

BCH 312 Experiment (5)

Preparation of Buffer Solutions by Different Ways

1) To learn how to prepare a buffer by different ways.

+ Introduction

For example: prepare 0.1 liters of 0.045 M sodium phosphate buff

pH 7.5 solution

Dissociation of phosphoric acid

 $H_{3}PO_{4} \xrightarrow{} H^{+} + H_{2}PO_{4}^{-} \qquad pK_{1} = 2.12$ $H_{2}PO_{4}^{-} \xrightarrow{} H^{+} + HPO_{4}^{-2} \qquad pK_{2} = 7.21$ $HPO_{4}^{-2} \xrightarrow{} H^{+} + PO_{4}^{-3} \qquad pK_{3} = 12.30$

The pH of this buffer is a little above the pka₂ of H₃PO₄, consequently, the two major ionic species present are H₂Po₄⁻⁻ (conjugate acid) and HPO₄⁻² (conjugate base) with the HPO₄⁻² predominating { since the pH of the buffer is slightly basic }

The buffer can be prepared in any one of several ways :

- By mixing NaH₂PO₄ (conjugate acid) and Na₂HPO₄ (conjugate base) in the proper proportions ,
- 2. By starting with H_3PO_4 and converting it to NaH_2PO_4 plus Na_2HPO_4 by adding the proper amount of NaOH ,
- 3. By starting with NaH_2PO_4 and converting a portion of it to Na_2HPO_4 by adding NaOH ,
- 4. By starting with Na_2HPO_4 and converting a portion of it to NaH_2PO_4 by adding a strong acid such as HCL,
- 5. By starting with Na_3PO_4 and converting it to NaH_2PO_4 plus Na_2HPO_4 by adding HCL ,and
- 6. By mixing Na_3PO_4 and NaH_2PO_4 in the proper proportions.

÷,

Regardless of which method is used, the first step involves calculating the proportion and amounts of the two ionic species in the buffer.

- Total no. of moles of phosphate buffer= M x V= 0.1 ×0.045 = 0.0045 moles
- $PH = PKa_2 + log [HPO_4^{-2}] / [H_2PO_4^{-2}]$
- Assume [A⁻] = y , [HA] = 0.045 y
- $7.5 = 7.2 + \log(y / 0.045 y)$
- $7.5-7.2 = \log(y/0.045-y)$
- $0.3 = \log(y / 0.045 y) \rightarrow \text{antilog of } 0.3 = 2 = y / 0.045 y$
- $Y = 0.09 2 y \rightarrow 3 y = 0.09$
- $Y = 0.9/3 = 0.03 \text{ M} = [\text{HPO}_4^{-2}] = [\text{A}^-]$
- $[H_2PO_4] = [HA] = 0.045 0.03 = 0.015 M$
- No. of moles of A⁻= M x V = 0.03 x 0.01 = 0.003 moles
- No. of moles of HA= M x V = 0.015 x 0.01 = 0.0015 moles

You are provided with concentrated (15M) H_3PO_4 and solution of 1.5 M NaOH .

Calculations:

Start with 0.0045 mole of H_3PO_4 and add 0.0045 moles of NaOH to titrate H_3PO_4 completely to give $H_2PO_4^-$ (HA), then add 0.003 moles of NaOH to titrate $H_2PO_4^-$ to give HPO_4^{-2} (A⁻) H₃PO₄ OH⁻ H₂PO₄⁻ OH⁻ H₂PO₄⁻ OH⁻ HPO 4⁻

No. of moles needed of NaOH= 0.0045+0.003= 0.0075 moles

- Volume of NaOH needed= no.of moles / M = 0.0075/ 1.5 = 0.005 L = 5 ml
- Volume of H_3PO_4 needed =no.of moles / M = 0.0045/15 = 0.0003 L = 0.3 ml

→ Add 5ml of NaOH to the 0.3 ml of concentrate H_3PO_4 , mix ; then add sufficient water to bring the final volume to 0.1 liters (100 ml), and check the pH

+

You are provided with solid NaH₂PO₄(HA) and solid NaOH Calculations

- Start with 0.0045 mole of NaH₂PO₄ and add 0.003 moles of NaOH to titrate to titrate NaH₂PO₄ to give Na₂HPO₄ (A⁻)
- Wt of NaH₂PO₄ needed = no.of moles x mwt =0.0045 x 141.98 =
 0.638 g
- Wt of NaOH needed = no. of moles x mwt = 0.003 x 40 =0.12 g
- Dissolve the NaH₂PO₄ and NaOH in some water, mix ; then add sufficient water to bring the final volume to 0.1 liters (100 ml), and check the pH

You are provided with solid Na₃PO₄ and 2 M solution of HCL

- Start with 0.0045 mole of Na₃PO₄ and add 0.0045 moles of HCl to titlete Na₃PO₄ completely to give Na₂HPO₄ (A⁻), then add 0.0015 moles of HCl to titrate Na₂HPO₄ to give NaH₂PO₄(HA)
- No. of moles needed of HCl= 0.0045+0.0015= 0.006 moles
- Volume of HCl needed= no.of moles / M = 0.006/2 = 0.003 L = 3 ml
- Wt of Na_3PO_4 needed = no.of moles x mwt = 0.0045 x 380.12 = 1.71 g

 \rightarrow Dissolve 1.71 g of Na₃PO in some water, mix ; then add 3 ml of HCl. Finally, add sufficient water to bring the final volume to 0.1 liters (100 ml), and check the pH

You are provided with solid NaH₂PO₄ (HA) and Na₃PO₄

• The NaH₂PO₄ (HA) and Na₃PO₄ react to from Na₂HPO₄ (A -). The NaH₂PO₄ acts as an acid and the Na₃PO₄ acts as a base.

 $H_2PO_4^- + PO_4^{3-} \Leftrightarrow 2 HPO_4^-$

- Note that each mole of NaH₂PO₄ and Na₃PO₄ yields 2 moles of Na₂HPO₄ → Thus to produce 0.003 mole of Na₂HPO₄, 0.0015 mole of NaH₂PO₄ and 0.0015 mole of Na₃PO₄ are required.
 ** But, in addition to the 0.003 mole of Na₂HPO₄, the final solution contains 0.0015 mole of NaH₂PO₄. Therefore, dissolve 0.0030 mole of NaH₂PO₄ and 0.0015 mole of Na₃PO₄ in water.
- Of the original 0.003 mole of NaH₂PO₄, 0.0015 mole reacts with the Na₃PO₄ to produce 0.0030 mole of Na₂HPO₄, leaving 0.0015 mole as NaH₂PO₄.
 You need 0.0015 mole of k3PO4.
- Wt of Na_3PO_4 = no.of moles × mwt = 0.0015 x 380.12 = 0.57 g
- Wt of NaH_2PO_4 = no. of moles x mwt = 0.003 x141.96 = 0.425 g
- Dissolve the NaH₂PO₄ and Na₃PO₄ in some water, mix, then add sufficient water to make 0.1 liters (100 ml) and check the pH