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Abstract: In this paper, a family of models requiring proportional mean life vitalities is considered.
The problem of estimation of the parameter(s) of the model is studied in two cases of known and
unknown baselines along with some simulation studies to detect the adequacy of fitting. Closure and
preservation properties of some ageing classes and stochastic orders are derived.
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1. Introduction

A large segment of statistical methodology deals with the modeling and analysis of data
representing the time until the occurrence of an event (cf. Nanda et al. [1]). In industrial and
biomedical studies, these events represent the time to failure of a machine, an organ, an individual,
or the completion of a certain task. These times are referred to as survival times in biomedical studies
and as lifetimes or failure times in actuarial and engineering studies (cf. Henley and Kumamoto [2],
Fleming [3] and Miller [4]). Reliability measures are ordinarily considered in lifetime sciences as
characteristic quantities to quantify the amount of uncertainty during the lifetime process of an item to
presignify its life span. Endless numbers of models are being introduced in the literature to model
failure time data. The proportional hazard rates (PHR) model, used to model left-truncated and
right-censored failure times, is a reputable model that has been greatly developed in the literature (see,
e.g., Cox [5]). To concentrate on the average amounts in place of probability values Oakes and Dasu [6]
introduced the proportional mean residual life (PMRL) model for the analysis of reliability and survival
data in the situations where left-truncated or right-censored observations are available. Nanda et al. [7]
studied some reliability aspects and further stochastic properties including a number of stochastic
comparisons and ageing properties in the PMRL model. In contrast to the PHR and the PMRL models,
there have been proposed specific models to account for right-truncated and left-censored observations.
The proportional reversed hazard rates (PRHR) model has been introduced as an alternative model
for the PHR model by Gupta et al. [8] and some stochastic aspects along with further inferential
procedures about it have been studied by Gupta and Gupta [9]. The proportional mean past lifetime
(PMPL) model that focuses on the mean inactivity time of items has been considered by Asadi and
Berred [10] and several stochastic properties of it have been developed by Rezaei [11].

The advantage of the current investigation is to establish another model based on the vitality
function of a distribution which is a common measure of life expectancy among demographers.
The vitality function of a distribution is the conditional mean of the random variable on the right tail of
distribution (see, e.g., Navarro et al. [12], Sunoj et al. [13] and Abdul-Sathar et al. [14]). The proposed
model can be used for modelling right-censored and left-truncated distributions.
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Let X be a non-negative random variable (RV) having absolutely continuous cumulative
distribution function (CDF) F and probability density function (PDF) f . The vitality function of
X is

vX(t) = E(X | X > t) =

∫ ∞
t x f (x)dx

F̄(t)

and the hazard rate (HR) function of X is

hX(t) =
f (t)
F̄(t)

.

The mean residual life (MRL) of X after time point t is

mX(t) =
∫ ∞

t

F̄(x)
F̄(t)

dx.

If the support of X is (lX , uX), then F̄(t) = 0 for all t > uX . In such a case, mX(t), vX(t) and hX(t)
are not defined for t > uX. But it is customary, in such cases, to define mX(t) = vX(t) = hX(t) = 0.
The vitality function has a relationship with the HR and the MRL functions as follows:

hX(t) =
v′X(t)

vX(t)− t
, (1)

where v′X(t) =
d
dt vX(t) and

mX(t) = vX(t)− t. (2)

For the random variable X with a finite mean such that F(0−) = 0, the survival function (SF) of X
(F̄ = 1− F) can be retrieved from vitality function vX by the inversion formula

F̄(t) = exp
(
−
∫ t

0

v′X(x)dx
vX(x)− x

)
. (3)

Demographers have used the vitality function or life expectancy or expectation of life function
for centuries in studies of human populations (see, e.g, Vaupel et al. [15], Yashin et al. [16] and
Sharrow et al. [17]). The vitality function is monotonically increasing over [0, ∞). With this in mind,
it is a valid conjecture that the curve of the ratio of the parametric or non-parametric estimated vitality
functions based on two sets of data will indicate significant departures from a horizontal line with less
probability than the case where hazard rate or mean residual life functions are utilized.

The regression models proposed for lifetime data generally consider the assumption of the PH
model or the assumption of PMRL. For instance, suppose that we use the PMRL model, i.e., m(t) =
θm0(t), for all t ≥ 0 and for some unknown θ > 0, where m0 and m are, respectively, the baseline and
the response mean residual life functions assumed to be unknown. In the cases that two samples from
the underlying distributions of m and m0 is available, there is a principle regarding the shape of the
two MRL functions. The MRL functions may exhibit quite different behaviours, such as monotonically
increasing, monotonically decreasing, bathtub shaped, upside-down bathtub shaped and roller-coaster
shaped depending on the fluctuations of data. The data analyst observes that a strong assumption
in the PMRL model exists as the behaviour of the MRL curves must be the same under the setup of
the model. For example, consider that according to data in a two sample problem the shape of the
estimated mean residual lives are a lot different, thus, it is unlikely to find an appropriate value for θ

to incorporate that possibility and this leads to an inadequacy for fitting the model to data.
The survival models have developed rapidly in the literature to model time to event data

(cf. Hosmer Jr and Lemeshow [18] and Liu [19]). When a semi-parametric model is proposed, there
may exist some challenging issues regarding that model. For instance, one may question the suitability
of the model to model data in many practical situations and that how well does it fit the data. The main
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goal of this paper is to introduce a semi-parametric model based on the concept of vitality function,
called proportional vitalities (PVIT) model. In the context of the PVIT, the involved age-specific vitality
function is inherently monotonically increasing. The credibility of modelling lifetime data using the
PVIT model may be worthy.

