BCH 312
 Experiment (5)

Preparation of
Buffer Solutions by Different Ways

Objectives

1) To learn how to prepare a buffer by different ways.

Introduction

For example: prepare $\mathbf{0 . 1}$ liters of $\mathbf{0 . 0 4 5} \mathbf{~ M}$ sodium phosphate but
pH 7.5 solution
Dissociation of phosphoric acid

- The pH of this buffer is a little above the pka_{2} of $\mathrm{H}_{3} \mathrm{PO}_{4}$, consequently, the two major ionic species present are $\mathrm{H}_{2} \mathrm{Po}_{4}^{-}$(conjugate acid) and $\mathrm{HPO}_{4}{ }^{-2}$ (conjugate base) with the $\mathrm{HPO}_{4}{ }^{-2}$ predominating \{ since the pH of the buffer is slightly basic \}

The buffer can be prepared in any one of several ways :

1. By mixing $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ (conjugate acid) and $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ (conjugate base) in the proper proportions ,
2. By starting with $\mathrm{H}_{3} \mathrm{PO}_{4}$ and converting it to $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ plus $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ by adding the proper amount of NaOH ,
3. By starting with $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and converting a portion of it to $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ by adding NaOH ,
4. By starting with $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ and converting a portion of it to $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ by adding a strong acid such as HCL ,
5. By starting with $\mathrm{Na}_{3} \mathrm{PO}_{4}$ and converting it to $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ plus $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ by adding HCL , and
6. By mixing $\mathrm{Na}_{3} \mathrm{PO}_{4}$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ in the proper proportions .

- Regardless of which method is used, the first step involves calculating the proportion and amounts of the two ionic species in the buffer.
- Total no. of moles of phosphate buffer= $\mathrm{M} \times \mathrm{V}=0.1 \times 0.045=0.0045$ moles
- $\mathrm{PH}=\mathrm{PKa}_{2}+\log \left[\mathrm{HPO}_{4}^{-2}\right] /\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]$
- Assume $[\mathrm{A}-]=y,[\mathrm{HA}]=0.045-\mathrm{y}$
- $7.5=7.2+\log (\mathrm{y} / 0.045-\mathrm{y})$
- 7.5-7.2 = log (y / 0.045-y)
- $0.3=\log (y / 0.045-y) \rightarrow$ antilog of $0.3=2=y / 0.045-y$
- $\mathrm{Y}=0.09-2 \mathrm{y} \rightarrow 3 \mathrm{y}=0.09$
- $\mathrm{Y}=0.9 / 3=0.03 \mathrm{M}=\left[\mathrm{HPO}_{4}^{-2}\right]=[\mathrm{A}-]$
- $\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=[\mathrm{HA}]=0.045-0.03=0.015 \mathrm{M}$
- No. of moles of $A=M \times V=0.03 \times 0.01=0.003$ moles
- No. of moles of $\mathrm{HA}=\mathrm{M} \mathrm{xV}=0.015 \times 0.01=0.0015$ moles

You are provided with concentrated (15M) $\mathrm{H}_{3} \mathrm{PO}_{4}$ and solution of 1.5 M NaOH .

Calculations:

■ Start with 0.0045 mole of $\mathrm{H}_{3} \mathrm{PO}_{4}$ and add 0.0045 moles of NaOH to titrate $\mathrm{H}_{3} \mathrm{PO}_{4}$ completely to give $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{HA})$, then add 0.003 moles of NaOH to titrate $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$to give $\mathrm{HPO}_{4}^{-2}\left(\mathrm{~A}^{-}\right)$
$\mathrm{H}_{3} \mathrm{PO}_{4} \xrightarrow{\mathrm{OH}^{-}} \mathrm{H}_{2} \mathrm{PO}_{4}^{-} \longrightarrow \mathrm{OH}^{-} \longrightarrow \mathrm{HPO}_{4}^{-}$
■ No. of moles needed of $\mathrm{NaOH}=0.0045+0.003=0.0075$ moles

■ Volume of NaOH needed= no.of moles $/ \mathrm{M}=0.0075 / 1.5=0.005 \mathrm{~L}=5 \mathrm{ml}$
■ Volume of $\mathrm{H}_{3} \mathrm{PO}_{4}$ needed $=$ no. of moles $/ \mathrm{M}=0.0045 / 15=0.0003 \mathrm{~L}=\mathbf{0 . 3} \mathbf{~ m l}$
\rightarrow Add 5 ml of NaOH to the 0.3 ml of concentrate $\mathrm{H}_{3} \mathrm{PO}_{4}$, mix ; then add sufficient water to bring the final volume to 0.1 liters (100 ml), and check the pH

