purpose we need an exten-

sion of the above generating function counting procedure, using variables
x, z1, z2, . . . , zk, z∞, where the variable z�, 1 ≤ � ≤ k, marks vertices of degree
�, and z∞ marks vertices of degree greater than k. Furthermore, we consider
the degrees i, j of the vertices v1 and v2 of the root edge e = (v1, v2). More
precisely, if

ai,j;n,n1,n2,...,nk,n∞

is the number of dissections with 2 + n = 2 + n1 + n2 + · · · + nk + n∞ ≥ 3
vertices such that the two vertices v1, v2 of the marked edge e = (v1, v2) have
degrees d(v1) = i and d(v2) = j, and that for 1 ≤ � ≤ k there are n� vertices
v = v1, v2 with d(v) = �, and there are n∞ vertices v = v1, v2 with d(v) > k.
The corresponding generating functions are then defined by

Ai,j(x, z1, z2, . . . , zk, z∞) =
∑

n,n1,...,nk,n∞

ai,j;n,n1,n2,...,nk,n∞x
nzn1

1 · · · znk

k z
n∞
∞ .

(9.54)
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Similarly we define Ai,∞, A∞,j and A∞,∞, if one (or both) of the vertices of
the root edge have degree(s) greater than k.

Note that z1 is not necessary, since there are no vertices of degree one
in dissections. However, we use z1 for later purposes. Further observe that
Aij(z1, z2, . . . , zk, z∞) = Aji(z1, z2, . . . , zk, z∞). Thus, it is sufficient to con-
sider Aij for i ≤ j.

In order to state the following lemma in a more compact form we use the
convention that ∞ means > k, and ∞− 1 means > k − 1. In particular we
set �+∞ = ∞ for all positive integers �.

Lemma 9.19. The generating functions Aij = Aji = Aij(x, z1, z2, . . . , zk, z∞),
i, j ∈ {2, 3, . . . , k,∞} satisfy the following strongly connected positive system
of equations:

Aij = x
∑

�1+�2≤k

z�1+�2Ai−1,�1Aj−1,�2 + xz∞

( ∑
�1+�2>k

Ai−1,�1Aj−1,�2

)

+ x
∑

�1+�2≤k+1

z�1+�2−1Ai−1,�1Aj,�2 + xz∞

( ∑
�1+�2>k+1

Ai−1,�1Aj,�2

)
.

One has to be cautious in writing down the equations explicitly. For ex-
ample we have

Ai,∞ = x
∑

�1+�2≤k

z�1+�2Ai−1,�1(Ak,�2 + A∞,�2)

+ xz∞

( ∑
�1+�2>k

Ai−1,�1(Ak,�2 +A∞,�2)

)
+ x

∑
�1+�2≤k+1

z�1+�2−1Ai−1,�1A∞,�2

+ xz∞

( ∑
�1+�2>k+1

Ai−1,�1A∞,�2

)
.

As an illustration, for k = 3 we have the following system:

A22 = xz2

+ xz2A22 + xz3A23 + xz∞A2∞,

A23 = xz3A22 + xz∞(A23 +A2∞)

= xz2A23 + xz3A33 + xz∞A3∞,

A2∞ = xz3A23 + xz∞(A33 +A3∞) + xz∞(A2∞ +A3∞ +A∞,∞)

+ xz2A2∞ + xz3A3∞ + xz∞A∞,∞,
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A33 = xz∞(A22 +A23 +A2∞)2

+ xz∞(A22 +A23 +A2∞)(A23 +A33 +A3∞),

A3∞ = xz∞(A23 +A33 +A3∞)(A2∞ +A3∞ +A∞,∞)

+ xz∞(A22 +A23 +A2∞)(A2∞ +A3∞ +A∞,∞),

A∞,∞ = xz∞(A23 +A33 +A3∞ +A2∞ +A3∞ +A∞,∞)2

+ xz∞(A23 +A33 +A3∞ +A2∞ +A3∞ +A∞,∞)

× (A2∞ +A3∞ +A∞,∞).

Proof. The idea is to have a more detailed look at the (second version of the)
recursive structure of A as described above (see Figure 9.12).

We only discuss the recurrence for Aij for finite i, j. If i = ∞ or j = ∞
similar considerations apply. The root edge will be denoted by e = (v1, v2). We
assume that v1 has degree j and v2 has degree i. Again we have to distinguish
between the case where the face f containing the root edge e has exactly three
edges, and the case where it has more than three edges.

In the first case we cut a dissection α at the three vertices v1, v2, v3 of f
and get the root edge e, and two dissections α1 and α2 that are rooted at
e1 = (v2, v3) and e2 = (v3, v1). After the cut, α1 has degree i−1 at v2, and α2

has degree j−1 at v1. Furthermore, the total degree of the common vertex v3
is just the sum of the degrees coming from α1 and α2. Hence, if the degree of
v3 is smaller or equal than k, then this situation corresponds to the generating
function

x
∑

�1+�2≤k

z�1+�2Ai−1,�1Aj−1,�2 .

Since all possible cases for α1 are encoded in Ai−1 = Ai−1,2 + · · ·+Ai−1,k +
Ai−1,∞, and all cases for α2 are encoded in Aj−1, it follows that all situations
where the total degree of v3 is greater than k are given by the generating
function

xz∞

( ∑
�1+�2>k

Ai−1,�1Aj−1,�2

)
.

Similarly we argue in the case where f contains more than three edges.
After cutting f into two pieces f1 and f2 with a new edge enew = (v3, v1),
and cutting α at the vertices v1, v2, v3, we get again the root edge e and two
dissections α1 and α2 that are rooted at e1 = (v2, v3), and at the new edge
enew = (v3, v1). After the cut, α1 has degree i− 1 at v2 and α2 has degree j
at v1, since the new edge enew has to be taken into account. The total degree
of the common vertex v3 is the sum of the degrees coming from α1 and α2

minus 1, since the new edge enew is used in the construction of α2. As above
these observations translate into the generating functions

x
∑

�1+�2≤k+1

z�1+�2−1Ai−1,�1Aj,�2
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and

xz∞

( ∑
�1+�2>k+1

Ai−1,�1Aj,�2

)
.

Finally, by using the definition of Ai,j and A∞, it follows that the above
system of equations is a positive one, that is, all coefficients on the right hand
side are non-negative. Further, it is easy to check that the corresponding
dependency graph is strongly connected (which means that no subsystem can
be solved before the whole system is solved).

The proof of Theorem 9.18 is now a direct application of the analytic
central limit theorem related to systems of generating functions formulated
in Theorem 2.35. For this purpose we have to check that the assumptions are
satisfied. Note, that if we set all variables z1 = · · · = zk = z∞ = 1 and sum all
function Ai,j then they sum up to A(x) which has a square root singularity at
ρ = 3− 2

√
2. Thus, we can proceed as in the proof of Theorem 3.18 to show

that the assumptions of Theorem 2.35 are satisfied.
In particular the function

Ad=k(x, u) =
∑

2≤i≤∞
Ai,i(x, 1, . . . , 1, u, 1) + 2

∑
2≤i<j≤∞

Ai,j(x, 1, . . . , 1, u, 1)

is the bivariate generating function for dissections with n+ 2 vertices, where
the exponent of u counts the number of vertices different from the root vertex
that has degree k. Of course, it is also possible to take the root vertex into
account by considering the function

Ãd=k(x, u) = x2
∑

2≤i≤∞,i�=k

Ai,i(x, 1, . . . , 1, u, 1) + x2u2Ak,k(x, 1, . . . , 1, u, 1)

+ 2x2
∑

2≤i<j≤∞,i�=k,j �=k

Ai,i(x, 1, . . . , 1, u, 1)

+ 2x2u
∑

2≤i≤∞,i�=k

Ai,k(x, 1, . . . , 1, u, 1).

For both versions we can apply Theorem 2.35 and obtain a central limit the-
orem for the number of vertices of degree k.

9.3.3 Vertices of Given Degree in 2-Connected Outerplanar

Graphs

We consider now vertex labelled 2-connected outerplanar graphs. The result
we obtain is exactly the same as for dissections.

Theorem 9.20. For k ≥ 2, let X
(k)
n denote the number of vertices of degree k

in a random 2-connected outerplanar graph with n vertices. Then X
(k)
n satisfies

a central limit theorem with linear expected value and variance.
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Recall that we already know that the expected value is asymptotically given
by

EX(k)
n = 2(k − 1)(

√
2− 1)k n+O(1).

For the proof we have to adapt the corresponding generating functions.
Note that the generating function

B′(x) =
∑
n≥2

bn
xn−1

(n− 1)!
=
∑
n≥1

bn+1
xn

n!

can also be interpreted as the exponential generating function B•(x) of 2-
connected outerplanar graphs, where one vertex is marked and is not counted.

Next we set

B•j (x, z1, z2, . . . , zk, z∞) =
∑

n,n1,...,nk,n∞

b•j;n,n1,...,nk,n∞
xnzn1

1 · · · znk

k z
n∞∞

n!
,

where b•j;n,n1,...,nk,n∞ is the number of 2-connected outerplanar graphs with
1+n = 1+n1 + · · ·+nk +n∞ vertices, where one vertex of degree j is marked
and the remaining n vertices are labelled by 1, 2, . . . , n and where n� vertices
have degree �, 1 ≤ � ≤ k, and n∞ vertices have degree greater than k.

Lemma 9.21. Let Aij = Aji = Aij(x, z1, z2, . . . , zk, z∞), i, j ∈ {1, 2, . . . , k,∞}
be defined by (9.54). Then the functions Bj = B•j (x, z1, z2, . . . , zk, z∞),
j ∈ {1, 2, . . . , k,∞}, are given by

B•1 = xz1,

B•j =
1

2

k∑
i=1

xziAij +
1

2
xz∞Aj∞,

B•∞ =
1

2

k∑
i=1

xziAj∞ +
1

2
xz∞A∞,∞.

Proof. The proof is immediate by using the relation between dissections and
outerplanar graphs. However, we have to take care of the vertex degrees.

Now let

Bd=k(x, u) =
∑
n,ν

b(k)
n,ν

xn

n!
uν

denote the exponential generating function of the numbers b
(k)
n,ν of 2-connected

outerplanar labelled graphs with n vertices, where ν vertices have degree k.
Then we have

∂Bd=k(x, u)

∂x
=

k−1∑
j=1

B•j (x, 1, . . . , 1, u, 1) + uB•k(x, 1, . . . , 1, u, 1) (9.55)

+B•∞(x, 1, . . . , 1, u, 1).
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Since B(0, u) = 0, this equation completely determines Bd=k(x, u).
As in the case of dissections all assumptions of Theorem 2.35 are satisfied.

In particular we get a singular representation of the form

∂Bd=k(x, u)

∂x
= g(x, u)− h(x, u)

√
1− x

ρ(u)

and consequently a corresponding singular representation for Bd=k(x, u):

Bd=k(x, u) = g(x, u) + h(x, u)

(
1− x

ρ(u)

) 3
2

.

Of course, this also implies a central limit theorem for X
(k)
n .

9.3.4 Vertices of Given Degree in Connected Outerplanar Graphs

The next theorem concerns connected outerplanar graphs. Since the result
(even at the level of expectation and variance) is the same for all outerplanar
graphs, we include this case, too.

Theorem 9.22. For k ≥ 2, let X
(k)
n denote the number of vertices of degree

k in random connected (or a general) outerplanar graph with n vertices. Then

X
(k)
n satisfies a central limit theorem with linear expected value and variance.

The proof uses a refined version of the general relation between rooted
2-connected graphs and rooted connected graphs which states in terms of
generating functions as

C•(x) = eB
•(xC•(x)). (9.56)

For this purpose we introduce the generating functions

C•j (x, z1, z2, . . . , zk, z∞) =
∑

n,n1,...,nk,n∞

c•j;n;n1,...,nk,n∞z
n1
1 · · · znk

k z
n∞
∞
xn

n!
,

j ∈ {1, 2, . . . , k,∞}, where c•j;n;n1,...,nk,n∞ is the number of connected outer-
planar graphs with 1 + n = 1 + n1 + · · ·+ nk + n∞ vertices, where one vertex
of degree j is marked5 and the remaining n vertices are labelled by 1, 2, . . . , n
and where n� of these n vertices have degree �, 1 ≤ � ≤ k, and n∞ of these
vertices have degree greater than k. For convenience, we also define

C•0 (x, z1, z2, . . . , zk, z∞) = 1,

which corresponds to the case of a graph with a single rooted vertex.
The main observation is that these functions satisfy a system of functional

equations, a refined version of (9.56).