The entire structure of this paper is organized as follows. In Section 2, the model is proposed.
In Section 3, making inferences about the parameter(s) of the model is discussed. In Section 4, we lay
the foundations of several stochastic orderings and aging properties. In Section 5, a brief conclusion of
the paper is emphasized and some generalizations for future work are outlined.

2. The PVIT Model

First of all, in what follows in the paper, we refer the readers for the definitions of the utilized
stochastic orders to Shaked and Shanthikumar [20] and for the concepts of aging notions that will be
used in the sequel to Barlow and Proschan [21]. The property of Totally positive of order 2 (TP2) for
bivariate functions is also adopted from Karlin [22]. To introduce the model, some motivations shall be
provided. An examples of parametric distributions is brought to clarify the structure of the model. The
following definition is stated.

Definition 1. X and Y with respective vitality functions vX and vY are said to satisfy the PVIT model, if for
all t ≥ 0,

vY(t) = ξvX(t), (4)

where ξ is a positive constant that we call it vitality growth parameter.

We can infer that vX(t) = E(X | X > t) is the expected life-length of an individual randomly
drawn from the individuals grouped at the age t. The PVIT model induces that the ratio vY(t)/vX(t)
is t-free which means that the vitality functions of X and Y are relatively free of their underlying aging
processes. From a mathematical point of view,

E(Y | Y > t1)

E(X | X > t1)
=

E(Y | Y > t2)

E(X | X > t2)
, for all t1, t2 ∈ [0, ∞), (5)

purporting that relative mean life-lengths of survivor individuals in both populations remain
unchanged when the age of survival is variable. In particular, for almost surely positive
random variables,

E(Y | Y > t)
E(X | X > t)

=
E(Y)
E(X)

= ξ, for all t > 0. (6)

In view of (3), if X and Y satisfy the PVIT model as described in Definition 1, then

Ḡ(t) = exp
(
−
∫ t

0

ξv′X(x)
ξvX(x)− x

dx
)

, t ≥ 0. (7)

The identity (7) may not give a closed form for the SF of the random variable Y in terms of SF of
X, whereas in the PMRL model the inversion formula provides an explicit expression for the SF of the
response variable in terms of a combination of the SF of the underlying distribution function with that
of its equilibrium distributions (see, e.g., Nanda et al. [23]). On that account, we are capable of proving
that (7) presents a proper SF if the following conditions hold:

(i) For all x ≥ 0, ξ ≥ x/vX(x).

(ii)
∫ t

0
ξv′X(x)

ξvX(x)−x dx < ∞, for all 0 ≤ t < ∞.

(iii)
∫ ∞

0
ξv′X(x)

ξvX(x)−x dx = ∞.

In what follows, the PVIT model is characterized in terms of the relationship between the ratios
of survival (or hazard rate) functions of the length-biased distributions and the ratio of those of the
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underlying distributions. Recall that X̂ and Ŷ with PDF’s f̂ (t) = t f (t)/E(X), t ≥ 0 and ĝ(t) =

tg(t)/E(Y), t ≥ 0 (provided that the expectations exist and are finite) are said to follow length-biased
distributions associated with f and g, respectively (cf. Gupta and Keating [24]). Length-biased
sampling arises when a component already in use is sampled at a fixed time and then allowed to fail
(cf. Scheaffer [25]). The concept of length-biased sampling and the arising hazard rates, as well as
cumulative distribution functions and the relations with other reliability measures, are appreciated in
the literature (cf. Gupta and Keating [24]).

Proposition 1. The non-negative random variables X and Y satisfy the PVIT model, if and only if one of the
following assertions holds;

(i) hX̂(t)
hŶ(t)

= ξ
hX(t)
hY(t)

, for all t ≥ 0.

(ii) 1−F̂(t)
1−Ĝ(t)

= F̄(t)
Ḡ(t) for all t ≥ 0.

Proof of Proposition 1. By Proposition 1 in Izadkhah et al. [26], for all t ≥ 0, we have

hX̂(t) =
thX(t)
vX(t)

,

and

hŶ(t) =
thY(t)
vY(t)

.

Hence, vY(t) = ξvX(t), for all t ≥ 0, if, and only if, hX̂(t)
hŶ(t)

= ξ
hX(t)
hY(t)

, for all t ≥ 0 which is equivalent to
(i). By a further application of Proposition 1 of Izadkhah et al. [26], one has, for all t ≥ 0,

1− F̂(t) =
vX(t)
vX(0)

F̄(t),

and

1− Ĝ(t) =
vY(t)
vY(0)

Ḡ(t).

It is perceptible that under the setup of the PVIT model, vY(t)/vX(t) is free of t ≥ 0. Thus, one
can deduce that vY(t)/vX(t) = vY(0)/vX(0) = ξ, for all t ≥ 0. This, together with the recent identities
above, establishes the equivalence of (ii) and the PVIT model.

For studies in reliability, biometry and survival analysis, the length-biased distributions have
been frequently appropriate for quite a number of sampling plans. Suppose that two random samples
on X and Y cannot be reached due to an ungovernable biased sampling procedure. In spite of that,
imagine that the available data come from the associated length-biased distributions. Proposition 1
states that in the context of the PVIT model, the ratio of survival functions (or the hazard rates) of the
original distributions could be estimated under length-biased sampling as effectively as acting under
random (unbiased) sampling. The following example indicates that by adding the vitality parameter ξ

to the exponential distribution, the well-known Hall–Wellner family of distributions is generated.

Example 1. Suppose that X is distributed with mean 1/λ in accordance with exponential distribution. In an
easy way, we get vX(x) = x + 1/λ, x ≥ 0. Let Y be a random variable with life vitality vY(t) = ξvX(t),
for t ≥ 0 where ξ > 0. Then, Y has mean residual life function mY(t) = (ξ − 1)t + (ξ/λ), which is the
characteristic of the Hall–Wellner family of distributions. To be clear, recall from Hall and Wellner [27],

their family of survival functions Ḡ(t) = [B/(At + B)]
1
A +1
+ which is valid for A > −1 and B > 0. When

A > 0, A = 0 and −1 < A < 0, it gives respectively a Pareto, an exponential (at limit) and a rescaled beta
distribution. Here, by choosing A = ξ − 1 and B = ξ/λ, it is clarified that the distribution of Y is in the
Hall–Wellner family.
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Now, we discuss a characterization result within the class of distributions satisfying the
PVIT model.

Theorem 1. Let X and Y be two non-negative random variables with finite means and hazard rate functions
hX and hY, respectively, such that limt→∞ thX(t) = limt→∞ thY(t) = ∞. Then, X and Y satisfy the PVIT
model if and only if they are equal in distribution.

Proof of Theorem 1. By the construction of the model, ξ = vY(t)/vX(t), for all t ≥ 0, which is free
of t. Therefore,

ξ = lim
t→∞

vY(t)
vX(t)

=
1 + limt→∞{mY(t)/t}
1 + limt→∞{mX(t)/t} .

Remark that since E(X) < ∞, thus, when t → ∞, tF̄(t) → 0 and
∫ ∞

t F̄(x)dx → 0. As a result, using
l’Hopital’s rule,

lim
t→∞

mX(t)
t

= lim
t→∞

∫ ∞
t F̄(x)dx

tF̄(t)

= lim
t→∞

F̄(t)
t f (t)− F̄(t)

=
1

limt→∞ thX(t)− 1
= 0.

In a similar manner, limt→∞ mY(t)/t = 0. It thus concludes that ξ = 1, i.e., vY(t) = vX(t), for all t ≥ 0,
which means that X and Y have equal distributions.

3. Estimation of the Vitality Growth Parameter

In this section, statistical inferences about the unknown parameter(s) of the model are made.
In the PVIT model, as introduced in Definition 1, the baseline vitality function vX may have either an
accurate form (known) or an unknown feature. In this setting, we shall first consider the case when X
has the Parametric distribution so that vX is fully known. Then, the case where vX is unknown but a
random sample on X and also a random sample on Y are available will be considered.

3.1. One-Sample Case with Specified vX

Here, by simulating a data set from Pareto distribution we initiate a process for estimation of the
growth parameter ξ in the PVIT model. We generate a sample of size 50 from the Pareto distribution
having survival function F̄X(t) = 1/(1 + t)3, t ≥ 0 and denote them by t1, . . . , t50, as presented in
the Appendix. The vitality function is specified as vX(t) = (3t + 1)/2, t ≥ 0. Now, assume that
Y as another random variable has vitality function vY(t) = ξvX(t), in which ξ = 3. To perform a
linear regression analysis, set zi = ξvX(ti) + εi, where εi’s represent a generated random sample from
N(0, 0.01). The method of least square provides that

ξ̂ =
∑50

i=1 zivX(ti)

∑50
i=1 [vX(ti)]

2 = 2.999923.

The data and the calculated values are given in Appendix A.