You are provided with solid $\mathrm{NaH}_{2} \mathrm{PO}_{4}(\mathrm{HA})$ and solid NaOH

Calculations

■ Start with 0.0045 mole of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and add 0.003 moles of NaOH to titrate to titrate $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ to give $\mathrm{Na}_{2} \mathrm{HPO}_{4}\left(\mathrm{~A}^{-}\right)$

- Wt of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ needed $=$ no. of moles \times mwt $=0.0045 \times 141.98=$ 0.638 g

■ Wt of NaOH needed $=$ no. of moles $\times \mathrm{mwt}=0.003 \times 40=\mathbf{0 . 1 2} \mathbf{g}$

- Dissolve the $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and NaOH in some water, mix ; then add sufficient water to bring the final volume to 0.1 liters (100 ml), and check the pH

You are provided with solid $\mathrm{Na}_{3} \mathrm{PO}_{4}$ and 2 M solution of HCL

- Start with $\mathbf{0 . 0 0 4 5}$ mole of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ and add 0.0045 moles of HCl to tit $\mathrm{Na}_{3} \mathrm{PO}_{4}$ completely to give $\mathrm{Na}_{2} \mathrm{HPO}_{4}\left(\mathrm{~A}^{-}\right)$, then add $\mathbf{0 . 0 0 1 5}$ moles of HCl to titrate $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ to give $\mathrm{NaH}_{2} \mathrm{PO}_{4}(\mathrm{HA})$

■ No. of moles needed of $\mathrm{HCl}=0.0045+0.0015=0.006$ moles

- Volume of HCl needed= no.of moles $/ \mathrm{M}=0.006 / 2=0.003 \mathrm{~L}=3 \mathrm{ml}$
- Wt of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ needed $=$ no. of moles x mwt $=0.0045 \times 380.12=1.71 \mathrm{~g}$
\rightarrow Dissolve 1.7 g g of $\mathrm{Na}_{3} \mathrm{PO}$ in some water, mix ; then add 3 ml of HCl .
Finally, add sufficient water to bring the final volume to 0.1 liters (100 ml), and check the pH

You are provided with solid $\mathrm{NaH}_{2} \mathrm{PO}_{4}(\mathrm{HA})$ and $\mathrm{Na}_{3} \mathrm{PO}_{4}$

- The $\mathrm{NaH}_{2} \mathrm{PO}_{4}(\mathrm{HA})$ and $\mathrm{Na}_{3} \mathrm{PO}_{4}$ react to from $\mathrm{Na}_{2} \mathrm{HPO}_{4}\left(\mathrm{~A}^{-}\right)$. The $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ acts as an a and the $\mathbf{N a}_{3} \mathbf{P O}_{4}$ acts as a base .

$$
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{PO}_{4}{ }^{3-} \leftrightarrows 2 \mathrm{HPO}_{4}^{-}
$$

- Note that each mole of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and $\mathrm{Na}_{3} \mathrm{PO}_{4}$ yields 2 moles of $\mathrm{Na}_{2} \mathrm{HPO}_{4} \rightarrow$ Thus to produce 0.003 mole of $\mathrm{Na}_{2} \mathrm{HPO}_{4}, 0.0015$ mole of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and 0.0015 mole of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ are required. ** But, in addition to the 0.003 mole of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$, the final solution contains 0.0015 mole of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$. Therefore , dissolve 0.0030 mole of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and 0.0015 mole of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ in water .

■ Of the original 0.003 mole of $\mathrm{NaH}_{2} \mathrm{PO}_{4}, 0.0015$ mole reacts with the $\mathrm{Na}_{3} \mathrm{PO}_{4}$ to produce 0.0030 mole of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$, leaving 0.0015 mole as $\mathrm{NaH}_{2} \mathrm{PO}_{4}$.
-You need 0.0015 mole of k3PO4 .

■ Wt of $\mathrm{Na}_{3} \mathrm{PO}_{4}=$ no. of moles $\times \mathrm{mwt}=0.0015 \times 380.12=\mathbf{0 . 5 7} \mathbf{g}$

■ Wt of $\mathrm{NaH}_{2} \mathrm{PO}_{4}=$ no. of moles x mwt $=0.003 \times 141.96=\mathbf{0 . 4 2 5} \mathbf{g}$

- Dissolve the $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and $\mathrm{Na}_{3} \mathrm{PO}_{4}$ in some water, mix, then add sufficient water to make 0.1 liters $(100 \mathrm{ml})$ and check the pH