5 If j = ∞ this has to be interpreted as a vertex of degree > k.
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Lemma 9.23. Let Wj = Wj(z1, . . . , zk, z∞, C•1 , . . . , C
•
k , C

•
∞), j ∈ {1, 2, . . . , k,

∞} be defined by

Wj =

k−j∑
i=0

zi+jC
•
i (x, z1, . . . , zk, z∞)

+ z∞

⎛⎝ k∑
i=k−j+1

C•i (x, z1, . . . , zk, z∞) + C•∞(x, z1, . . . , zk, z∞)

⎞⎠ ,
(1 ≤ j ≤ k),

W∞ = z∞

(
k∑

i=0

C•i (x, z1, . . . , zk, z∞) + C•∞(x, z1, . . . , zk, z∞)

)
.

Then the functions C•1 , . . . , C
•
k , C

•
∞ satisfy the system of equations

C•j (x, z1, . . . , zk, z∞) =
∑

�1+2�2+3�3+···j�j=j

j∏
r=1

B•r (x,W1, . . . ,Wk,W∞)�r

�r!

(1 ≤ j ≤ k),

C•∞(x, z1, . . . , zk, z∞) = exp

(
k∑

j=1

B•j (x,W1, . . . ,Wk,W∞)

+B•∞(x,W1, . . . ,Wk,W∞)

)
− 1

−
∑

1≤�1+2�2+3�3+···k�k≤k

k∏
r=1

B•r (x,W1, . . . ,Wk,W∞)�r

�r!
.

Proof. As already indicated, the proof is a refined version of the proof of
(9.56), which reflects the decomposition of a rooted connected graph into a
finite set of rooted 2-connected graphs, where every vertex (different from the
root) is substituted by a rooted connected graph. The functions Wj serve the
purpose of marking (recursively) the degree of the vertices in the 2-connected
blocks which are substituted by other graphs. If we look at the definition of
Wj , the summation means that we are substituting a vertex of degree i, but
since originally the vertex had degree j, we are creating a new vertex of degree
i+ j, which is marked accordingly by zi+j . The same remark applies to W∞.

Finally let

Cd=k(x, u) =
∑
n,ν

c(k)
n,ν

xn

n!
uν

denote the exponential generating function for the numbers c
(k)
n,� of connected

outerplanar vertex labelled graphs with n vertices, where ν vertices have de-
gree k. Then we have



408 9 Planar Graphs

∂Cd=k(x, u)

∂x
=

k−1∑
j=1

C•j (x, 1, . . . , 1, u, 1) + uC•k(x, 1, . . . , 1, u, 1) (9.57)

+ C•∞(x, 1, . . . , 1, u, 1).

Since C(0, u) = 0, this equation completely determines Cd=k(x, u).

Thus, the derivative ∂Cd=k(x,u)
∂x is a linear combination of functions C•j (x, z1,

. . . , zk, z∞) that satisfy a positive and strongly connected system of equations.
Note that the system of equations given in Lemma 9.23 uses the functions
B•j (x, z1, . . . , zk, z∞), that have a square-root singularity if the zj are suffi-
ciently close to 1; recall that B′(x) and B•j (x, 1, . . . , 1) have a square-root

singularity at ρ1 = 3 − 2
√

2. In order to apply Theorem 2.35 we have to
check that the critical point of the system (9.57) does not interfere with the
square-root singularity of B•j .

We already know that the radius of convergence of C ′(x) is given by ρ2 =
0.1366 · · · which satisfies ρ2C

′(ρ2) < ρ1 so that the singularity of B′(x) does
not interfere with the singularity of C ′(x); recall that xC ′(x) = xeB

′(xC′(x)).
We are again in a situation, where we can apply Theorem 2.35 (we can

argue in the same way as in the proof of Theorem 3.18 or Theorem 9.18). In
particular we get a singular representation of the form

∂Cd=k(x, u)

∂x
= g(x, u)− h(x, u)

√
1− x

ρ2(u)

and consequently a corresponding singular representation for Cd=k(x, u):

Cd=k(x, u) = g(x, u) + h(x, u)

(
1− x

ρ2(u)

) 3
2

(9.58)

which implies a central limit theorem for X
(k)
n .

Finally, we obtain a corresponding representation for the generating func-
tion of Gd=k(x, u) for all outerplanar graphs of the form

Gd=k(x, u) = eCd=k(x,u) = g̃(x, u) + h̃(x, u)

(
1− x

ρ2(u)

)3/2

(9.59)

and a central limit theorem in this case, too.

9.4 Series-Parallel Graphs

9.4.1 The Degree Distribution of Series-Parallel Graphs

In this section C(x) and B(x) denote the generating functions of connected
and 2-connected, respectively, series-parallel graphs.
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In order to study 2-connected series-parallel graphs, we need to consider
series-parallel networks. We recall that a network is a graph with two distin-
guished vertices, called poles, such that the multi-graph obtained by adding an
edge between the two poles is 2-connected. Let D(x, y, w) be the exponential
generating function of series-parallel networks, where x, y, w mark, respec-
tively, vertices, edges, and the degree of the first pole. We define S(x, y, w)
analogously for series networks. Then we have

D(x, y, w) = (1 + yw)eS(x,y,w) − 1, (9.60)

S(x, y, w) = (D(x, y, w)− S(x, y, w)) xD(x, y, 1). (9.61)

The first equation reflects the fact that a network is a parallel composition
of series networks, and the second one the fact that a series network is ob-
tained by connecting a non-series network with an arbitrary network; the
factor D(x, y, 1) appears because we only keep track of the degree of the first
pole.

Remark 9.24 It would not be necessary to take into account the number of
edges and we could set y = 1 everywhere. However, in the case of planar
graphs we do need generating functions according to all three variables and it
is appropriate to present the full development already here. In the proof of the
main result of this section, Theorem 9.29, we just set y = 1.

We also set E(x, y) = D(x, y, 1) that is the generating function for series-
parallel networks without marking the degree of the root. Then from (9.60)–
(9.61) we obtain the equations

log

(
1 +E(x, y)

1 + y

)
=

xE(x, y)2

1 + xE(x, y)
(9.62)

and

log

(
1 +D(x, y, w)

1 + yw

)
=
xE(x, y)D(x, y, w)

1 + xE(x, y)
. (9.63)

Let now B•k(x, y) be the generating function for 2-connected series-parallel
graphs, where the root bears no label and has degree k, and where y marks
edges. Then we have the following relation.

Lemma 9.25.

w
∂B•(x, y, w)

∂w
=
∑
k≥1

kB•k(x, y)wk = xyweS(x,y,w).

Proof. The sum counts rooted 2-connected graphs with a distinguished edge
incident to the root. By definition this is precisely the set of networks contain-
ing an edge between the poles. The degree of the root in a 2-connected graph
corresponds to the degree of the first pole in the corresponding network, hence
the equation follows.
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From the previous equation it follows that

B•(x, y, w) = xy

∫ w

0

eS(x,y,s)ds. (9.64)

From an analytic point of view it would be sufficient to work with this equa-
tion. However, if we are interested in more or less explicit formulas for the
degree distribution we have to remove the integral and to express B• in terms
of D. Recall that E(x, y) = D(x, y, 1).

Lemma 9.26. The generating function of rooted 2-connected series-parallel
graphs is equal to

B•(x, y, w) = x

(
D(x, y, w)− xE(x, y)

1 + xE(x, y)
D(x, y, w)

(
1 +

D(x, y, w)

2

))
.

Proof. We start by using (9.60) to obtain∫
eSdw =

∫
1 +D

1 + yw
dw = y−1 log(1 + yw) +

∫
D

1 + yw
dw.

Now we integrate by parts and derive at∫
D

1 + yw
dw = y−1 log(1 + yw)D −

∫
y−1 log(1 + yw)

∂D

∂w
dw.

For the last integral we change variables t = D(x, y, w) and use the fact that
log(1 + yw) = log(1 + t)− xEt/(1 + xE). Consequently we obtain∫

log(1 + yw)
∂D

∂w
dw =

∫ D

0

log(1 + t) dt− xE

1 + xE

∫ D

0

t dt.

Now everything can be integrated in closed form and, after a simple manipu-
lation, we obtain the result as claimed.

Next we analyse the singular structure of the above generating functions.
We start with E(x, y) = D(x, y, 1) and D(x, y, w).

Lemma 9.27. For |w| ≤ 1 and for fixed y (sufficiently close to 1) the dom-
inant singularity of the functions E(x, y), D(x, y, w), and B•(x, y, w) (con-
sidered as functions in x) is given by x = R(y), where R(y) is an analytic
function in y with R = R(1) ≈ 0.1280038. Furthermore, we have the following
local expansion:

E(x, y) = E0(y) +E1(y)X +E2(y)X2 + · · · ,
D(x, y, w) = D0(y, w) +D1(y, w)X +D2(y, w)X2 + · · · ,
B•(x, y, w) = B0(y, w) +B1(y, w)X +B2(y, w)X2 + · · · ,
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where X =
√

1− x/R(y).
The functions R(y), Ej(y), Dj(y, w), and Bj(y, w) are analytic in y and

w and satisfy the relations

E0(y)3

E0(y)− 1
=

(
log

1 +E0(y)

1 +R(y)
−E0(y)

)2

,

R(y) =

√
1− 1/E0(y)− 1

E0(y)
,

E1(y) = −
(

2R(y)E0(y)2(1 +R(y)E0(y))2

(2R(y)E0(y) +R(y)2E0(y)2)2 + 2R(y)(1 +R(y)E0(y))

)1/2

,

D0(y, w) = (1 + yw) exp

(
R(y)E0(y)

1 +R(y)E0(y)
D0(y, w)

)
− 1,

D1(y, w) = − D0(y, w)E1(y)R(y)(D0(y, w) + 1)

(R(y)E0(y)D0(y, w)− 1)(1 +R(y)E0(y))
,

B0(y, w) = −R(y)D0(y, w)(R(y)E0(y)D0(y, w)− 2)

2(1 +R(y)E0(y))
,

B1(y, w) =
E1(y)R(y)2D0(y, w)2

2(1 +R(y)E0(y))2
.

Proof. Since E(x, y) satisfies Equation (9.62), it follows that the dominant
singularity of the mapping x �→ E(x, y) is of square-root type and there is
an expansion of the form E(x, y) = E0(y) + E1(y)X + E2(y)X2 + · · · (with
X =
√

1− x/R(y)), where R(y) and Ej(y) are analytic in y. Furthermore, if
we set

Φ(x, y, z) = (1 + y) exp

(
xz2

1 + xz

)
− 1

then R(y) and E0(y) satisfy the two equations

Φ(R(y), y, E0(y)) = E0(y) and Φz(R(y), y, E0(y)) = 0

and E1(y) is then given by

E1(y) = −
(

2R(y)Φx(R(y), y, E0(y))

Φzz(R(y), y, E0(y))

)1/2

(compare with Theorem 2.19).
Next notice that for |w| ≤ 1 the radius of convergence of the function

x �→ D(x, y, w) is surely ≥ |R(y)|. However, D(x, y, w) satisfies Equation
(9.63), which implies that the dominant singularity of E(x, y) leads to that
of D(x, y, w). Thus, the mapping x �→ D(x, y, w) has dominant singularity
R(y) and it also follows that D(x, y, w) has a singular expansion of the form
D(x, y, w) = D0(y, w)+D1(y, w)X+D2(y, w)X2+· · · . Hence, by Lemma 9.25
we also get an expansion for B•(x, y, w) of that form.

Finally the relations forD0, D1 andB0, B1 follow by comparing coefficients
in the corresponding expansions.
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Now we are able to characterise the degree distribution for 2-connected
series parallel graphs.

Theorem 9.28. Let dk be the limit probability that a vertex of a 2-connected
series-parallel graph has degree k. Then

p(w) =
∑
k≥1

dkw
k =

B1(1, w)

B1(1, 1)
.

Obviously, p(1) = 1, so that the dk are indeed a probability distribution.
We have asymptotically, as k →∞,

dk ∼ c · k−3/2qk,

where c ≈ 3.7340799 is a computable constant and

q =
(

(1 + 1/(R(1)E0(1))) e−1/(1+R(1)E0(1)) − 1
)−1

≈ 0.7620402.

Proof. First observe that

p(w) = lim
n→∞

[xn]B•(x, 1, w)

[xn]B•(x, 1, 1)
.

However, from the local expansion of B•(x, 1, w) that is given in Lemma 9.27
(and by the fact that B•(x, 1, w) can be analytically continued to a Δ-region)
it follows that

[xn]B•(x, 1, w) = −B1(1, w)

2
√
π

n−3/2R(1)−n

(
1 +O

(
1

n

))
.

Hence, p(w) = B1(w)/B1(1).
Next observe that Lemma 9.27 provides B1(1, w) only for |w| ≤ 1. How-

ever, it is easy to continue B1(1, w) analytically to a larger region and it is
also possible to determine the dominant singularity of B1(1, w), from which we
deduce an asymptotic relation for the coefficients of p(w) = B1(1, w)/B1(1, 1).

For this purpose first observe from Lemma 9.27 that D0(y, w) satisfies a
functional equation which provides an analytic continuation of the mapping
w �→ D0(y, w) to a region including the unit disc. Furthermore, it follows that
there exists a dominant singularity w0(y) and a local expansion of the form

D0(y, w) = D00(y) +D01(y)W +D02(y)W 2 + · · · ,

where W =
√

1− w/w0(y). Besides, if we set

Ψ(y, w, z) = (1 + yw) exp

(
R(y)E0(y)

1 +R(y)E0(y)
z

)
− 1

then w0(y) and D00(y) satisfy the equations
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Ψ(y, w0(y), D00(y)) = D00(y) and Ψz(y, w0(y), D00(y)) = 0.

Hence

D00(y) =
1

R(y)E0(y)

and

w0(y) =
1

y

(
1 +

1

R(y)E0(y)

)
exp

(
− 1

1 +R(y)E0(y)

)
− 1

y
.

Finally, with the help of Lemma 9.27 it also follows that this local repre-
sentation of D0(y, w) provides similar local representations for D1, B0, and
B1:

D1(y, w) = D1,−1(y)W−1 +D10(y) +D11(y)W + · · · ,
B0(y, w) = B00(y) +B02(y)W 2 + B03(y)W 3 + · · · ,
B1(y, w) = B10(y) +B11(y)W +B12(y)W 2 + · · · ,

where W =
√

1− w/w0(y) is as above. Hence, since all functions of interest
(D0, D1, B0, B1) can be analytically continued to a Δ-region, the asymptotic
relation for dk follows immediately. Since w0(1) is the dominant singularity,
we have q = 1/w0(1).

The next theorem provides the degree distribution in connected (and all)
series-parallel graphs.

Theorem 9.29. For every k ≥ 1 the limiting probability dk that a vertex of
a connected (or general) labelled series-parallel graph has degree k exists and
we have

p(w) =
∑
k≥1

dkw
k = ρ · ∂

∂x
eB

•(x,1,w)
∣∣
x=ρC′(ρ) ,

where B• is given by Lemma 9.26 and equations (9.62) and (9.63).
Moreover p(1) = 1, so that the dk are indeed a probability distribution. We

have asymptotically, as k →∞,

dk ∼ c · k−3/2qk,

where c ≈ 3.5952391 is a computable constant and

q =
(

(1 + 1/(ρC ′(ρ)E(ρC ′(ρ), 1))) e−1/τE(ρC′(ρ),1) − 1
)−1

≈ 0.7504161.

Proof. The proof of the first statement is exactly the same as for Theorem
9.17. Again, we know that ρC ′(ρ) = τ ≈ 0.127 is larger than the radius of
convergence ρ ≈ 0.110 of C(x), so that Lemma 2.26 applies. The proof that
p(1) = 1 is also the same.

Recall that τ < R(1). Hence the dominant singularity x = R(1) of the
mapping x �→ B•(x, 1, w) will have no influence to the analysis of p(w). Nev-
ertheless, since
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∂

∂x
eB

•(x,1,w) = eB
•(x,1,w) ∂B

•(x, 1, w)

∂x
,

we have to get some information onD(x, 1, w) and its derivative ∂D(x, 1, w)/∂x
with x = τ .

Let us start with the analysis of the mapping w �→ D(τ, 1, w). Since
D(x, y, w) satisfies Equation (9.63), it follows that D(τ, 1, w) satisfies

D(τ, 1, w) = (1 + w) exp

(
τE(τ, 1)D(τ, 1, w)

1 + τE(τ, 1)

)
− 1.

Hence there exists a dominant singularity w1 and a singular expansion of the
form

D(τ, 1, w) = D̃0 + D̃1W̃ + D̃2W̃
2 + · · · ,

where W̃ =
√

1− w/w1. Furthermore, if we set

Ξ(w, z) = (1 + w) exp

(
τE(τ, 1)z

1 + τE(τ, 1)

)
− 1

then w1 and D̃0 satisfy the equations

Ξ(w1, D̃0) = D̃0 and Ξz(w1, D̃0) = 0.

Consequently,

D̃0 =
1

τE(τ, 1)
and w1 =

(
1 +

1

τE(τ, 1)

)
exp

(
− 1

1 + τE(τ, 1)

)
− 1.

Next, by taking derivatives with respect to x in (9.63), we obtain the
relation

∂D(x, 1, w)

∂x
=

(1 +D(x, 1, w))D(x, 1, w)(E(x, 1) + xEx(x, 1)

(xE(x, 1)D(x, 1, w) − 1)(1 + xE(x, 1))
.

Thus if we set x = τ and insert the singular representation of D(τ, 1, w) it

follows that ∂D(x,1,w)
∂x |x=τ has a corresponding singular representation, too.

By Lemma 9.26 we get the same property for ∂B•(x,1,w)
∂x |x=τ and finally for

ρ · ∂
∂x
eB

•(x,1,w) |x=τ = C̃0 + C̃1W̃ + C̃2W̃
2 + · · · .

This implies the asymptotic relation for dk with q = 1/w1.

In this case, we obtain an expression for p(w) in terms of the functions
E(x, 1) and D(x, 1, w) and their derivatives. The derivatives can be computed
using Equations (9.62) and (9.63) as in the previous proof.
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9.4.2 Vertices of Given Degree in Series-Parallel Networks

Our next purpose is to study the distribution of the number of vertices of
given degree in a random series-parallel network. Recall that the generating
function D(x, y) and S(x, y) for all series-parallel networks and series-parallel
networks that have a series decomposition satisfy the system of equations
(9.13)–(9.14):

D(x, y) = (1 + y)eS(x,y) − 1, (9.65)

S(x, y) = (D(x, y)− S(x, y))xD(x, y). (9.66)

In particular, it follows that D(x, y) satisfies the equation

log

(
1 +D(x, y)

1 + y

)
=

xD(x, y)2

1 + xD(x, y)
. (9.67)

We recall that the first equation (9.65) expresses the fact that a series-parallel
network is a parallel composition of series networks (this is the exponential
term), to which we may add or not the edge connecting the two poles. The
second equation (9.66) means that a series network is formed by taking first
a non-series network (this is the term D − S), and concatenating to it an
arbitrary network. Since two of the poles are identified, a new internal vertex
is created, hence the factor x.

As in the case of outer-planar graphs we will extend these relations to
generating functions where we take into account the vertex degrees. We fix
some k ≥ 2 and define by

di,j;m,n;n1,n2,...,nk,n∞

the number of series-parallel networks with 2 + n = 2 + n1 + n2 + · · · +
nk + n∞ ≥ 3 vertices and m edges such that the poles have degrees i and
j ∈ {1, 2, . . . , k,∞}6 and that for 1 ≤ � ≤ k there are exactly n� internal
vertices of degree �, and there are n∞ internal vertices with degree > k. The
corresponding generating functions are then defined by

Di,j(x, y, z1, z2, . . . , zk, z∞) (9.68)

=
∑

m,n,n1,...,nk,n∞

di,j;m,n;n1,n2,...,nk,n∞y
mx

nzn1
1 · · · znk

k z
n∞∞

n!
.

Similarly we define

Si,j(x, y, z1, z2, . . . , zk, z∞) (9.69)

=
∑

m,n,n1,...,nk,n∞

si,j;m,n;n1,n2,...,nk,n∞y
mx

nzn1
1 · · · znk

k z
n∞∞

n!

6 Again infinite degree means degree greater than k.
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where we count series-parallel networks that have a series decomposition into
at least two series-parallel networks.

The next lemma provides a system of equations for Di,j and Si,j . Again,
in order to state the results in a more compact form we use the convention
that ∞ means > k and ∞− 1 means > k− 1, in particular we set �+∞ = ∞
for all positive integers �.

Lemma 9.30. The generating functions Dij = Di,j(x, y, z1, z2, . . . , zk, z∞)
and Sij = Si,j(x, y, z1, z2, . . . , zk, z∞), i, j ∈ {1, . . . , k,∞}, satisfy the fol-
lowing system of equations:

Di,j =
∑
r≥1

∑
i1+···+ir=i

∑
j1+···+jr=j

1

r!

r∏
�=1

Si�,j�
(9.70)

+ y
∑
r≥1

∑
i1+···+ir=i−1

∑
j1+···+jr=j−1

1

r!

r∏
�=1

Si�,j�

Si,j = x
∑

�1+�2≤k

(Di,�1 − Si,�1)z�1+�2D�2,j + xz∞
∑

�1+�2>k

(Di,�1 − Si,�1)D�2,j .

(9.71)

Proof. This is a refinement of the counting procedure that leads to the sys-
tem (9.65) and (9.66). The first equation means that a series-parallel network
with degrees i and j at the poles is obtained by parallel composition of series
networks whose degrees at the left and right pole sum up to i and j, respec-
tively; one has to distinguish according to whether the edge between the poles
is added or not.

The second equation reflects the series composition. In this case only the
degrees of the right pole in the first network and of the left pole in the second
network have to be added.

Remark 9.31 The system provided in Lemma 9.30 is not a positive system
since the equation for Si,j contains negative terms. However, we can replace
the term Di,�1 by the right hand side of (9.70). Further, note that Si,�1 appears
in this sum so that we really achieve a positive system.

Finally, it is easy to see that this (new) system is strongly connected.

9.4.3 Vertices of Given Degree in 2-Connected Series-Parallel

Graphs

The next theorem concerns 2-connected series-parallel graphs.

Theorem 9.32. For k ≥ 2, let X
(k)
n denote the number of vertices of degree

k in a random 2-connected labelled series-parallel graph with n vertices. Then

X
(k)
n satisfies a central limit theorem with linear expected value and variance.
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Let bn,m be the number of 2-connected vertex labelled series-parallel
graphs with n vertices and m edges and let

B(x, y) =
∑
n,m

bn,m
xn

n!
ym

be the corresponding exponential generating function. By the definition of
series-parallel networks we have

∂B(x, y)

∂y
=
x2

2
eS(x,y). (9.72)

Note that 2 ∂B(x,y)
∂y can be interpreted as the generating function of 2-

connected series-parallel graphs with a rooted and directed edge. We now
also take into account the degrees of the vertices. In particular let Bi,j =
Bi,j(x, y, z1, . . . , zk, z∞), i, j ∈ {2, . . . , k,∞}, denote the exponential generat-
ing function of 2-connected series-parallel graphs with a directed rooted edge,
where the two root vertices have degrees i and j.7 The directed root edge
connects the root vertex of degree i with the other root vertex of degree j.

Furthermore, let Bi = Bi(x, y, z1, . . . , zk, z∞), i ∈ {2, . . . , k,∞}, be the
generating function of 2-connected series-parallel graphs where we just root
at one vertex that has degree i (and where no edge is rooted). Finally, let B =
B(x, y, z1, . . . , zk, z∞) be the generating function of all 2-connected series-
parallel graphs.

The next lemma quantifies the relation between series-parallel networks
and 2-connected series-parallel graphs. As above we use the convention that
∞ means > k and ∞− 1 means ≥ k − 1, in particular we set �+∞ = ∞ for
all positive integers �.