Mathematics 2020, 8, 1823 6 of 14

3.2. Two-Sample Case when vX is Unspecified

In this sub-section, we address the problem of estimating the parameter ξ = (ξ1, . . . , ξp)

in model (4) when, X1, X2, . . . , Xn is an independent random sample from F (the baseline) and
Y1, Y2, . . . , YN drawn independently from the populations with distribution functions G1, G2, . . . , Gp,
(the output) respectively, so that Y1, . . . , YN1 are adopted independently from G1, and YN1+1, . . . , YN1+N2

are taken independently from G2, . . . and Y
∑

p−1
i=1 Ni+1

, . . . , YNp taken independently from Gp. To this end,

several steps will be taken to develop the procedure. Take into consideration that Fn is the empirical
distribution function of X, defined as

Fn(x) =
1
n

n

∑
i=1

I(x(i) ≤ x), (8)

where I is the indicator (heavy-side) function and x(i) denotes the observed the ith order statistic in the
sample drawn from F, and accordingly F̄n = 1− Fn represents the empirical SF. Suppose vFn stands for
the vitality function of the distribution (8). It can be acquired from (2) that

vFn(t) =
∫ ∞

t

F̄n(x)
F̄n(t)

dx + t =
∑n

i=1 x(i) I(x(i) > t)

∑n
i=1 I(x(i) > t)

. (9)

One disadvantage with the empirical distribution is that it assigns positive probability mass
only to a finite number of points x(1), x(2), . . . , x(n), say, which may be undesirable when modeling
continuous variables. Given the observed values x(1), x(2), . . . , x(n) of the sample X1, X2, . . . , Xn from
F, the smoothed empirical distribution is defined as a mixture distribution with the following SF

¯̃Fn(x) =
1
n

n

∑
i=1

F̄δi (x) (10)

where F̄δi is a SF of a random variable distributed at a two-sided neighborhood of x(i). Note that if F̄δi

is the SF of a degenerate random variable at x(i), then (10) corresponds to (8). We will take F̃n and f̃n as
the CDF and the PDF associated with the SF (10). To show initiative in the case of our study, we are
inclined to use triangular distribution. It is said that X∗ follows the triangular distribution with the
vector of parameters δ = (a, c, b) in which a < c < d ∈ R (denoted by X∗TA(δ)) when it has density

fδ(x) =


0, x < a

2(x−a)
(b−a)(c−a) , a ≤ x < c

2(b−x)
(b−a)(b−c) , c ≤ x < b
0, x > b.

(11)

The SF associated with (11) is derived as

F̄δ(x) =


1, x ≤ a

1− (x−a)2

(b−a)(c−a) , a < x ≤ c
(b−x)2

(b−a)(b−c) , c < x < b
0, x ≥ b.

(12)

In the case of (10), suppose that F̄δi , i = 2, . . . , n− 1 is the SF of the triangular distribution with
parameter δi = (x(i−1), x(i), x(i+1)). In parallel, assume that F̄δ1 is the survival functions associated
with triangular distribution with parameter δ1 = (0, x(1), x(2)) and that F̄δn is the SF of a symmetric
triangular distribution with δn = (x(n−1), x(n), 2x(n) − x(n−1)). We now derive the vitality function
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of a random variable with SF (10) as it has already been fully characterized. Therefore, a smoothed
estimation of vitality function is derived as

vF̃n
(t) = t +

∫ ∞
t

¯̃Fn(x)dx
¯̃Fn(t)

= t +

∫ x(2)
t F̄δ1(x)dx + ∑n−1

i=2

∫ x(i+1)
t F̄δi (x)dx +

∫ 2x(n)−x(n−1)
t F̄δn(x)dx

F̄δ1(t) + ∑n−1
i=2 F̄δi (t) + F̄δn(t)

. (13)

Computation of the integrals in (13) is not difficult as it can be easily accomplished by replacing
the specified amounts of parameters of the survival functions, i.e., δi as in (12). For, i = 2, . . . , n− 1
when t < x(i−1) we have

∫ x(i+1)

t
F̄δi (x)dx =

x(i−1) + x(i) + x(i+1)

3
− t,

for t ∈ [x(i−1), x(i)) :

∫ x(i+1)

t
F̄δi (x)dx = x(i) +

(x(i+1) − x(i))2 − (x(i) − x(i−1))
2

3(x(i+1) − x(i−1))
+

(t− x(i−1))
3

3(x(i+1) − x(i−1))(x(i) − x(i−1))
− t,

for t ∈ [x(i), x(i+1)) one can derive

∫ x(i+1)

t
F̄δi (x)dx =

(x(i+1) − t)3

3(x(i+1) − x(i−1))(x(i+1) − x(i))
,

and eventually
∫ x(i+1)

t F̄δi (x)dx = 0, for t ≥ x(i+1). The cases when i = 1, n readily follow. Consider
a setting by which Yi is a random variable with vitality function vYi (t) = ξivX(t), for i = 1, 2, . . . , p.
In situations where vX is unspecified, we are able to estimate it with the estimator (13) by applying
data on X. In accordance with (7), we take Y = (Y1, Y2, . . . , YN)

T as a sample of independent random
variables as described before. Consider Y j = (Y1+Sj−1 , . . . , YSj)

T , which has likelihood function

Lj(ξ j) =

Sj

∏
i=1+Sj−1

fi(yi | ξ j)

=

Sj

∏
i=1+Sj−1

ξ jv′F̃n
(yi)

