Quiz 1-Solution

STAT 328	Academic year 1441 H	Send you answer before 14/6/1441 -9:00PM
Statistical Methods	Second Semester	By E-mail for: wemam.c @ksu.edu.sa

Write Excel commands with the results to calculate the following:

Question 1

The following data represents sample of size $\underline{\mathbf{5}}$ student in the final exam of stat 1 and stat2:

Student	1	2	3	4	5
stat1	75	82	90	88	93
stat2	90	84	92	81	75

(a) Write a descriptive statistics report about the data showing, the mean, variance, coefficient of the variation for the sum of stat 1 and stat2.
sum

Mean
Standard Deviation
Sample Variance
coefficient of the variation
Confidence Level(95.0\%)
170.00
6.892
47.50
4.054\%
8.557
(b) Find 95% CI for the mean of sum.
$95 \% \mathrm{CI}=$ mean $\overline{+} 8.557=(161.442,178.557)$
(c) Test the difference between the overall means of stat 1 and stat 2 .

$H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2} \quad$ vs $H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$		
F -Test Two-Sample for Variances		
F	1.085	
$\mathrm{P}(\mathrm{F}<=\mathrm{f})$ one-tail	0.470	
F Critical one-tail	6.388	

Since $F=1.085<F$ critical $=6.388$ and $P(F<=f)$ one-tail $=0.470>0.05$ then the variances are equal and then we must use Two-Sample Assuming Equal Variances

$H_{0}: \mu_{1}=\mu_{2} \quad$ vs $\quad H_{1}: \mu_{1} \neq \mu_{2}$
t -Test: Two-Sample Assuming Equal Variances
t Stat
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail
t Critical one-tail
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail
t Critical two-tail

Since t Stat $=0.270<2.306=t$ Critical two-tail and $P(T<=t)$ two-tail $=0.794>0.05$ then
we can't reject H_{0} and so, $\mu_{1}=\mu_{2}$
(d) Calculate the correlation coefficient between the marks of stat1 and stat2.
stat1 stat2
stat 1 1
stat $2 \quad-0.519 \quad 1$

Question 2

Let $A=\left[\begin{array}{lll}2 & 1 & 0 \\ 1 & 0 & 4\end{array}\right], \quad B=\left[\begin{array}{llll}3 & 1 & 2 & 1 \\ 1 & 0 & 1 & 2 \\ 5 & 4 & 1 & 1\end{array}\right]$

Then calculate
(i) $\quad A B$
=MMULT(L18:N19,L21:N23)

7	2	5	4
23	17	6	5

(ii) The determinant of $B^{\prime} B$
=MMULT(B1:D2,B5:E7)
$=$ MDETERM(L6:O9) $=0$
(iii) The inverse of $B B^{\prime}$
$=$ TRANSPOSE(L21:N23)
=MMULT(V7:X9,L21:N23)= =MINVERSE(L17:N19)
$0.534435-0.34435-0.20937$
$-0.34435 \quad 0.443526 \quad 0.093664$
$-0.209370 .0936640 .112948$

Question 3

Write Excel commands with the results to calculate the following:
(1) Find k when $P(X>k)=0.04, \quad X \square F(10,11)$
$=F \cdot I N V(1-0.04,10,11)=3.062037$
(2) $P(2 \leq X<7) \quad$ when $\quad X \square$ Poisson(3.5)

=POISSON.DIST(6,3.5,TRUE)-POISSON.DIST(1,3.5,TRUE)
 $=0.798824$

(3) $\mathrm{P}(\mathrm{T}<\mathrm{c})=0.085 \quad X \square t$ distribution with 6 degree of freedom.
$=\mathrm{T} \cdot \operatorname{INV}(0.085,6)=-1.55905$
(4) $\int_{1}^{2} e^{\frac{-x^{2}}{8}} d x=$
$=2 \sqrt{2 \pi} P(1 \leq X \leq 2) \quad X \sim N(0,4)$
$=2 * \operatorname{SQRT}(2 * \operatorname{PI}()) *($ NORM.DIST(2,0,2,TRUE)-
NORM.DIST($1,0,2$, TRUE $)=0.751398$
(5) $\sum_{i=7}^{10}\binom{10}{i}(0.4)^{i}(0.6)^{10-i}=$
$=P(7 \leq X \leq 10) \quad X \sim \operatorname{Binomial}(10,0.4)$
=BINOM.DIST(10,10,0.4,TRUE)-BINOM.DIST(6,10,0.4,TRUE)
$=0.054762$
(6) $\sqrt[10]{\sqrt{10!}}=$
$=\left(\operatorname{SQRT}(\operatorname{FACT}(10))^{\wedge} 0.1\right)=2.128081$
$=(\operatorname{SQRT}(\operatorname{FACT}(10)))^{\wedge} 0.1=2.128081$

$$
\begin{aligned}
& \text { (7) }\binom{8}{4}= \\
& =\operatorname{COMBIN}(8,4)=70 \\
& \text { (8) } \ln (\sqrt{7})= \\
& =\mathrm{LN}(\operatorname{SQRT}(7))=0.972955075 \\
& \text { (9) } \sum_{x=9}^{80} \log (7) \frac{3^{x}}{x!} \\
& =\sum_{x=9}^{80} \log (7) \frac{3^{x}}{x!} \frac{e^{-3}}{e^{-3}}=\log (7) e^{3} \sum_{x=9}^{80} \frac{3^{x} e^{-3}}{x!} \\
& =\log (7) e^{3}[P(9 \leq X \leq 80)]=\log (7) e^{3}\{P(X \leq 80)-P(X \leq 8)\} \\
& =\text { LOG10(7)*EXP(3)*(POISSON.DIST(80,3,TRUE)-POISSON.DIST(8,3,TRUE)) } \\
& =0.064553 \\
& \text { (10) } \prod_{x=4}^{10} \frac{\left(x^{2}-2 x+1\right)}{(x-1)}
\end{aligned}
$$

(11) Find k when $P\left(-\frac{k}{2}<X<\frac{k}{2}\right)=0.92, \quad X \sim t(10)$
$=1-2 * P(X<-k / 2)=0.92 \Rightarrow P(X<-k / 2)=0.04$
$=\operatorname{T.INV}(0.04,10)=-1.948 \Rightarrow-k=-3.8962 \Rightarrow k=3.8962$

