PREPARATION OF DIFFERENT BUFFER SOLUTION

OBJECTIVES

- 1. To understand the nature of buffers solutions.
- 2. To learn how to prepare buffers.

BUFFERS

- Biological life cannot withstand changes in hydrogen ion concentrations which we measure as the pH.
- All biochemical reactions occur under strict conditions of the concentration of hydrogen ion.
- **Buffers** are Those solutions that have the ability to resist changes in pH.

 A buffer is a solution that resists changes in pH upon the addition of limited amounts of acid or base.

There are two types of buffers:

Acidic buffer

are made from a weak acid and its salts

Example:

CH3COOH-CH3COONa

- CH3COOH weak acid
- CH3COO-Na+ -SALT(CONJUGATED BASE)

Basic buffer

are made from a weak base and its salts

Example:

NH3-NH4CL

- NH3-weak base
- NH4Cl –
 SALT(CONJUGATED acid)

HOW BUFFERS CAN RESIST THE CHANGE IN PH?

- Example: acidic buffer (CH3COOH,CH3COO-)
- When H+ ions are added to the system they will react with the conjugate base in the buffer as follows,
- CH3COO- + H+ ----> CH3COOH
- When OH- ions are added they will react with the conjugate acid in the buffer as follows,
- CH3COOH + OH---->CH3COO- + H2O
- **NOTE**: It resists pH changes when it's two components are present in specific proportions
- As soon as you run out of one of the forms you no longer have a buffer

HENDERSON HASSELBALCH EQUATION

- The Henderson-Hasselbalch equation is an equation that is often used to perform the calculations required in preparation of buffers for use in the laboratory.
- pH=pKa+log[A-]/[HA]
- This equation is derived from acid dissociation constant:
- Ka = [H +][A]/[HA]
- A buffer is best used close to its pKa
- To act as a good buffer the pH of the solution must be within one pH unit of the pKa.

Exp (1): Nature of buffers

- You are provided with: 0.2M solution of CH3COOH,0.2M solution of CH3COONa.
- Determine for your acid-base pair which is the acid component and which is the base component.
- Calculate the volume that you must take from CH3COOH and CH3COONa (the final volume of the solution =20 ml)
- pKa of CH3COOH= 4.76

SOLUTION	ml HA	ml A-	Final volume	CALCULAT ED pH	MEAURED pH
100%HA	20 ml	0	20 ml	2.72	
75%HA, 25%A-	15 ml	5 ml	20 ml	4.28	
50%HA, 50%A-	10 ml	10 ml	20 ml	4.76	
25%HA, 75%A-	5 ml	15 ml	20 ml	5.24	

PH CALCULATIONS

Calculated pH:

** 100% HA:

pH =
$$(pKa + p[HA])/2$$

p[HA]= $-log 0.2 = 0.69$
pH = $(4.76 + 0.69)/2 = 2.72$

** 75%HA , 25% A-

PH CALCULATIONS

** 50%HA, 50% A-

PH = Pka + log [A-]/[HA]

PH = 4.76 + log [A-]/[HA]

no.of moles of A-= Mx V(in L)

=0.2 x 0.01=. 0.002 moles

No. of moles of HA = 0.2×0.01

= 0.002 moles

pH = 4.76 + log (0.002/0.002)

=4.76

** 25%HA , 75% A-

PH = Pka + log [A-]/[HA]

PH = 4.76 + log [A-]/[HA]

no.of moles of A-= Mx V(in L)

=0.2 x 0.015=. 0.003 moles

No. of moles of HA = 0.2×0.005

= 0.001 moles

pH = 4.76 + log (0.003/0.001)

=5.24

EXP (2): PREPARATION OF BUFFER

 You are provided with 0.2M solution of acetic acid and solid sodium acetate, pKa =4.76).Prepare 45ml of a 0.2M acetate buffer pH =4.86.

CALCULATIONS

- 0.2 M acetic acid
- Solid sodium acetate
- Pka = 4.76
- Final volume of buffer =45ml
- Buffer concentration = 0.2 M
- Buffer Conc. = [HA] + [A-] = 0.2 M

$$[HA] = 0.2-y$$

$$4.86 = 4.76 + \log \frac{y}{0.2 - y}$$

$$0.1 = log _{0.2 -y}$$

$$1.258 = \frac{y}{0.2 - y}$$

```
- [HA] :
No. of mole = 0.09 X 0.045 = 4.05 x10-3 mole
*M of buffer = no. of mole / V
0.2 = 4.05 x10-3 /V
V = 0.0202 L = 20 ml
```

-[A] :

No. of mole = 0.11×0.045 = 4.95×10^{-3} mole * wt (g) of A- = $4.95 \times 10^{-3} \times 82$ = 0.41 g

** take 20 ml from acetic acid and 0.41 g from Solid sodium acetate and complete volume to 45 ml H2O.(0.2 M acetate buffer)

EXP(3): TESTING FOR BUFFERING BEHAVIOR

• **Table 3.** For the 0.2M acetate buffer prepare:

Solution(10 of	Measured	Add 2M	pH after
each)	рН	HCI(0.1ml)	HCI
0.2M acetate			
buffer.			
o.2M KCI.			