ξ jvF̃n
(yi)− yi

e
−
∫ yi

0

ξ jv′F̃n
(t)

ξ jvF̃n
(t)− t

dt
,

where Sj = ∑
j
k=0 Nj, for j = 1, 2, . . . p with the convention that S0 = N0 = 0. Consider the PVIT model

vYi (yi | ξ j) = ξ jvX(yi), for i = 1+ Sj−1, . . . , Sj. If vX(yi) is estimated as in (13), then the resulting model
is completely parametric. The method of maximum likelihood can be used to estimate ξ. The full
likelihood function obtains:

L(ξ) =
p

∏
j=1

Lj(ξ j)

=
p

∏
j=1

Sj

∏
i=1+Sj−1

ξ jv′F̃n
(yi)

ξ jvF̃n
(yi)− yi

e
−
∫ yi

0

ξ jv′F̃n
(t)

ξ jvF̃n
(t)− t

dt
,
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from which the likelihood equations becomes:

Nk
ξk
−

Sk

∑
i=1+Sk−1

v′
F̃n
(yi)

ξkvF̃n
(yi)− yi

+
Sk

∑
i=1+Sk−1

∫ yi

0

tv′
F̃n
(t)

(ξkvF̃n
(t)− t)2 dt = 0, k = 1, 2, . . . , p. (14)

The above equations can be solved using the numerical Newton–Raphson method of iteration.
In Table 1, we perform a simulation study for solving the system of Equations (14) by the so-called
Newton–Raphson method with six iterations.

Table 1. Estimates of ξ = (ξ1, ξ2, ξ3) for N = 3000 and N = 6000 data simulated from Exponential
distribution with mean 2.

(N1, N2, N3) = (1000, 1000, 1000) (N1, N2, N3) = (2000, 2000, 2000)

ξ1 = 2 ξ2 = 3 ξ3 = 4 ξ1 = 3 ξ2 = 4 ξ3 = 5

Iteration = 0 2.4537 3.1101 2.2154 1.5987 5.7751 7.8574
1 1.6512 2.4589 3.3875 2.8573 3.8591 4.9517
2 1.8021 2.6096 3.4587 2.9512 3.9013 4.9664
3 1.9324 2.7584 3.6533 2.9815 3.9742 4.9910
4 1.9733 2.8911 3.7152 2.9933 3.9852 4.9933
5 1.9987 2.9128 3.7836 2.9981 3.9941 4.9986
6 1.999399 2.965466 3.834184 2.999698 3.998691 4.999185

4. Some Closure and Preservation Properties

In this section, the closure (preservation) property of some stochastic orders (aging classes)
under the formation of the model is studied. The problem has attracted the attention of many
researchers in the recent past decades (cf. Amini-Seresht and Zhang [28], Amini-Seresht and
Khaledi [29], Barmalzan and Najafabadi [30]). The following result indicates that the model by
restricting the domain of the parameter ξ induces the hazard rate (mean residual life) ordering
property between the underlying random variables.

Theorem 2. X ≤hr (≤mrl)Y, if and only if, ξ ≥ 1.

Proof of Theorem 2. From the relationships among the HR and the MRL orders, it suffices to prove
that ξ ≥ 1 implies X ≤hr Y, and that X ≤mrl Y implicates ξ ≥ 1. Under the set up of the model, by (1)

hX(t)− hY(t) =
v′X(t)

vX(t)− t
−

v′Y(t)
vY(t)− t

=
v′X(t)

vX(t)− t
−

ξv′X(t)
ξvX(t)− t

,

which is non-negative for ξ ≥ 1 as v′X(t) > 0 for all t ≥ 0 because vX(t) is increasing in t ≥ 0 (see, e.g.,
Proposition 2.4 of Nanda and Jain [31]) and also ξv′X(t)/(ξvX(t)− t) is decreasing in ξ, for any t ≥ 0.
This indicates that when ξ ≥ 1, X ≤hr Y. Now, we prove that X ≤mrl Y implies that ξ ≥ 1. From (2),
for random variables X and Y that satisfy the PVIT model, we can get mY(t) = ξmX(t) + (ξ − 1)t,
for all t ≥ 0 and thus ξ = (t + mY(t))/(t + mX(t)), which is greater than 1 by definition.

However, the following example is an indication that the hazard rate order in Theorem 2 cannot
be replaced by the likelihood ratio order.

Example 2. Let X and Y have, respectively, exponential distribution and Lomax distribution with survival
functions F̄(t) = exp(−t), t ≥ 0 and Ḡ(t) =

( 2
t+2
)2

, t ≥ 0. It can be seen that vY(t) = 2vX(t) for all t ≥ 0,
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i.e., vitality of Y has been evolved with respect to vitality of X according to the PVIT model with a frailty growth
identified by ξ = 2. By some routine calculations, it is perceived that XlrY.

In the recent past decade, Righter et al. [32] propounded some fresh ageing notions on the basis of
scaled conditional lifetime. The scaled conditional life of a random variable X is the total life relative
to the current age, conditioned on the current age, and is given by

XSC(t)
d
=

1
t
{X | X > t} = 1 +

Xt

t
, t > 0, (15)

where Xt
d
= (X − t | X > t), for all t with F(t) < 1, is called the residual life of an item with

age t, in which d
= means equality in distribution. For further studies of the family of distributions

of XSC(t), see Righter et al. [32], Belzunce et al. [33] and the references therein. A new class of life
distributions could be as the following. Recall that a function η is anti-star-shaped on (a, b), if (1/t)η(t)
is non-increasing in t ∈ (a, b).

Definition 2. The non-negative random variable X is said to have decreeing mean scaled conditional life
(denoted as X ∈ DMSCL) if E[XSC(t)] is non-increasing in t > 0, or equivalently, vX(t) is an anti-star-shaped
function in t > 0.

It has been investigated by the authors that some ageing properties of X are inherited by the
random variable Y in the context of the model. Before stating our findings about that problem, we need
to prove the following definition and key lemma.

Definition 3. The non-negative random variable X is said to have

(i) increasing failure rate (IFR) whenever the hazard rate function hX of X is non-decreasing.
(ii) increasing mean residual life (IMRL) whenever the mean residual life function mX of X is non-decreasing.

(iii) increasing failure rate in average (IFRA) whenever (1/x)
∫ x

0 hX(u)du is non-decreasing in x > 0.
(iv) new worse than used (NWU) property whenever P(X > x)P(X > t) ≤ P(X > x + t), for all x ≥ 0 and

for all t ≥ 0.
(v) new worse than used in expectation (NWUE) whenever E(X) ≤ E(X− t | X > t), for all t ≥ 0

(vi) increasing generalized failure rate (IGFR) whenever xhX(x) is non-decreasing in x > 0.

The decreasing failure rate (DFR) and the decreasing failure rate in average (DFRA) aging paths
are defined by reversing the required monotonicity behaviour in Definition 3(i) and Definition 3(ii),
respectively. The new better than used in expectation (NBUE) property is also defined by revering the
side of the inequality in Definition 3(v).

Lemma 1. Let X ∈ DMSCL such that ξ ∈ (0, 1] (ξ ∈ [1, ∞)). Then the function δ given by

δ(x, ξ) =
ξvX(x)− ξx
ξvX(x)− x

is non-decreasing (non-increasing) in x ≥ 0 for all ξ in the specified intervals.
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Proof of Lemma 1. Take vX as differentiable over (0, ∞). We prove that (∂/∂x)δ(x, ξ) ≥ (≤)0, for all
x ≥ 0 and for any ξ ∈ (0, 1] (ξ ∈ [1, ∞)). One has

∂δ(x, ξ)

∂x
=

ξ(v′X(x)− 1)(ξvX(x)− x)− (ξv′X(x)− 1)(ξvX(x)− ξx)
(ξvX(x)− x)2

sign
= vX(x)− xv′X(x) + xξv′X(x)− ξvX(x)

= (1− ξ)vX(x)− (1− ξ)xv′X(x)

= (1− ξ)(vX(x)− xv′X(x))
sign
= (1− ξ)(d/dx)(1/E(XSC(x)))

≥ (≤) 0, for all x ≥ 0,

where a
sign
= b means that a and b have the same sign. The proof is completed.

In the situations where X and Y with common support (0, ∞) satisfy the IFR (or even the ultimately
IFR) property, the assumption of Theorem 1 is fulfilled. Furthermore, when X and Y possess the
(ultimately) DMRL ageing property, then trivially both mX(t)/t and mY(t)/t tend to zero when t is
closing to infinity and X and Y are equal in distribution in this case either. It can be shown that when
X and Y have IFRA property then for all t > 0 :

thX(t) ≥
∫ t

0
hX(x)dx, and thY(t) ≥

∫ t

0
hY(y)dy, (16)

and the requirement limt→∞
∫ t

0 hX(x)dx = limt→∞
∫ t

0 hY(y)dy = ∞ together with (16) makes the
assumption of Theorem 1 satisfied. Therefore, in all of these cases the model is valid if and only if
distributions of X and Y coincide each other and as a result preservation property for the foregoing
positive aging classes is an ineffective study. In spite of that, we can prove the following results. For the
IGFR class of distributions, we refer the readers to Lariviere and Porteus [34].

Theorem 3. Suppose that X and Y are as in the model. Then,

(i) For any ξ ≥ 1, X ∈ IMRL implies that Y ∈ IMRL.
(ii) For any ξ ≥ 1, X ∈ NWUE implies that Y ∈ NWUE.

(iii) For any ξ ≤ 1, X ∈ NBUE implies that Y ∈ NBUE.
(iv) For any ξ ≤ 1, X ∈ IGFR implies that Y ∈ IGFR.

Proof of Theorem 3. To prove (i), from the relationship between mY and mX in Theorem 2, we have
m′Y(t) = ξm′X(t) + (ξ − 1) which is non-negative for all t ≥ 0, by assumption. For proving (ii)
[(iii)], note that X ∈ NWUE [NBUE] yields vX(t)− vX(0) ≥ [≤]t, for all t ≥ 0 which concludes by
assumption that ξ(vX(t)− vX(0)) ≥ [≤]t, for all t ≥ 0, considering that vX(t)− vX(0) ≥ 0 for all
t ≥ 0, since vX is a non-decreasing function. It thus follows that ξvX(t)− t ≥ [≤]ξvX(0), for all t ≥ 0,
which is equivalent to mY(t) ≥ [≤]mY(0), for all t ≥ 0, i.e, Y ∈ NWUE [NBUE]. To prove the assertion
(iv), denote first by lY(t) = thY(t) and lX(t) = thX(t) the PHRs of X and Y, respectively. From the
construction of the model it follows that

lY(t) = t
ξv′X(t)

ξvX(t)− t

=
ξvX(t)− ξt
ξvX(t)− t

tv′X(t)
vX(t)− t

= δ(t, ξ)lX(t), for all t ≥ 0,



Mathematics 2020, 8, 1823 11 of 14

where δ is as defined in Lemma 1. From assumption, since X ∈ IGFR thus lX is non-decreasing,
and according to Theorem 20 in Kayid et al. [35], X ∈ DMSCL. On using Lemma 1, when ξ ≤ 1, δ(t, ξ)

is non-decreasing in t ≥ 0, which results Y ∈ IGFR.

The next result establishes preservation of some other ageing properties.

Theorem 4. Let X and Y be related as in the model such that X ∈ DMSCL. Then,

(i) For any ξ ≥ 1, X ∈ DFR implies that Y ∈ DFR.
(ii) For any ξ ≥ 1, X ∈ DFRA implies that Y ∈ DFRA.

(iii) For any ξ ≥ 1, X ∈ NWU implies that Y ∈ NWU.

Proof of Theorem 4. To prove (i), observe that hY(t) = δ(t, ξ)hX(t) for all t ≥ 0. By applying Lemma 1,
the result follows immediately. For the sake of proving (ii), notice that X ∈ DFRA, if and only if,∫ t

0 [hX(x)− hX(t)]dx ≥ 0, for all t ≥ 0. Since ξ ≥ 1 and X ∈ DMSCL thus Lemma 1 concludes that
δ(x, ξ) is non-negative and non-increasing in x ≥ 0. Therefore,

∫ t

0
[hY(x)− hY(t)]dx =

∫ t

0
[δ(x, ξ)hX(x)− δ(t, ξ)hX(t)]dx

≥
∫ t

0
[δ(t, ξ)hX(x)− δ(t, ξ)hX(t)]dx

= δ(t, ξ)
∫ t

0
[hX(x)− hX(t)]dx

≥ 0, for all t ≥ 0,

which clarifies that Y ∈ DFRA. To demonstrate (iii), be mindful of that X ∈ NWU if and only if,∫ x
0 [hX(u)− hX(u + t)]du ≥ 0, for all x ≥ 0 and for all t ≥ 0. Now, set ξt,x,ξ(u) = δ(u + t, ξ)I[u ≤ x],

where δ is as given in Lemma 1 and I[u ≤ x] is the indicator function of the set [u ≤ x]. It is clear from
assumption by using Lemma 1 that ξt,x,ξ(u) is non-increasing in u ≥ 0, for all x ≥ 0 and for all t ≥ 0,
with ξ ≥ 1. On that account, Lemma 7.1(b) in Barlow and Proschan [21] implies that∫ ∞

0
ξt,x,ξ(u)dWt(u) ≥ 0, for all t ≥ 0, x ≥ 0, (17)

where
dWt(u) = [hX(u)− hX(u + t)]du, u, t ≥ 0.

In contrast, since δ(x, ξ) is non-negative and non-increasing by assumption, thus∫ x

0
[hY(u)− hY(u + t)]du =

∫ x

0
[δ(u, ξ)hX(u)− δ(u + t, ξ)hX(u + t)]du

≥
∫ x

0
δ(u + t, ξ)[hX(u)− hX(u + t)]du

=
∫ ∞

0
ξt,x,ξ(u)[hX(u)− hX(u + t)]du,

=
∫ ∞

0
ξt,x,ξ(u)dWt(u), for all x, t ≥ 0,

which is non-negative from (17) and the result follows.

5. Conclusions

The PVIT model has some complementary role with respect to the so called PHR model.
The random varaibles X and Y are said to have PHR when hY(t) = θhX(t) for all t > 0 and for some
constant θ > 0 (see, e.g., Nanda and Das [36]). As in the PHR model, the data from lifetime of units
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that deteriorate with age could be used but in the PVIT model those units that recuperate with age
can be modelled. In a regression analysis problem, the vitality growth parameter ξ may be expressed
in terms of some covaraites, i.e., ξ = exp(btz) where b is a p× 1 vector of regression parameters,
and z is a p× 1 vector of covariates. On the ith individual is available a certain vector of observed
covariates zi. As a result, the factor zi in the study can be used to quantify some positive/negative
events. For example, in the PHR model zi, as a covariate, has two levels for the ith individual, zi = 0
describes a non-smoker and zi = 1 a smoker. In the PVIT model, zi = 0 if the ith individual does
not get enough exercises weekly, and zi = 1 if he/she does have bodily activity weekly enough. It
is well-known that if somebody is a smoker, the hazard rate of his/her lifetime increases, but if the
person is an athlete, his/her lifetime is improved in the sense of vitality function, relatively.

Specifically, in the current investigation, some simulation studies were carried out to detect
the accuracy of the PVIT model based on some data sets. The numerical iteration method of
Newton–Raphson has been adopted to estimate the parameters of the model. Several reliability
properties in the PVIT model, including some stochastic orders and some aging properties,
are discussed. In the future of this study, time dependent proportional vitalities model will be
considered.
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Appendix A

ti vX(ti) εi zi vY(ti)

0.055118644 0.5826780 −1.469364 × 10−2 1.733340 1.748034
0.143187920 0.7147819 −9.217576 × 10−3 2.135128 2.144346
0.155038920 0.7325584 6.771378 × 10−4 2.198352 2.197675
0.351670888 1.0275063 −4.836144 × 10−3 3.077683 3.082519
0.069925950 0.6048889 1.185490 × 10−2 1.826522 1.814667
0.235963384 0.8539451 1.350878 × 10−2 2.575344 2.561835
7.510316903 11.7654754 6.811129 × 10−5 35.296494 35.296426
0.288851648 0.9332775 −9.279590 × 10−3 2.790553 2.799832
0.301022689 0.9515340 7.740785 × 10−3 2.862343 2.854602
0.060425372 0.5906381 −2.384972 × 10−3 1.769529 1.771914
0.152692596 0.7290389 1.978634 × 10−2 2.206903 2.187117
0.632615584 1.4489234 −2.864548 × 10−3 4.343906 4.346770
0.473336937 1.2100054 −4.182921 × 10−3 3.625833 3.630016
3.562609349 5.8439140 −1.673617 × 10−3 17.530068 17.531742
1.347293897 2.5209408 4.364296 × 10−3 7.567187 7.562823
0.334250766 1.0013761 2.298771 × 10−3 3.006427 3.004128
0.166813852 0.7502208 2.516934 × 10−3 2.253179 2.250662
0.168756079 0.7531341 1.889646 × 10−2 2.278299 2.259402
0.076176952 0.6142654 2.181841 × 10−3 1.844978 1.842796
1.226728920 2.3400934 1.151333 × 10−2 7.031793 7.020280
0.230970644 0.8464560 6.008524 × 10−3 2.545376 2.539368
1.107529567 2.1612944 7.590414 × 10−3 6.491473 6.483883
3.417582958 5.6263744 −6.868880 × 10−3 16.872254 16.879123
0.268723365 0.9030850 −1.086299 × 10−2 2.698392 2.709255
0.396640979 1.0949615 −1.364035 × 10−2 3.271244 3.284884
1.083457155 2.1251857 5.666859 × 10−3 6.381224 6.375557
0.337826748 1.0067401 7.819611 × 10−3 3.028040 3.020220
0.075206569 0.6128099 −1.076559 × 10−2 1.827664 1.838430
0.071492330 0.6072385 3.152931 × 10−3 1.824868 1.821715
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0.282092216 0.9231383 −1.456236 × 10−2 2.754853 2.769415
0.020369897 0.5305548 −1.092742 × 10−3 1.590572 1.591665
0.328080191 0.9921203 −8.981199 × 10−3 2.967380 2.976361
0.714095647 1.5711435 6.633057 × 10−4 4.714094 4.713430
0.005927773 0.5088917 −2.410771 × 10−3 1.524264 1.526675
0.053527833 0.5802917 −2.033584 × 10−2 1.720539 1.740875
0.007627633 0.5114414 1.000426 × 10−2 1.544329 1.534324
0.086416609 0.6296249 1.238910 × 10−2 1.901264 1.888875
0.059584329 0.5893765 −2.509592 × 10−2 1.743034 1.768129
0.441831858 1.1627478 1.118656 × 10−2 3.499430 3.488243
0.173709168 0.7605638 −1.220161 × 10−2 2.269490 2.281691
0.263953279 0.8959299 2.713221 × 10−3 2.690503 2.687790
0.277541623 0.9163124 −7.574604 × 10−3 2.741363 2.748937
0.016202953 0.5243044 5.493229 × 10−3 1.578407 1.572913
0.077373355 0.6160600 −6.131611 × 10−3 1.842048 1.848180
0.921859508 1.8827893 1.077780 × 10−3 5.649446 5.648368
0.946334782 1.9195022 1.481825 × 10−3 5.759988 5.758507
0.490957913 1.2364369 3.594307 × 10−3 3.712905 3.709311
0.712953679 1.5694305 2.116783 × 10−4 4.708503 4.708292
0.731077502 1.5966163 −9.413487 × 10−3 4.780435 4.789849
0.122441762 0.6836626 −4.718849 × 10−4 2.050516 2.050988
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