

IE-352 Section 1, CRN: 48700/1/2 Section 2, CRN: 48703/4/5 Section 3, CRN: 48706/7/8 Second Semester 1434-35 H (Spring-2014) - 4(4,1,2) "MANUFACTURING PROCESSES - 2"

Tuesday, March 04, 2014 (03/05/1435H)

Quiz	3	ANSWERS
------	---	---------

Name:	Student Number:	Section:
AHMED M. EL-SHERBEENY, PHD	4	S/M8/M10

Given the following information for a shaft-hole system,

Nominal Size = $2.\frac{3}{9}$ " LC5 fit

		Class LC 5	
Nominal		Stand Tolera Limi	ard ince its
Size Range.	Clear-	Hole	Shaft
Inches	ance ^a	H7	g6
Over To			
0 0 12	0.1	+0.4	-0.1
0 - 0.12	0.75	0	-0.35
0.12 0.24	0.15	+0.5	-0.15
0.12 - 0.24	0.95	0	-0.45
0.24 0.40	0.2	+0.6	-0.2
0.24 - 0.40	1.2	0	-0.6
0.40 - 0.71	0.25	+0.7	-0.25
0.40 - 0.71	1.35	0	-0.65
0.71 - 1.19	0.3	+0.8	-0.3
0.71 - 1.15	1.6	0	-0.8
1 19 - 1 97	0.4	+1.0	-0.4
1.15 - 1.57	2.0	0	-1.0
197 - 315	0.4	+1.2	-0.4
1.57 - 5.15	2.3	0	-1.1

1. What is the basic size? [1 Point]

ANSWER:

 $BS = 2\frac{3}{8}$ " = 2.3750 *in* (note, answer must be expressed to 4 d.p.)

2. What is the shaft MMC? [1 Point]

MMC = BS + Allowance = 2.3750 + (-0.0004) = 2.3746

3. What is the hole MMC? [1 Point]

MMC = BS (since basic hole system) = 2.3750

El-Sherbeeny, PhD Mar 04, 2014 IE 352 (01,02,03) - Spring 2014

2.3750

2.3750"

ANSWER:

ANSWER:

2.3746

5. What is the hole LMC?	[1 Point]	ANSWER:	2.3762	
LMC = BS + (+0.0012)	= 2.3750 + 0.0012 = 2.37	762		
6. Express the hole and s	haft sizes below in the spec Hole Size	cified forma Shaft Size	its $\left[\frac{1}{2} \text{ pt. each}\right]$]

a) Stacked Form	<i>φ</i> ^{2.3762} LMC 2.3750 MMC	2.3746
b) Referenced to Basic Size	ϕ 2. 3750 $_0^{+0.0012}$	ϕ 2. 3750 $^{-0.0004}_{-0.0011}$

7. What is the minimum clearance?

4. What is the shaft LMC? [1 Point]

[1 Point] ANSWER:

[1 Point] ANSWER:

minimum clearance = clearance at MMC = allowance $= hole_{MMC} - shaft_{MMC} = 2.3750 - 2.3746 = 0.0004$

Note, get from fits data, then check from table above (e.g. stacked form)

8. What is the maximum clearance?

maximum clearance = clearance at $LMC = hole_{LMC} - shaft_{LMC}$ = 2.3762 - 2.3739 = 0.0023

Note, get from fits data, then check from table above (e.g. stacked form)

9. What standard fit category is this system? [1 Point]

Location fit ANSWER:

0.0004

0.0023

2.3739 **ANSWER:**

King Saud	University -	College o	f Engineerin	g – Industria	l Engineering	g Dept.

LMC = BS + (-0.0011) = 2.3750 - 0.0011 = 2.3739

IE-352 Section 1, CRN: 48700/1/2 Section 2, CRN: 48703/4/5 Section 3, CRN: 48706/7/8 Second Semester 1434-35 H (Spring-2014) – 4(4,1,2) "MANUFACTURING PROCESSES – 2"

Wednesday, March 05, 2014 (04/05/1435H)

	Ouiz	3	ANSWERS
--	------	---	----------------

Name:	Student Number:	Section:
AHMED M. EL-SHERBEENY, PHD	4	S/M8/M10

Given the following information for a shaft-hole system,

Nominal Size = $2.\frac{3}{8}$ " LT5 fit

		Class LT 5	
Nominal		St Toler Lin	td. rance nits
Size Range,	Fit ^a	Hole	Shaft
Inches		H7	n6
Over To			
0- 0.12	-0.5	+0.4	+0.5
	+0.15	0	+0.25
0.12 - 0.24	-0.6	+0.5	+0.6
	+0.2	0	+0.3
0.24 - 0.40	-0.8	+0.6	+0.8
	+0.2	0	+0.4
0.40 - 0.71	-0.9	+0.7	+0.9
	+0.2	0	+0.5
0.71 - 1.19	-1.1	+0.8	+1.1
	+0.2	0	+0.6
1.19 - 1.97	-1.3	+1.0	+1.3
	+0.3	0	+0.7
1.97 – 3.15	-1.5 +0.4	+1.2	+1.5 +0.8

ANSWER:

ANSWER

1. What is the basic size? [1 Point]

 $BS = 2\frac{3}{2}$ " = 2.3750 *in* (note, answer must be expressed to 4 d.p.)