Lemma 9.33. We have

Bi,j = x2zizjy
∑
r≥1

∑
i1+···+ir=i−1

∑
j1+···+jr=j−1

1

r!

r∏
�=1

Si�,j�
,

Bi =
1

i

k∑
j=2

Bi,j +
1

i
Bi,∞ (i ∈ {2, . . . , k})

B∞ = x
∂B

∂x
−

k∑
i=2

Bi

2y
∂B

∂y
=
∑

i,j∈{2,...,k,∞}
Bi,j ,

x
∂B

∂x
=
∑

i∈{2,...,k,∞}
Bi.

7 As above we interpret ∞ as > k.
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Proof. The first equation is essentially a refinement of the relation (9.72).
It means that 2-connected series-parallel graphs are formed by taking paral-
lel compositions of series-parallel networks and adding the edge between the
poles. The sum of the degrees of the poles in the networks must be one less
than the degree of the resulting vertex in the series-parallel graph.

The second equation reflects the fact that a series-parallel graph rooted at
a vertex of degree i comes from a series-parallel graph rooted at an edge whose
first vertex has degree i, but then each of them has been counted i times. The
remaining equations are clear if we recall that x∂B/∂x corresponds to graphs
rooted at a vertex and y∂B/∂y corresponds to graphs rooted at an edge (in
this last case the factor 2 appears because in the definition of Bi,j the root
edge is directed).

Let

Bd=k(x, u) =
∑
n,ν

b(k)
n,ν

xn

n!
uν

denote the exponential generating function for the numbers b
(k)
n,ν that count the

number of 2-connected vertex labelled series-parallel graphs with n vertices,
where ν vertices have degree k. Then we have

Bd=k(x, u) = B(x, 1, 1, . . . , 1, u, 1).

We are now ready to prove Theorem 9.32. We first observe that the func-
tion Dij and Sij satisfy a positive and strongly connected system of equations
(Lemma 9.30), so that by Theorem 2.19 all these functions have a common
square-root singularity of the kind

g(x, y, z1, . . . , zk, z∞)− h(x, y, z1, . . . , zk, z∞)

√
1− x

ρ(y, z1, . . . , zk, z∞)
.

(9.73)
Hence, by Lemma 2.26 the same is true for all functions Bij and conse-

quently for

2y
∂B

∂y
=
∑

i,j∈{2,...,k,∞}
Bij .

From Theorem 2.30 it follows that B has a singularity of the kind

g(x, y, z1, . . . , zk, z∞) + h(x, y, z1, . . . , zk, z∞)

(
1− x

ρ(z1, . . . , zk, z∞)

)3/2

.

(9.74)
As a consequence, by applying Theorem 2.25 we derive Theorem 9.32 for the
2-connected case.

Note that B1, . . . Bk also have a square-root singularity of the kind (9.73),
since they can be expressed with the help of the function Bij . Interestingly,
B∞ has the same kind of singularity. This follows from the formula
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B∞ = x
∂B

∂x
−

k∑
i=1

Bi,

since ∂B
∂x also has a square-root singularity of the kind (9.73).

9.4.4 Vertices of Given Degree in Connected Series-Parallel

Graphs

Finally we also have a central limit theorem for the number of vertices of given
degree in connected (and all) series-parallel graphs.

Theorem 9.34. For k ≥ 2, let X
(k)
n denote the number of vertices of degree

k in a random connected (or general) labelled series-parallel graph with n

vertices. Then X
(k)
n satisfies a central limit theorem with linear expected value

and variance.

For the proof we introduce the generating function

Cj(x, y, z1, z2, . . . , zk, z∞)

=
∑

m,n,n1,...,nk,n∞

cj;m,n;n1,...,nk,n∞ y
m xnzn1

1 · · · znk

k z
n∞∞

n!
,

j ∈ {1, 2, . . . , k,∞}, where cj;m,n,n1,...,nk,n∞ is the number of labelled series
parallel graphs with n = n1 + · · ·+ nk + n∞ vertices and m edges, where one
vertex of degree j is marked and where n� of these n vertices have degree �,
1 ≤ � ≤ k, and n∞ of these vertices have degree greater than k. Further set

B•j (x, y, z1, z2, . . . , zk, z∞) =
1

xzj
Bj(x, y, z1, z2, . . . , zk, z∞)

and

C•j (x, y, z1, z2, . . . , zk, z∞) =
1

xzj
Cj(x, y, z1, z2, . . . , zk, z∞).

Then B•j and C•j have the same interpretation as in the case of outerplanar
graphs. Hence we get the same relations as stated in Lemma 9.23. The only
difference is that we also take the number of edges into account, that is, we
have an additional variable y.

Lemma 9.35. Let Wj = Wj(z1, . . . , zk, z∞, C•1 , . . . , C
•
k , C

•
∞), j ∈ {1, 2, . . . , k,

∞}, be defined by

Wj =

k−j∑
i=0

zi+jC
•
i (x, y, z1, . . . , zk, z∞)

+ z∞

⎛⎝ k∑
i=k−j+1

C•i (x, y, z1, . . . , zk, z∞) + C•∞(x, y, z1, . . . , zk, z∞)

⎞⎠ ,
(1 ≤ j ≤ k),
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W∞ = z∞

(
k∑

i=0

C•i (x, y, z1, . . . , zk, z∞) + C•∞(x, y, z1, . . . , zk, z∞)

)
.

Then the functions C•1 , . . . , C
•
k , C

•
∞ satisfy the system of equations

C•j (x, y, z1, . . . ,zk, z∞)

=
∑

�1+2�2+3�3+···+j�j=j

j∏
r=1

B•r (x, y,W1, . . . ,Wk,W∞)�r

�r!

(1 ≤ j ≤ k),

C•∞(x, y, z1, . . . ,zk, z∞) = exp

(
k∑

j=1

B•j (x, y,W1, . . . ,Wk,W∞)

+B•∞(x, y,W1, . . . ,Wk,W∞)

)
− 1

−
∑

1≤�1+2�2+3�3+···+k�k≤k

k∏
r=1

B•r (x, y,W1, . . . ,Wk,W∞)�r

�r!
.

Consequently the generating function Cd=k(x, u) (of the numbers c
(k)
n,ν that

count the number of connected vertex labelled series-parallel graphs with n
vertices, where ν vertices have degree k) is given by

∂Cd=k(x, u)

∂x
=

k−1∑
j=1

C•j (x, 1, 1, . . . , 1, u, 1) + uC•k(x, 1, 1, . . . , 1, u, 1)

+ C•∞(x, 1, 1, . . . , 1, u, 1)

and the generation function Gd=k(x, u) for all series-parallel graphs by

Gd=k(x, u) = eCd=k(x,u).

The proof of Theorem 9.34 is exactly the same as in the outerplanar case.
The essential point is to observe that the singularity of B•i does not interfere
with the singularity of C•j . Thus, we can safely apply Theorem 2.35.

As in the outerplanar case it follows that Cd=k(x, u) has a singularity of
the kind (9.58). Hence, the same follows for Gd=k(x, u) and, thus, we can
apply Theorem 2.25.

9.5 All Planar Graphs

The goal of this section is to characterise the degree distribution of labelled
planar graphs. For this purpose we have to find the generating function of
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3-connected planar graphs according to the degree of the root. We will also
discuss the distribution of the number of vertices of degree k = 1 and k = 2.
The case k ≥ 3 cannot be covered with the present methodology since the
counting procedure for 3-connected planar graphs that is used here cannot be
extended in order to take care of all vertices of given degree.

From now on (and for the rest of Chapter 9) all generating functions are
associated to planar graphs.

9.5.1 The Degree of a Rooted Vertex

We will now repeat (more or less) the counting procedure for labelled planar
graphs, where we also take care of the degree of a rooted vertex.

Theorem 9.36. Let b•n,m,k denote the number of vertex-rooted 2-connected la-
belled planar graphs with n vertices, m edges and root-degree k, and c•n,m,k and
g•n,m,k the corresponding numbers for connected and all vertex-rooted planar
graphs. Then the corresponding generating functions

B•(x, y, w) =
∑

n,m,k

b•n,m,k

xn

n!
ym zk,

C•(x, y, w) =
∑

n,m,k

c•n,m,k

xn

n!
ym zk,

G•(x, y, w) =
∑

n,m,k

g•n,m,k

xn

n!
ym zk

are determined by the following system of equations:

G•(x, y, w) = exp (C(x, y, 1))C•(x, y, w), (9.75)

C•(x, y, w) = exp (B• (xC•(x, y, 1), y, w)) , (9.76)

∂B•(x, y, w)

∂w
= xy

1 +D(x, y, w)

1 + yw
(9.77)

1

x2D(x, y, w)
T •
(
x,D(x, y, 1),

D(x, y, w)

D(x, y, 1)

)
= log

(
1 +D(x, y, w)

1 + yw

)
− xD(x, y, w)D(x, y, 1)

1 + xD(x, y, 1)
, (9.78)

T •(x, y, w) =
x2y2w2

2

(
1

1 + wy
+

1

1 + xy
− 1− (9.79)

−
(U + 1)2

(
−w1(U, V, w) + (U − w + 1)

√
w2(U, V, w)

)
2w(V w + U2 + 2U + 1)(1 + U + V )3

⎞⎠ ,
U(x, y) = xy(1 + V (x, y))2, V (x, y) = y(1 + U(x, y))2 (9.80)

with polynomials w1 = w1(U, V, w) and w2 = w2(U, V, w) given by
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w1 = −UV w2 + w(1 + 4V + 3UV 2 + 5V 2 + U2 + 2U + 2V 3 + 3U2V + 7UV )

+ (U + 1)2(U + 2V + 1 + V 2),

w2 = U2V 2w2 − 2wUV (2U2V + 6UV + 2V 3 + 3UV 2 + 5V 2 + U2 + 2U

+ 4V + 1) + (U + 1)2(U + 2V + 1 + V 2)2.

Remark 9.37 Observe that the above system looks very similar to the sys-
tem of Theorem 9.12. However, the third equation (9.77) contains a partial
derivative with respect to w instead of a partial derivative with respect y.

Proof. The first two equations (9.75) and (9.76) follow the general principles
between 2-connected, connected and all graphs. The remaining equations con-
cern 3-connected planar graphs and the relation between 2- and 3-connected
ones.

Let T •(x, z, w) denote the generating function of edge rooted 3-connected
planar graphs, where the rooted edge is directed, and where (the exponent of)
x counts vertices, z counts edges, and w counts the degree of the tail of the
root edge. Now we relate T • to the generating function Q(X,Y,W ) of simple
quadrangulations that were defined in (9.23). By the bijection between simple
quadrangulations and 3-connected planar maps, and using Euler’s relation,
the generating function xwQ(xz, z, w) counts rooted 3-connected planar maps,
where z marks edges (we have added an extra term w to correct the ‘minus
one’ in the definition of Q).

By Whitney’s theorem 3-connected planar graphs have a unique embed-
ding on the sphere. There are two ways of rooting an embedding of a directed
edge-rooted graph in order to get a rooted map, since there are two ways of
choosing the root face adjacent to the root edge. Thus, we have

T •(x, z, w) =
xw

2
Q(xz, z, w) (9.81)

and consequently

T •(x, y, w) =
x2y2w2

2

(
1

1 + wy
+

1

1 + xy
− 1− (9.82)

−
(U + 1)2

(
−w1(U, V, w) + (U − w + 1)

√
w2(U, V, w)

)
2w(V w + U2 + 2U + 1)(1 + U + V )3

⎞⎠ .
We only have to combine equation (9.81), together with (9.31), (9.32), and
(9.35).

Next we denote by D(x, y, w) and S(x, y, w), respectively, the generating
functions of (planar) networks and series networks, with the same meaning
for the variables x, y and w (as in Section 9.4.1). Here we obtain

1

x2D(x, y, w)
T •
(
x,E(x, y),

D(x, y, w)

E(x, y)

)
= log

(
1 +D(x, y, w)

1 + yw

)
− S(x, y, w)

(9.83)
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and
S(x, y, w) = xE(x, y) (D(x, y, w) − S(x, y, w)) , (9.84)

where E(x, y) = D(x, y, 1) is the generating function for planar networks
(without marking the degree of the root). Of course, these two equations
simplify to (9.78). The relations (9.83)–(9.84) follow from a slight extension
of the proof of the equations (9.43)–(9.47), taking into account the degree of
the first pole in a network. The main point is the substitution of variables
in T •: An edge is substituted by an ordinary planar network (this accounts
for the term E(x, y)), except if it is incident with the first pole, in which
case it is substituted by a planar network marking the degree, hence the term
D(x, y, w) (it is divided by E(x, y) in order to avoid over-counting of ordinary
edges).

As in Lemma 9.25, and for the same reason, we have

w
∂B•(x, y, w)

∂w
=
∑
k≥1

kB•k(x, y)wk

= xyw exp

(
S(x, y, w)

+
1

x2D(x, y, w)
T •
(
x,E(x, y),

D(x, y, w)

E(x, y)

))

= xyw
1 +D(x, y, w)

1 + yw
.

This proves (9.77) and completes the proof of Theorem 9.36.

In principal, the above relations are sufficient for the proof of the existence
of a degree distribution. However, if we want to obtain it explicitly we have
to get rid of some partial derivatives.

Lemma 9.38. The generating function of rooted 2-connected planar graphs is
equal to

B•(x, y, w) = x

(
D − xED

1 + xE

(
1 +

D

2

))
− 1 +D

xD
T •(x,E,D/E) (9.85)

+
1

x

∫ D

0

T •(x,E, t/E)

t
dt,

where D = D(x, y, w) and E = E(x, y) and∫ w

0

T •(x, z, t)

t
dt = −x

2(z3xw2 − 2wz − 2xz2w + (2 + 2xz) log(1 + wz))

4(1 + xz)
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− UV x

2(1 + U + V )3

(
w(2U3 + (6V + 6)U2 + (6V 2 − V w + 14V + 6)U)

4V (V + 1)2

+
4V 3 + 10V 2 + 8V + 2

4V (V + 1)2
+

(1 + U)(1 + U + 2V + V 2)

4UV 2(V + 1)2

× (2U3 + (4V + 5)U2 + (3V 2 + 8V + 4)U + 2V 3 + 5V 2 + 4V + 1)

−
√
Q(2U3 + (4V + 5)U2 + (3V 2 − V w + 8V + 4)U + 5V 2 + 2V 3 + 4V + 1)

4UV 2(V + 1)2

+
(1 + U)2(1 + U + V )3 log(Q1)

2V 2(1 + V )2

+
(U3 + 2U2 + U − 2V 3 − 4V 2 − 2V )(1 + U + V )3 log(Q2)

2V 2(1 + V )2U

)
,

with expressions Q, Q1 and Q2 that are given by

Q = U2V 2w2 − 2UV w(U2(2V + 1) + U(3V 2 + 6V + 2) + 2V 3 + 5V 2

+ 4V + 1) + (1 + U)2(U + (V + 1)2)2,

Q1 =
1

2(wV + (U + 1)2)2(V + 1)(U2 + U(V + 2) + (V + 1)2)

×
(
−UV w(U2 + U(V + 2) + 2V 2 + 3V + 1) + (U + 1)(U + V + 1)

√
Q

+ (U + 1)2(2U2(V + 1) + U(V 2 + 3V + 2) + V 3 + 3V 2 + 3V + 1
)
,

Q2 =
−wUV + U2(2V − 1) + U(3V 2 + 6V + 2) + 2V 3 + 5V 2 + 4V + 1−√Q

2V (U2 + U(V + 2) + (V + 1)2)
.

Proof. We start as in the proof of Lemma 9.26.∫
1 +D

1 + yw
dw = y−1 log(1+yw)+y−1 log(1+yw)D−

∫
y−1 log(1+yw)

∂D

∂w
dw.

For the last integral we change variables t = D(x, y, w) and use the fact that

log(1 + yw) = log(1 +D)− xED

(1 + xE)
− 1

x2D
T •(x,E,D/E).

We obtain∫
log(1 + yw)

∂D

∂w
dw =

∫ D

0

log(1 + t) dt− xE

1 + xE

∫ D

0

t dt

+
1

x2

∫ D

0

T •(x,E, t/E)

t
dt.

On the right-hand side, all the integrals except the last one are elementary.
Now we use

B•(x, y, w) = xy

∫
1 +D

1 + yw
dw
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and after a simple manipulation (9.85) follows.
Next we use Equation (9.82) to integrate T •(x, z, w)/w. Notice that neither

U nor V have any dependence on w.
A key point in the previous derivation is, that, by expressing w(X,Y,W )

(see Equation (9.34)) in terms of R,S instead of X,Y (see Equation (9.35)),
we obtain a quadratic polynomial w2(R,S,W ) in terms ofW inside the square
root of T •(x, z, w) in Equation (9.82). Otherwise, we would have obtained a
cubic polynomial inside the square root, and the integration would have been
much harder.

With Lemma 9.38 we can produce an explicit (although quite long) expres-
sion for B•(x, y, w) in terms of D(x, y, w), E(x, y), and the algebraic functions
U(x, y), V (x, y). This is needed in the next section for computing the singular
expansion of B•(x, y, w) at its dominant singularity.

9.5.2 Singular Expansions

In this section we find singular expansions of T •(x, z, w), D(x, y, w) and
B•(x, y, w) at their dominant singularities. As we show here, these singu-
larities do not depend on w and were found in [9] and [91]. However the
coefficients of the singular expansions do depend on w, and our task is to
compute them exactly in each case.

What is needed in the next section is the singular expansion for B•, but
to compute it we first need the singular expansions of u, v, T • and D (for u
and v compare also with [11] and [9]).

Lemma 9.39. Let U = U(x, z) and V = V (x, z) be the solutions of the system
of equations U = xz(1 + V )2 and V = z(1 + U)2. Let r(z) be explicitly given
by

r(z) =
ũ0(z)

z(1 + z(1 + ũ0(z))2)2
, (9.86)

where

ũ0(z) = −1

3
+

√
4

9
+

1

3z
.

Furthermore, let τ(x) be the inverse function of r(z) and let u0(x) = ũ0(τ(x))
which is also the solution of the equation

x =
(1 + u)(3u− 1)3

16u
.

Then, for x sufficiently close to the positive real axis, the function U(x, z) and
V (x, z) have a dominant singularity at z = τ(x) and have local expansions of
the form

U(x, z) = u0(x) + u1(x)Z + u2(x)Z2 + u3(x)Z3 +O(Z4),

V (x, z) = v0(x) + v1(x)Z + v2(x)Z2 + v3(x)Z3 +O(Z4),
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where Z =
√

1− z/τ(x). The functions uj(x) and vj(x) are also analytic and
can be explicitly given in terms of u = u0(x). In particular we have

u0(x) = u v0(x) =
1 + u

3u− 1
,

u1(x) = −
√

2u(u+ 1) v1(x) = −2
√

2u(u+ 1

3u− 1
,

u2(x) =
(1 + u)(7u+ 1)

2(1 + 3u)
v2(x) =

2u(3 + 5u)

(3u− 1)(1 + 3u)
,

u3(x) = − (1 + u)(67u2 + 50u+ 11)u

4(1 + 3u)2
√

2u2 + 2u
v3(x) = −

√
2u(1 + u)(79u2 + 42u+ 7)

4(1 + 3u)2(3u− 1)
√
u(1 + u)

.

Similarly, for z sufficiently close to the real axis the functions U = U(x, z)
and V = V (x, z) have a dominant singularity x = r(z) and there is also a
local expansion of the form

U(x, z) = ũ0(z) + ũ1(z)X + ũ2(z)X2 + ũ3(z)X3 +O(X4),

V (x, z) = ṽ0(z) + ṽ1(z)X + ṽ2(z)X2 + ṽ3(z)X3 +O(X4),

where X =
√

1− x/r(z). The functions ũj(z) and ṽj(z) are analytic and can
be explicitly given in terms of ũ = ũ0(z). For example, we have

ũ0(z) = ũ ṽ0(z) =
1 + ũ

3ũ− 1

ũ1(z) = −2ũ
√

1 + ũ√
1 + 3ũ

ṽ1(z) = − 4ũ
√

1 + ũ

(3ũ− 1)
√

1 + 3ũ

ũ2(z) =
2(1 + ũ)ũ(2ũ+ 1)

(1 + 3ũ)2
ṽ2(z) =

4ũ(5ũ2 + 4ũ+ 1)

(3ũ− 1)(1 + 3ũ)2

ũ3(z) = −2ũ(10ũ3 + 11ũ2 + 5ũ+ 1)

(1 + 3ũ)7/2(1 + ũ)−1/2
ṽ3(z)− 4ũ(2ũ+ 1)(11ũ2 + 5ũ+ 1)

(3ũ− 1)(1 + 3ũ)7/2(1 + ũ)−1/2

Proof. Since U(x, z) satisfies the functional equation U = xz(1 + z(1 +U)2)2,
it follows that for any fixed real and positive z the function x �→ U(x, z) has
a square-root singularity at r(z) that satisfies the equations

Φ(r(z), z, u) = u and Φu(r(z), z, u) = 0,

where Φ(x, z, u) = xz(1 + z(1 + u)2)2. Now a short calculation gives the
explicit formula (9.86) for r(z). By continuity we obtain the same kind of
representation if z is complex but sufficiently close to the positive real axis.

We proceed in the same way if x is fixed and z is considered as the variable.
Then τ(x), the functional inverse of r(z), is the singularity of the mapping
z �→ U(x, z). Furthermore, the coefficients u1(x) etc. can be calculated. The
derivations for V (x, z) are completely of the same kind.
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Lemma 9.40. Suppose that x and w are sufficiently close to the positive real
axis and that |w| ≤ 1. Then the dominant singularity z = τ(x) of T •(x, z, w)
(that is given in Lemma 9.39) does not depend on w. The singular expansion
at τ(x) is

T •(x, z, w) = T0(x,w) + T2(x,w)Z2 + T3(x,w)Z3 +O(Z4), (9.87)

where Z =
√

1− z/τ(x), and the Ti are given in the appendix.

Proof. Suppose for a moment that all variables x, z, w are non-negative real
numbers and let us look at the expression (9.82) for T •. The algebraic func-
tions U(x, z) and V (x, z) are always non-negative and, since the factor w in
the denominator cancels with a corresponding factor in the numerator, the
only possible sources of singularities are: a) those coming from U and V , or
b) the vanishing of w2(u, v, w) inside the square root.

We can discard source b) as follows. For fixed u, v > 0, let w2(w) =
w2(u, v, w). We can check that

w2(1) = (1 + 2u+ u2 + 2v + v2 + uv − uv2)2,

w′2(w) = −2uv
(
(6− w)uv + 1 + 2u+ u2 + 4v + 5v2 + 2v3 + 3uv2 + 2u2v

)
.

In particular w2(1) > 0 and w′2(w) < 0 for w ∈ [0, 1]. Thus it follows that
w2(w) > 0 in w ∈ [0, 1]. Hence the singularities come from source a) and do
not depend on w.

Following Lemma 9.39 (see also [11] and [9]), we have that z = τ(x) is
the radius of convergence of U(x, z), as a function of z. Now by using the
expansions of U(x, z) and V (x, z) from Lemma 9.39 we obtain (9.87) and also
the explicit representations for Ti.

Finally, by continuity all properties are also valid if x and w are sufficiently
close to the real axis, thus completing the proof.

Similarly we get an alternate expansion expanding in the variable x.

Lemma 9.41. Suppose that z and w are sufficiently close to the positive real
axis and that |w| ≤ 1. Then the dominant singularity x = r(z) of T •(x, z, w)
does not depend on w. The singular expansion at r(z) is

T •(x, z, w) = T̃0(z, w) + T̃2(z, w)X2 + T̃3(z, w)X3 +O(X4), (9.88)

where X =
√

1− x/r(z). Furthermore we have

T̃0(z, w) = T0(r(z), w),

T̃2(z, w) = T2(r(z), w)H(r(z), z) − T0,x(r(z), x)r(z),

T̃3(z, w) = T3(r(z), w)H(r(z), z)3/2,

where H(x, z) is a non-zero analytic function with Z2 = H(x, z)X2.
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Proof. We could repeat the proof of Lemma 9.40. However, we present an al-
ternate approach that uses the results of Lemma 9.40 and a kind of singularity
transfer.

By applying the Weierstrass preparation theorem it follows that there is a
non-zero analytic function with Z2 = H(x, z)X2. Furthermore, by using the
representation x = r(z)(1 −X2) and Taylor expansion we have

H(x, z) = H(r(z), z)−Hx(r(z), z)r(z)X2 +O(X4),

Tj(x,w) = Tj(r(z), w) − Tj,x(r(z), w)r(z)X2 +O(X4).

Hence, Lemma (9.40) proves the result. In fact, H can be computed explicitly
and is equal to H(x, τ(x)) = (1 + 3u)/2u.

Lemma 9.42. Suppose that y and w are sufficiently close to the positive real
axis and that |w| ≤ 1. Then the dominant singularity x = R(y) of D(x, y, w)
does not depend on w. The singular expansion at R(y) is

D(x, y, w) = D0(y, w) +D2(y, w)X2 +D3(y, w)X3 +O(X4), (9.89)

where X =
√

1− x/R(y), and the Di are given by in the Appendix.

Proof. By (9.48) we already know that E(x, y) = D(x, y, 1) has a singular
expansion of the form

E(x, y) = E0(y) +E2(y)X2 +E3(y)X3 + O(X4). (9.90)

Next we rewrite (9.78) to

D(x, y, w) = (1 + yw) exp

(
xE(x, y)D(x, y, w)

1 + xE(x, y)
(9.91)

+
1

x2D(x, y, w)
T •
(
x,E(x, y),

D(x, y, w)

E(x, y)

))
− 1.

Now an application of Lemma 9.41 and Theorem 2.31 yields the result. Note
that the singularity does not depend on w.

Lemma 9.43. Suppose that y and w are sufficiently close to the positive real
axis and that |w| ≤ 1. Then the dominant singularity x = R(y) of B•(x, y, w)
does not depend on w, and is the same as for D(x, y, w). The singular expan-
sion at R(y) is

B•(x, y, w) = B0(y, w) +B2(y, w)X2 +B3(y, w)X3 +O(X4), (9.92)

where X =
√

1− x/R(y), and the Bi are given in the Appendix.

Proof. We just have to use the representation of B•(x, y, w) that is given in
Lemma 9.38 and the singular expansion of D(x, y, w) from Lemma 9.42.
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9.5.3 Degree Distribution for Planar Graphs

We start with the degree distribution in 3-connected graphs, both for edge-
rooted and vertex-rooted graphs.

Theorem 9.44. For every k ≥ 3 the limiting probability dk that a vertex of
a three-connected planar graph has degree k and the limiting probability ek

that the tail root vertex of an edge-rooted (where the edge is oriented) three-
connected planar graph has degree k exist. We have∑

k≥3

ekw
k =

T3(r, w)

T3(r, 1)
,

with T3(x,w) from above and r = r(1) = (7
√

7 − 17)/32 is explicitly given
by (9.86). Obviously the ek are indeed a probability distribution. We have
asymptotically, as k →∞,

ek ∼ c · k1/2qk,

where c ≈ 0.9313492 is a computable constant and q = 1/(u0 + 1) =
√

7 − 2,
and where u0 = u(r) = (

√
7− 1)/3.

Moreover, we have

dk = α
ek
k
∼ cα · k−1/2qk,

where

α =
(3u0 − 1)(3u0 + 1)(u0 + 1)

u0
=

√
7 + 7

2

is the asymptotic value of the expected average degree in 3-connected planar
graphs.

We remark that the degree distribution in 3-connected planar maps
counted according to the number of edges was obtained in [8]. The asymptotic
estimates have the same shape as our dk, but the corresponding value of q is
equal to 1/2.

Proof. First the proof uses the singular expansion (9.88). The representation∑
k≥3

ekw
k = T3(r, w)/T3(r, 1)

follows in completely the same way as the proof of Theorem 9.28, using now
Lemma 9.40, with the difference that now the dominant term is the coefficient
of Z3.

In order to characterise the dominant singularity of T3(1, w) and to de-
termine the singular behaviour we observe that the explicit representation
of T3 contains in the denominator a (dominating) singular term of the form
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(−w+U + 1)3/2. Hence, it follows that u0 + 1 is the dominant singularity and
we also get the proposed asymptotic relation for ek.

For the proof of the second part of the statement, let tn,k be the number
of vertex-rooted graphs with n vertices and with degree of the root equal to
k, and let sn,k be the analogous quantity for edge-rooted graphs. Let also
tn =
∑

k tn,k and sn =
∑

k sn,k. Since a vertex-rooted graph with a root
of degree k is counted k times as an oriented-edge-rooted graph, we have
sn,k = ktn,k (a similar argument is used in [137]). Notice that ek = lim sn,k/sn
and dk = lim tn,k/tn.

Using Theorem 2.22 it follows that the expected number of edges μn in
3-connected planar graphs is asymptotically μn ∼ κn, where κ = −τ ′(1)/τ(1),
and τ(x) is as in Lemma 9.39. Clearly sn = 2μntn/n.

Finally 2μn/n is asymptotic to the expected average degree α = 2κ. Sum-
ming up, we obtain

kdk = α ek.

A simple calculation gives the value of α as claimed.

Theorem 9.45. For every k ≥ 2 the limiting probability dk that a vertex of a
two-connected planar graph has degree k exists and we have

p(w) =
∑
k≥2

dkw
k =

B3(1, w)

B3(1, 1)
,

with B3(y, w) given in Lemma 9.43.
Obviously, p(1) = 1, so that the dk are indeed a probability distribution

and we have asymptotically, as k →∞,

dk ∼ ck−1/2qk,

where c ≈ 3.0826285 is a computable constant and

q =

(
1

1− t0
exp

(
(t0 − 1)(t0 + 6)

6t20 + 20t0 + 6

)
− 1

)−1

≈ 0.6734506,

and t0 = t(1) ≈ 0.6263717 is a computable constant given by the equation
(9.99).

Proof. The representation of p(w) follows from (9.92).
Now, in order to characterise the dominant singularity of B3(1, w) and to

determine the singular behaviour we first observe that the right hand side of
the equation for D0 contains a singular term of the form (D0(t−1)+t)3/2 that
dominates the right hand side. Hence, by applying Theorem 2.31 it follows
that D0(1, w) has the dominant singularity w3, where D0(1, w3) = t/(1 − t)
and we have a local singular representation of the form

D0(1, w) = D̃00 + D̃02W̃
2 + D̃03W̃

3 + · · · ,
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where W̃ =
√

1− w/w3 and D̃00 = t/(1− t). The fact that the coefficient of

W̃ vanishes is due to the shape of the equation (9.98) satisfied by D0(1, w).
We now insert this expansion into the representation for D2. Observe that

S has an expansion of the form

S = S2W̃
2 + S3W̃

3 + · · ·

with S2 = 0. Thus we have
√
S =

√
S2W̃+O(W̃ 2). Furthermore, we get expan-

sions for S2,1, S2,2, S2,3, and S2,4. However, we observe that S2,3(1, w3) = 0,
whereas S2,1(1, w3) = 0, S2,2(1, w3) = 0, and S2,4(1, w3) = 0. Consequently
we can represent D2(1, w) as

D2(1, w) = D̃2,−1
1

W̃
+ D̃2,0 + D̃2,1W̃ + +D̃22W̃

2 + · · · ,

where D̃1,−1 = 0.
In completely the same way it follows that D3(1, w) has a local expansion

of the form

D3(1, w) = D̃3,−3
1

W̃ 3
+ +̃D̃3,−1

1

W̃
+ D̃3,0 + D̃3,1W̃ + · · · ,

where D̃3,−3 = 0 and the coefficient of W̃−2 vanish identically.
These types of singular expansions lead to B3(1, w), and we get

B3(1, w) = B̃3,−1
1

W̃
+ B̃3,0 + B̃3,1W̃ + · · · , (9.93)

where B̃3,−1 = 0. The fact that the coefficients of W̃−3 and W̃−2 vanish
is a consequence of non trivial cancellations. Hence, we obtain the proposed
asymptotic relation for dk.

Theorem 9.46. For every k ≥ 1 the limiting probability dk that a vertex of a
connected planar graph has degree k exists and we have

p(w) =
∑
k≥1

dkw
k = −eB0(1,w)−B0(1,1)B2(1, w)

+ eB0(1,w)−B0(1,1) 1 +B2(1, 1)

B3(1, 1)
B3(1, w),

where Bj(y, w), j = 0, 2, 3 are given above.
Moreover, p(1) = 1, so that the dk is indeed a probability distribution and

we have asymptotically, as k →∞,

dk ∼ ck−1/2qk,

where c ≈ 3.0175067 is a computable constant and q is as in Theorem 9.45.
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Proof. The degree distribution is encoded in the function

C•(x,w) =
∑
k≥1

Ck(x, 1)wk = eB
•(xC′(x),1,w),

where the generating function xC ′(x) of connected rooted planar graphs sat-
isfies the equation

xC′(x) = xeB
•(xC′(x),1,1).

From Lemma 9.43 we get the local expansions

eB
•(x,1,w) = eB0(1,w)

(
1 +B2(1, w)X2 +B3(1, w)X3 +O(X4)

)
,

where X =
√

1− x/R. Thus, we first get an expansion for xC ′(x)

xC′(x) = R− R

1 +B2(1, 1)
X̃2 +

RB3(1, 1)

(1 +B2(1, 1))5/2
X̃3 +O(X̃4),

where X̃ =
√

1− x/ρ and ρ is the radius of convergence of C ′(x) (compare
with [91]). Note also that R = ρeB0(ρ,1). Thus, we can apply Lemma 2.32 with
H(x, z, w) = xeB

•(z,1,w) and f(x) = xC ′(x). We have

f0 = R, f2 = − R

1 +B2(1, 1)
, f3 =

RB3(1, 1)

(1 +B2(1, 1))5/2

and

h0(ρ, w) = ρeB0(1,w),

h2(ρ, w) = ρeB0(1,w)B2(1, w),

h3(ρ, w) = ρeB0(1,w)B3(1, w).

We can express the probability generating function p(w) as

lim
n→∞

[xn]xC•(x,w)

[xn]xC′(x)
.

Consequently, we have

p(w) = −h2(ρ, w)

f0
+
h3(ρ, w)

f3

(
−f2
f0

)3/2

= −eB0(1,w)−B0(1,1)B2(1, w)

+ eB0(1,w)−B0(1,1) 1 +B2(1, 1)

B3(1, 1)
B3(1, w).

The singular expansion for B2(1, w) turns out to be of the form

B2(1, w) = B̃2,0 + B̃2,1W̃ + · · · .
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Hence the expansion (9.93) for B3(1, w) gives the leading part in the asymp-
totic expansion for p(w). It follows that p(w) has the same dominant singu-
larity as for 2-connected graphs and we obtain the asymptotic estimate for
the dk as claimed, with a different multiplicative constant. This concludes the
proof of the main result.

9.5.4 Vertices of Degree 1 or 2 in Planar Graphs

In this final section we discuss vertices of degree ≤ 2 in planar graphs.

Theorem 9.47. For k ∈ {1, 2}, let X
(k)
n denote the number of vertices of

degree k in random planar graphs with n vertices. Then X
(k)
n satisfies a central

limit theorem with linear expected value and variance.

There are no vertices of degree 1 in 2-connected graphs. Hence, we can
apply the general relation between connected and 2-connected graphs and
obtain

∂Cd=1(x, u)

∂x
= exp

(
B′
(
x
∂Cd=1(x, u)

∂x
+ x(u − 1)

))
, (9.94)

where B(x) = B(x, 1) is the generating function of 2-connected planar graphs
and Cd=1(x, u) the counting function of vertices of degree 1 in connected
planar graphs. Hence, by an application of Theorem 2.31 it follows that we
have a local representation of the form

x
∂Cd=1(x, u)

∂x
= g(x, u) + h(x, u)

(
1− x

ρ(u)

) 3
2

,

which implies

Cd=1(x, u) = g2(x, u) + h2(x, u)

(
1− x

ρ(u)

) 5
2

and a corresponding singular representation for the generating function of all
graphs:

Gd=1(x, u) = eCd=1(x,u) = g3(x, u) + h3(x, u)

(
1− x

ρ(u)

) 5
2

.

Of course, by Theorem 2.25 a central limit theorem follows.

Remark 9.48 Due to the simplicity of the equation (9.94) we also find μ =
σ2 = ρ and, thus,

EX(1)
n = ρn+O(1) and VX (1)

n = ρn+O(1).
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Vertices of degree k = 2 are more difficult to handle. Our first goal
is to characterise the generating function B(x, y, z1, z2, z∞) of 2-connected
planar graphs where x marks vertices, y edges and zj vertices of degree j,
j ∈ {1, 2,∞}.

Our method is based on a result of Walsh [207] on 2-connected graphs
without vertices of degree two. The original result is stated for arbitrary la-
belled graphs, but it applies also to planar graphs; the reason is that a graph
is planar, if and only if it remains planar after removing the vertices of degree
2. Note that series-parallel networks and graphs appear here. In order to avoid
confusion, we write, for example, BSP(x, y) to denote the generating function
of 2-connected series-parallel graphs (described in Theorem 9.4).

Lemma 9.49. Let B(x, y) be the generating function for 2-connected pla-
nar graphs, and let H(x, y) be the generating function for 2-connected planar
graphs without vertices of degree 2, where x marks vertices and y marks edges.
Also, let DSP(x, y) be the generating function of series-parallel networks, and
BSP(x, y) the generating function of 2-connected series-parallel graphs. Then

H(x,DSP(x, y)) = B(x, y)−BSP(x, y). (9.95)

Proof. Given a 2-connected planar graph, we perform the following operation
repeatedly: we remove a vertex of degree two, if there is any, and we remove
parallel edges created, if any. In this way we get either a graph with minimum
degree three, or a single edge in case the graph was series-parallel. This gives

B(x, y) = H(x,DSP(x, y)) +BSP(x, y).

Corollary 9.50 The generating function H(x, y) is given by

H(x, y) = B(x, φ(x, y)) −BSP(x, φ(x, y)),

where

φ(x, y) = (1 + y) exp

( −xy2
1 + xy

)
− 1.

Proof. Since DSP(x, y) satisfies the equation (9.17), we can express y by

y = φ(x,DSP) = (1 +DSP) exp

( −xD2
SP

1 + xDSP

)
− 1

and obtain

H(x,DSP) = B(x, φ(x,DSP))−BSP(x, φ(x,DSP))

where we can now interpret DSP as an independent variable.

With help of theses preliminaries we can obtain an explicit expression for
B(x, y, z1, z2, z∞).
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Lemma 9.51. Let k = 2 and let BSP(x, y, z1, z2, z∞) be the generating func-
tion for 2-connected series parallel graphs and

DSP(x, y, z1, z2, z∞) =
∑

i,j∈{1,2,∞}
DSP ;ij(x, y, z1, z2, z∞)

the corresponding generating function of series-parallel networks (compare
with Lemma 9.30 and 9.33). Then we have

B(x, y, z1, z2, z∞) = BSP(x, y, z1, z2, z∞)+H(x,DSP(x, y, z1, z2, z∞)). (9.96)

Proof. We just add the counting of vertices of degrees one and two that come
from the series-parallel networks and from series-parallel graphs.

Set

B•j (x, y, z1, z2, z∞) =
1

x

∂B(x, y, z1, z2, z∞)

∂zj
(j ∈ {1, 2,∞}).

The division by x is necessary because in the definition of B• the root bears
no label.

Further, let C•j (x, y, z1, z2, z∞), j ∈ {1, 2,∞}, denote the corresponding
generating functions for connected planar graphs. Then we have (as in Lemma
9.23) the system of equations

C•1 = B•1(x, y,W1,W2,W∞),

C•2 =
1

2!
(B•1(x, y,W1,W2,W∞))2 +B•2(x, y,W1,W2,W∞),

C•∞ = eB
•
1 (x,y,W1,W2,W∞)+B•2 (x,y,W1,W2,W∞)+B•∞(x,y,W1,W2,W∞)

− 1−B•1 (x, y,W1,W2,W∞)−B•2 (x, y,W1,W2,W∞)

− 1

2!
(B•1(x, y,W1,W2,W∞))2,

where the Wj , j ∈ {1, 2,∞} are

W1 = z1 + z2C
•
1 + z∞(C•2 + C•∞),

W2 = z2 + z∞(C•1 + C•2 + C•∞),

W∞ = z∞(1 + C•1 + C•2 + C•∞).

From this system of equations we get a single equation for

C• = 1 + C•1 + C•2 + C•∞

if we set z1 = z∞ = 1, and y = 1.

Lemma 9.52. The function C•(x, y, 1, z2, 1) satisfies a functional equation of
the form

C• = F (x, y, z2, C
•).
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Proof. Since B•1 = xz1, the equation for C•1 is

C•1 = xW1 = x (1 + z2C
•
1 + C•2 + C•∞) = xC• + x(z2 − 1)C•1 ,

which gives

C•1 =
xC•

1− x(z2 − 1)
.

Consequently, we have

W1 = C• + (z2 − 1)C•1 =
C•

1− x(z2 − 1)
.

Since W2 = z2 − 1 + C• and W∞ = C•, we can sum the three equations for
C•1 , C

•
2 , C

•
∞ and obtain

C• = eB
•
1 (x,y,W1,W2,W∞)+B•2 (x,y,W1,W2,W∞)+B•∞(x,y,W1,W2,W∞)

which is now a single equation for C•.

Finally the generating function Cd=2(x, u) for connected planar graphs is
determined by

∂Cd=2(x, u)

∂x
= C•1 (x, 1, 1, u, 1) + uC•2 (x, 1, 1, u, 1) + C•∞(x, 1, 1, u, 1).

We recall that

B(x, y, z1, z2, z∞) = BSP(x, y, z1, z2, z∞) +H(x,DSP(x, y, z1, z2, z∞))

= B(x, φ(x,DSP(x, y, z1, z2, z∞)))

+BSP(x, y, z1, z2, z∞)−BSP(x, φ(x,DSP(x, y, z1, z2, z∞))).

We already know that B(x, y) has a singular expansion of the form

B(x, y) = B0(y) +B2(y)X2 +B4(y)X4 +B5(y)X5 +B6(y)X6 + · · · ,

where X =
√

1− x/R(y) and R(1) = 0.03819 . . . Alternatively this can be
rewritten as

B(x, y) = g(x, y) + h(x, y)

(
1− x

R(y)

) 5
2

.

Further note that BSP(x, y, z1, z2, z∞), BSP(x, y) = BSP(x, y, 1, . . . , 1), and
φ(x,DSP(x, y, z1, z2, z∞)) are analytic around x = R(1), y = 1 and zj = 1,
j ∈ {1, . . . , k,∞}. Hence, B(x, y, z1, z2, z∞) can be represented as

B(x, y, z1, z2, z∞) = g2(x, y, z1, z2, z∞) + (9.97)

h2(x, y, z1, z2, z∞)

(
1− x

R(y, z1, z2, z∞)

)5/2

,
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where g2, h2, and R are analytic functions with

g2(x, y, 1, 1, 1) = g(x, y),

h2(x, y, 1, 1, 1) = h(x, y),

R(y, 1, 1, 1) = R(y).

We can apply Theorem 2.25 with α = 5
2 and obtain the central limit theorem

in the 2-connected case.
From (9.97) it follows that B•j (x, y, z1, z2, z∞) has a singularity of the kind

(9.74). Hence, the function F (x, y, u) from Lemma 9.52 has also a singularity
of that kind. Note that F (x, y, 1) = eB

•(x,xy). Furthermore, for u = 1 it is
known that the singularity of C• interferes with the singularity of B•.

Hence all assumptions of Proposition 2.31 are satisfied and it follows that
C•(x, 1, 1, u, 1) has a singular expansion of the form (9.74). Of course, with
help of Theorem 2.25 we get a central limit theorem in the connected case.
Finally, since Gd=2(x, u) = eCd=2(x,u) the result follows for general planar
graphs, too.





Appendix

We collect explicit expressions of coefficients that appear in singular expansion
of generating functions in the formulations of Lemmas 9.40, 9.42 and 9.43.

We start with Tj(x,w) from Lemma 9.40. Here the abbreviation u = u(x)
stands for u(x, τ(x)), which is the solution of x = (1 + u)(3u− 1)3/(16u) (as
in Lemma 9.39).

T0(x,w) = − (w − u− 1)w(3u− 1)6
√
P

27648(2u− 1 + 3u2 + w)(1 + u)u4

− (3u− 1)6wP0

27648(9u+ 1)(2u− 1 + 3u2 + w)(1 + u)u4
,

T2(x,w) =
(3u− 1)6P2,0w

82944u5(2u− 1 + 3u2 + w)2(u+ 1)2(9u+ 1)2

− P2,1w(3u− 1)6

82944u5(2u− 1 + 3u2 + w)2(u+ 1)2
√
P
,

T3(x,w) = −
√

2u(1 + u)w(3u − 1)6((9u2 − 6u+ 1)w − 9u2 − 10u− 1)

373248u6(u+ 1)3

×(3u+ 1) +

√
2u(1 + u)w(3u − 1)6P3(3u+ 1)

373248u6(u + 1)3
√
P (−w + u+ 1)

and

P = (−w + u+ 1)((−9u2 + 6u− 1)w + 81u3 + 99u2 + 19u+ 1),

P0 = (27u2 + 6u+ 1)w2 + (−126u3 − 150u2 − 26u− 2)w

+ 81u4 + 180u3 + 118u2 + 20u+ 1

P2,0 = (1458u5 + 3807u4 + 900u3 + 114u2 − 6u− 1)w3

+ (6561u7 + 20898u6 + 8532u5 − 7281u4 − 1635u3 − 132u2 + 30u+ 3)w2
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+ (−3645u8 − 30942u7 − 46494u6− 13230u5 + 7536u4 + 1590u3 − 18u2

− 42u− 3)w + 13122u9 + 47385u8 + 61560u7 + 30708u6 − 228u5

− 4530u4 − 872u3 + 36u2 + 18u+ 1

P2,1 = (−54u4 − 45u3 + 57u2 − 15u+ 1)w4+

(−243u6 + 27u5 + 1278u4 + 858u3 − 111u2 + 35u− 4)w3+

(1944u7 + 6507u6 + 5553u5 − 576u4 − 1530u3 + 15u2 − 15u+ 6)w2

+ (−1215u8 − 6561u7 − 11439u6 − 7005u5 + 231u4 + 1229u3

+ 75u2 − 15u− 4)w + 1458u9 + 6561u8 + 11376u7 + 8988u6 + 2388u5

− 794u4 − 512u3 − 36u2 + 10u+ 1

P3 = (−27u3 + 27u2 − 9u+ 1)w3 + (162u4 + 135u3 − 27u2 − 3u− 3)w2

+ (81u5 + 243u4 + 270u3 + 138u2 + 33u+ 3)w

− 81u5 − 261u4 − 298u3 − 138u2 − 21u− 1.

Next we consider Dj(y, w) from Lemma 9.42:

1 +D0 = (1 + yw) exp

(√
S(D0(t− 1) + t)

4(3t+ 1)(D0 + 1)
− D2

0(t4 − 12t2 + 20t− 9)

4(t+ 3)(D0 + 1)(3t+ 1)

−D0(2t4 + 6t3 − 6t2 + 10t− 12) + t4 + 6t3 + 9t2

4(t+ 3)(D0 + 1)(3t+ 1)

)
, (9.98)

where S abbreviates

S = (D0t−D0 + t)(D0(t− 1)3 + t(t+ 3)2),

and t = t(y) stands for the unique solution in (0, 1) of

y =
(1− 2t)

(1 + 3t)(1− t) exp

(
− t

2(1 − t)(18 + 36t+ 5t2)

2(3 + t)(1 + 2t)(1 + 3t)2

)
− 1, (9.99)

by

D2 =
4(D0 + 1)2(t− 1)(S2,1 + S2,2

√
S)

(17t5 + 237t4 + 1155t3 + 2527t2 + 1808t+ 400)(S2,3 + S2,4

√
S)
,

where

S2,1 = −D2
0(t− 1)4(t+ 3)(11t5 + 102t4 + 411t3 + 588t2 + 352t+ 72)

−D0t(t− 1)(t+ 3)

× (22t7 + 231t6 + 1059t5 + 2277t4 + 2995t3 + 3272t2 + 2000t+ 432)

− t2(t+ 3)3(11t5 + 85t4 + 252t3 + 108t2 − 48t− 24)

S2,2 = D0(t− 1)(11t7 + 124t6 + 582t5 + 968t4 − 977t3 − 4828t2 − 4112t

− 984) + t(t+ 3)2(11t5 + 85t4 + 252t3 + 108t2 − 48t− 24)
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S2,3 = −(t+ 3)(D0t−D0 + t)(D2
0(t− 1)4 + 2D0(t− 1)(t3 − t2 + 5t− 1)

+ t(t3 − 3t− 14)

S2,4 = D2
0(t2 + 2t− 9)(t− 1)2 +D0(2t4 − 12t2 + 80t− 6) + t(t3 − 3t+ 50),

and by

D3 =
24(t+ 3)(D0 + 1)2(t− 1)t2(t+ 1)2S

3/2
3,1

(
S3,2 − S3,3(D0t−D0 + t)

√
S
)

(β)5/2(D0t−D0 + t)
(
S3,4

√
S − (t+ 3)(D0t−D0 + t)S3,5

) ,

where

β = 3t(1 + t)(17t5 + 237t4 + 1155t3 + 2527t2 + 1808t+ 400),

S3,1 = −5t5 + 6t4 + 135t3 + 664t2 + 592t+ 144,

S3,2 = D3
0(81t11 + 135t10 − 828t9 − 180t8 + 1982t7 + 1090t6 − 5196t5

+ 2108t4 + 2425t3 − 1617t2 − 256t+ 256),

+D2
0(243t11 + 1313t10 + 1681t9 − 51t8 − 5269t7 − 7325t6 + 2571t5

+ 10271t4 + 1846t3 − 3888t2 − 1392t)

+D0(243t11 + 2221t10 + 8135t9 + 15609t8 + 12953t7 − 3929t6 − 12627t5

− 13293t4 − 7680t3 − 1632t2)

+ 81t11 + 1043t10 + 5626t9 + 16806t8 + 30165t7 + 30663t6 + 13344t5

+ 1008t4 − 432t3,

S3,3 = D0(81t8 + 378t7 + 63t6−1044t5 + 1087t4−646t3−687t2 + 512t+ 256)

+ 81t8 + 800t7 + 3226t6 + 7128t5 + 8781t4 + 4320t3 + 384t2 − 144t,

S3,4 = D2
0(t4 − 12t2 + 20t− 9) +D0(2t4 − 12t2 + 80t− 6) + t4 − 3t2 + 50t

S3,5 = D2
0(t4 − 4t3 + 6t2 − 4t+ 1) +D0(2t4 − 4t3 + 12t2 − 12t+ 2)

+ t4 − 3t2 − 14t.

Finally the coefficients Bj(y, w) from Lemma 9.43 are given by the follow-
ing formulas:

B0 =
1

128t3

(
−8 log(2)(3t4 + 6t2 − 1)− 8 log(t+ 1)(3t− 1)(t+ 1)3

− 4 log(t)(3t− 1)(t+ 1)3 + 2 log(A)(t− 1)3(3t+ 1)

+ 2 log(B)(3t4 + 24t3 + 6t2 − 1)

+
√
S(t− 1)(D0(t3 − 3t2 + 3t− 1) + t3 − 8t2 + t− 2)

− D0

t+ 3

(
D0(t− 1)5(t2 + 2t− 9) + 2(t− 1)3)(t4 + 60t+ 3)

+ (t+ 3)2(t− 1)(t3 − 8t2 + t− 2)t
))
,



442 9 Planar Graphs

B2 =
RD0(D0(R2E2

0 +RE2)− 2(1 +RE0))

2(1 +RE0)2
+

1

R
(I0,0 + I0,2 + I2,2)

+

(
log(1 +D0)− log(1 + yw) − R

2E0D0

1 +RE0

)
(1 +D0 −D2)R,

B3 =
R2D0

(
2D3E

2
0R + 2D3E0 +E3D0

)
2(E0R+ 1)2

+RD3(log(1 + yw)− log(D0 + 1))

+
1

R
(I0,3 + I2,3 + I3,3),

with

I0,0 =
(3t+ 1)(t− 1)3

2048t6

(
4(3t− 1)(t+ 1)3 log(t) + 8(3t− 1)(t+ 1)3 log(t+ 1)

+ 8(3t4 + 6t2 − 1) log(2) − 2(t− 1)3(3t+ 1) log(A)

− 2(3t4 + 6t2 − 1) log(B)

+ (t− 1)(D0(t3 − 3t2 + 3t− 1) + t3 + 4t2 + t+ 2)
√
S

− t− 1

t+ 3

(
D2

0(t6 − 2t5 + t4 − 4t3 + 11t2 − 10t+ 3)

+D0(2t6 + 8t5 − 10t4 − 32t3 + 46t2 − 8t− 6)

+ t6 + 10t5 + 34t4 + 44t3 + 21t2 + 18t
))
,

I0,2 =
−(3t+ 1)(t− 1)3

512t6

(
4(3t4 − 4t3 + 6t2 − 1) log(2) + 2(3t4 + 6t2 − 1) log(t)

+ 4(3t4 + 6t2 − 1) log(t+ 1) + (−3t4 + 8t3 − 6t2 + 1) log(3A)

+ (−3t4 − 8t3 − 6t2 + 1) log(B)

+
D2(t− 1)5(R0,0

√
S +R0,1)− (t−1)2

β(t+3) (R0,4

√
S +R0,5)

(t+ 3)
(
R0,6

√
S +R0,7

) )
,

I0,3 = − (3t+ 1)t2(t− 1)8(R0,0

√
S +R0,1)(D3β

5/2 +D0α
3/2R0,2)

512(t+ 3)t8β5/2
(
(D0(t2 − 2t+ 1) + t2 + t+ 2)

√
S +R0,3

) ,
I2,2 =

(t− 1)6R2,0

(
R2,1

√
S +R2,2

)
3072βt6(t+ 1)(D0 + 1)

,

I2,3 =
(t+ 1)2(1 + 2t)2α3/2(3t+ 1)(t− 1)7

(
(t+ 3)2R2,3

√
S −R2,4

)
16t5β5/2(1 +D0)

,

I3,3 =

√
3(t− 1)6R

3/2
2,0

(
R3,0

√
S −R3,1(D0t−D0 + t)

)
2304

√
3t+ 1t5β3/2(t+ 1)3/2(D0t−D0 + t)

,

where the expressions A, B, and polynomials Ri,j are given by
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A = D0(5t3 − 3t2 − t− 1) + 5t3 + 6t2 + 5t+ (3t+ 1)
√
S,

B = D0(t3 − 3t2 + 3t− 1) + t3 + 2t2 + 5t+ (t− 1)
√
S,

R0,0 = 3D2
0(t− 1)2 −D0(7t− 3)− t(t+ 3),

R0,1 = 3D3
0(t− 1)4 −D2

0(t− 1)(3t3 − t2 + 25t− 3)

+D0t(t
3 + 8t2 + 21t− 14) + (t+ 3)2t2,

R0,2 = 128t(3t+ 1)(t− 1)(1 + 2t)2(t+ 3)2(t+ 1)2,

R0,3 = D2
0(t4 − 4t3 + 6t2 − 4t+ 1) +D0(2t4 + 4t2 − 8t+ 2)

+ t4 + 4t3 + 7t2 + 2t+ 2,

R0,4 = 3D3
0(t− 1)5(51t8 + 1081t7 + 8422t6 + 31914t5 + 59639t4 + 42461t3

+ 7584t2 − 2832t− 864)

−D2
0(t− 1)3(153t10 + 3204t9 + 29055t8 + 146710t7 + 432951t6

+ 717528t5 + 561457t4 + 208750t3 + 47040t2 + 13248t+ 2592)

−D0(t+ 3)2t(408t10 + 6177t9 + 34003t8 + 92097t7 + 122523t6

+ 126075t5 + 145777t4 + 82707t3 − 1543t2 − 15088t− 3312)

+ 3t(t− 1)(t+ 3)2(2t4 + 3t3 − 2t2 + 3t+ 2)

× (400 + 1808t+ 2527t2 + 1155t3 + 237t4 + 17t5),

R0,5 = 3D4
0(t− 1)7(51t8 + 1081t7 + 8422t6 + 31914t5 + 59639t4 + 42461t3

+ 7584t2 − 2832t− 864)

+ 2D3
0(t− 1)4(249t10 + 3333t9 + 22417t8 + 105245t7 + 339675t6+

664087t5 + 513315t4 + 127943t3− 6936t2 − 1152t+ 1296)

−D2
0t(t− 1)2(357t12 + 7089t11 + 58637t10 + 273500t9 + 828314t8

+ 1886278t7 + 3638786t6 + 5441836t5 + 4731121t4 + 1945329t3

+ 179665t2− 96240t− 20304)

− 2D0t(t+ 3)2(51t12 + 849t11 + 6580t10 + 33465t9 + 115887t8

+ 253743t7 + 285517t6 + 148083t5 + 130634t4 + 141380t3

+ 59715t2 + 4944t− 1200)

+ 3t2(t− 1)(t+ 3)3(2t4 + 3t3 − 2t2 + 3t+ 2)

× (400 + 1808t+ 2527t2 + 1155t3 + 237t4 + 17t5),

R0,6 = D0(t− 1)2 + t2 + t+ 2,

R0,7 = D2
0(t− 1)4 +D02(t− 1)(t3 + t2 + 3t− 1) + t4 + 4t3 + 7t2 + 2t+ 2,

R2,0 = 3(3t+ 1)(t+ 1)(−5t5 + 6t4 + 135t3 + 664t2 + 592t+ 144),

R2,1 = D2
0(3t3 − 12t2 + 7t+ 2) +D0(6t3 − 3t2 + t) + 3t3 + 9t2,



444 9 Planar Graphs

R2,2 = D3
0(3t7 − 47t5 − 18t4 + 21t3 + 164t2 − 105t− 18)

+D2
0(9t7 + 36t6 − 19t5 − 168t4 − 165t3 + 292t2 + 15t)

+D0(9t7 + 72t6 + 190t5 + 156t4 − 63t3 − 108t2)

+ 3t7 + 36t6 + 162t5 + 324t4 + 243t3,

R2,3 = D2
0(3t3 − 12t2 + 7t+ 2) +D0(6t3 − 3t2 + t) + 3t3 + 9t2,

R2,4 = D3
0(3t7 − 47t5 − 18t4 + 21t3 + 164t2 − 105t− 18)

+D2
0(9t7 + 36t6 − 19t5 − 168t4 − 165t3 + 292t2 + 15t)

+D0(9t7 + 72t6 + 190t5 + 156t4 − 63t3 − 108t2)

+ 3t7 + 36t6 + 162t5 + 324t4 + 243t3,

R3,0 = D2
0(t4 − 2t3 + 2t− 1) +D0(2t4 + 4t3 − 2t2 − 4t) + t4 + 6t3 + 9t2,

R3,1 = D2
0(t5 − 3t4 + 2t3 + 2t2 − 3t+ 1) +D0(2t5 + 6t4 − 2t3 − 6t2)

+ t5 + 9t4 + 27t3 + 27t2.
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Basel, 2000.

61. M. Drmota. The variance of the height of binary search trees. Theoret. Comput.
Sci., 270(1-2):913–919, 2002.

62. M. Drmota. An analytic approach to the height of binary search trees. II. J.
ACM, 50(3):333–374), 2003.
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104. H.-K. Hwang. Théoremes limites pour les structures combinatoires et les fonc-

tions arithmetiques. PhD Thesis, École Polytechnique, New York, 1994.
105. H.-K. Hwang. Large deviations for combinatorial distributions. I. central limit

theorems. Ann. Appl. Probab., 6:297–319, 1996.
106. H.-K. Hwang. Profiles of random trees: plane-oriented recursive trees. Random

Structures Algorithms, 30(3):380–413, 2007.



450 References

107. H.-K. Hwang and R. Neininger. Phase change of limit laws in the quicksort
recurrence under varying toll functions. SIAM J. Comput., 31(6):1687–1722,
2002.

108. J. Jabbour-Hattab. Martingales and large deviations for binary search trees.
Random Structures Algorithms, 19(2):112–127, 2001.

109. B. Jacquard and G. Schaeffer. A bijective census of nonseparable planar maps.
J. Combin. Theory Ser. A, 83(1):1–20, 1998.
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