2. What is the shaft MMC? [1 Point]

MMC = BS + (+0.0015) = 2.3750 + 0.0015 = 2.3765

3. What is the hole MMC? [1 Point]

MMC = BS (since basic hole system) = 2.3750

to 4 d.p.)

2.3750"

2.3750

ANSWER: 2.3765

- 0.0015	
Note, get from fits data, then check from	m table above (e.g. stacked form)

4. What is the shaft LMC? [1 Point]

LMC = BS + (+0.0008) = 2.3750 + 0.0008 = 2.3758

5. What is the hole LMC? [1 Point]

LMC = BS + (+0.0012) = 2.3750 + 0.0012 = 2.3762

6. Express the hole and shaft sizes below in the specified formats $\left[\frac{1}{2} pt\right]$. each]

	Hole Size	Shaft Size
a) Stacked Form	$\phi_{2.3762}^{2.3762}$ LMC	2.3765 2.3758
b) Referenced to Basic Size	ϕ 2. 3750 $_0^{+0.0012}$	ϕ 2.3750 $^{+0.0015}_{+0.0008}$

7. What is the maximum *clearance*?

maximum clearance = clearance at $LMC = hole_{LMC} - shaft_{LMC}$ = 2.3762 - 2.3758 = 0.0004

Note, get from fits data, then check from table above (e.g. stacked form)

[1 Point] ANSWER: 8. What is the maximum interference?

maximum intereference = $shaft_{MMC} - hole_{MMC} = 2.3765 - 2.3750$ -0.0015

9. What standard fit category is this system? [1 Point]

Location fit ANSWER:

2.3762 **ANSWER:**

ANSWER:

[1 Point] ANSWER:

0.0015

0.0004

2.3758

IE-352 Section 1, CRN: 48700/1/2 Section 2, CRN: 48703/4/5 Section 3, CRN: 48706/7/8 Second Semester 1434-35 H (Spring-2014) – 4(4,1,2) "MANUFACTURING PROCESSES – 2"

Wednesday, March 05, 2014 (04/05/1435H)

	Ouiz	3	ANSWERS
--	------	---	----------------

Name:	Student Number:	Section:
AHMED M. EL-SHERBEENY, PHD	4	S/M8/M10

Given the following information for a shaft-hole system,

Nominal Size =
$$2.\frac{3}{8}$$
"
LN2 fit

	Class LN 2		
Nominal	Lim- its	Star Li	ndard mits
Size Range, Inches Over To	Inter- fer- ence	Hole H7	Shaft p6
	0	+0.4	+0.65
0- 0.12	0.65	0	+0.4
0.12 - 0.24	0	+0.5	+0.8
	0.8	0	+0.5
0.24 - 0.40	0	+0.6	+1.0
	1.0	0	+0.6
0.40 - 0.71	0	+0.7	+1.1
	1.1	0	+0.7
0.71 - 1.19	0	+0.8	+1.3
	1.3	0	+0.8
1 10 1 07	0	+1.0	+1.6
1.19 - 1.97	1.6	0	+1.0
1 07 2 15	0.2	+1.2	+2.1
1.57 - 5.15	2.1	0	+1.4

ANSWER:	2.3750"

1. What is the basic size? [1 Point]

 $BS = 2\frac{3}{8}$ " = 2.3750 *in* (note, answer must be expressed to 4 d.p.)

2. What is the shaft MMC? [1 Point]

ANSWER: 2.3771

MMC = BS + (+0.0021) = 2.3750 + 0.0021 = 2.3771

6. Express the hole and shaft sizes below in the specified formats $[\frac{1}{2}$ pt. each]

	Hole Size	Shaft Size
a) Stacked Form	$\phi_{2.3762}^{2.3762}$ LMC	2.3771
b) Referenced to Basic Size	ϕ 2. 3750 $_0^{+0.0012}$	ϕ 2. 3750 $^{+0.0021}_{+0.0014}$

7. What is the minimum interference? [1 Point] ANSWER:

 $\begin{array}{l} minimum\ intereference = shaft_{LMC} - hole_{LMC} = 2.3764 - 2.3762 \\ = 0.0002 \end{array}$

Note, get from fits data, then check from table above (e.g. stacked form)

8. What is the maximum interference? [1 Point] ANSWER:

 $maximum intereference = shaft_{MMC} - hole_{MMC} = 2.3765 - 2.3750$ = 0.0015

Note, get from fits data, then check from table above (e.g. stacked form)

9. What standard fit category is this system? [1 Point]

Location fit

ANSWER: