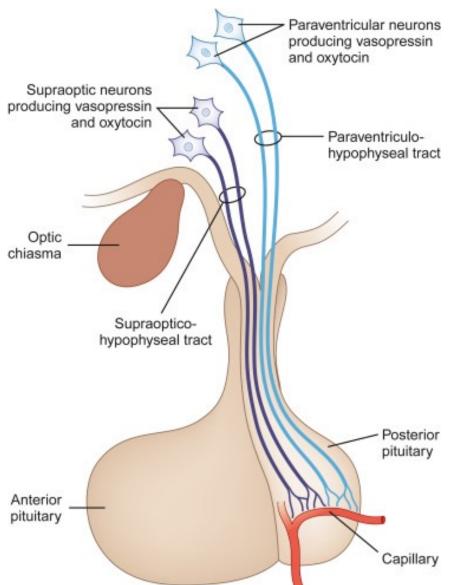

Posterior pituitary hormones


Posterior Pituitary: neurohypophysis

- **Posterior pituitary**: an outgrowth of the hypothalamus composed of neural tissue.
- Hypothalamic neurons pass through the neural stalk and end in the posterior pituitary.

Hypothalamus and posterior pituitary

magnocellular neurons paraventricular (PVN) and supraoptic(SON) nuclei secrete ADH (vasopressin) and oxytocin directly into the posterior lobe

Posterior Pituitary

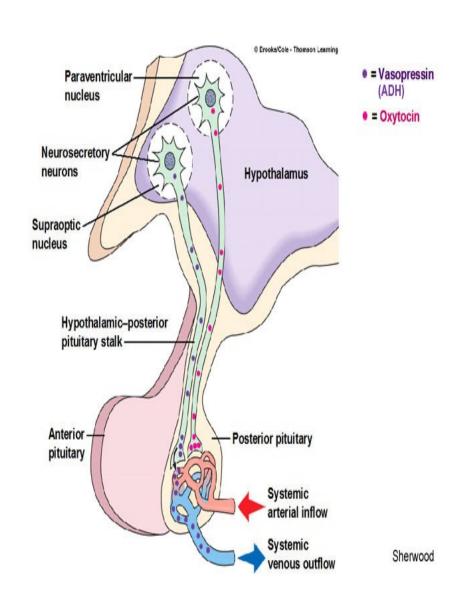
- Posterior pituitary hormones are actually <u>produced</u> in the hyopthalamus and <u>only stored</u> in the posterior pituitary.
- Posterior pituitary hormones are:
- 1- Antidiuretic hormone (ADH) (Also call vasopressin)
- 2- Oxytocin

Both hormones are produced in hypothalamic nuclei:

- Supraoptic nucleus (SON) → (ADH mainly)
- Paraventricular nucleus (PVN) \rightarrow (Oxytocin mainly)

Both hormones are nanopeptides, each contains 9
 amino acid residues, 2 cysteine residues at position 1 and
6 linked by disulfide bridge.

Cys-Tyr-Phe-Gln-Asn-Cys-Pro-Arg-gly-NH2 Arginine vasopressin in mammals


S S Cys-Tyr-Phe-Gln-Asn-Cys-Pro-Lys-gly-NH2 Lysine vasopressin in pigs

• Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Arg-gly-NH2 Oxytocin

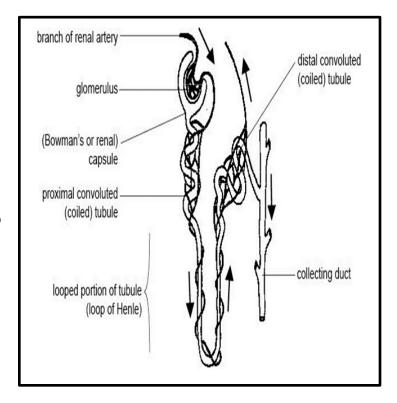
Groups related to physiological action:

- 1-2 cys residues.
- 2- Disulfide bonds
- 3-3 carboxyamide groups
- 4- OH-group of tyrosine
- Both are transported slowly along the

'hypothalamo-posterior
pituitary stalk' in combination
with carrier protein called
'neurophysin', to the
nerve endings in the posterior
pituitary gland where they are
stored.

Posterior Pituitary Hormones

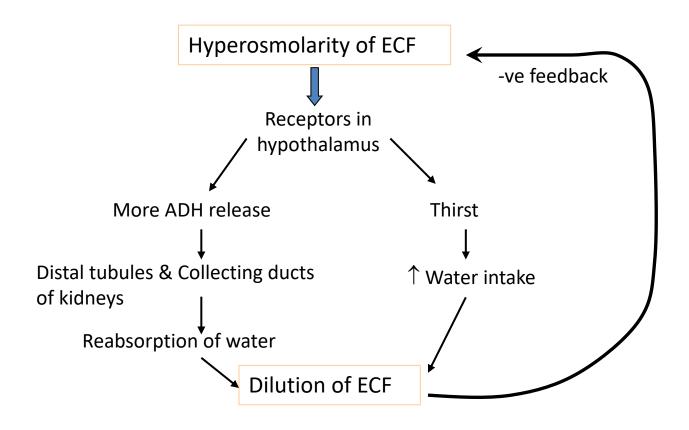
- ADH contributes to <u>fluid balance</u> by
 - Controlling renal reabsorption of water (water retention)
 - It also has potent vasoconstrictive properties.
- Oxytocin
 - Function
 - Lactation
 - Stimulates milk let down
 - Stimulator of smooth muscle (uterine)
 - Synthetic oxytocin
 - » Used to induce or enhance labor contractions


1. ADH (vasopressin):

- Antidiuretic hormone (ADH), or arginine vasopressin
 (AVP), is produced mainly in Supraoptic nucleus (SON) of hypothalamus.
- ADH activates (2) second messenger systems:
 - 1. cAMP
 - 2. IP₃/Ca²⁺

Action of ADH ADH has 2 main effects:

 ↑ water re-absorption (retention) by distal tubules & collecting ducts of the kidneys → decrease osmotic pressure of the blood.


^{*} This effect is regulated by V₂ receptors, through the action of cAMP.

- Contraction of vascular smooth muscles → generalized vasoconstriction.
 - * This effect is regulated by V_1 receptors, through the action of IP_3/Ca^{2+} .

Control of ADH release

1. \uparrow in osmotic pressure of the ECF (\uparrow in plasma osmolality), as in dehydration which will stimulate osmoreceptors in the hypothalamus $\rightarrow \uparrow$ ADH.

Control of ADH release

2. \downarrow blood volume (\geq 10%) \rightarrow stimulate mechanoreceptors in the great arteries & right atrium \rightarrow \uparrow ADH.

Control of ADH release.

- 3. \downarrow arterial blood pressure, due to \downarrow blood volume \rightarrow \uparrow ADH.
- 4. Age: $\rightarrow \uparrow$ ADH secretion \rightarrow water retention & hyponatremia (\downarrow Na+ conc. In blood).
- 5. Pain, emotional stress & physical trauma $\rightarrow \uparrow$ ADH secretion.
- 6. Drugs, e.g. morphine, barbiturates, & nicotine $\rightarrow \uparrow$ ADH secretion.
- 7. Alcohol $\rightarrow \downarrow$ ADH secretion.

Abnormalities of ADH release – Hyposecretion:

- Lack of ADH → Diabetes insipidus. (DI)
 - 2 types of DI: a. Neurogenic (central) (primary DI) ...
 - -Disease in Hypothalamus or Post pituitary gland
 - Insufficient amount of ADH
 is secreted by hypothalamus due basal skull fracture
 Treatment: ADH.
 - b. Hereditary Nephrogenic DI ...

ADH is secreted normally resistance of V₂receptors in collecting ducts of the kidney

- No ADH is needed as treatment.

Symptoms: Polyurea (excretion of large volume of diluted urine) ≈ 20 L/day (N ≈ 1.5 L/d)

<u>Polydepsia</u> (thirst sensation), <u>loss of electrolytes</u>

 \downarrow specific gravity of urine (diluted urine),

↑ plasma osmolality.

Abnormalities of ADH release – Hypersecretion:

Excess: Syndrome of Inappropriate ADH secretion (SIADH)

■ ↑ ADH:

- \rightarrow occurs after surgery.
 - adenoma.

Signs & Symptoms:

- Hyponatremia, i.e. [Na+] \downarrow extracellularly to 110 mM. (N = 140 mM); resulting in:
 - Mental confusion.
 - Coma.
 - Death, due to ventricular fibrillation.

The posterior pituitary hormones – 2. Oxytocin:

* Produced mainly in the paraventricular (PVN) nucleus of the hypothalamus & stored in the posterior pituitary

Action of oxytocin

- 1. Contraction of smooth muscles of the uterus \rightarrow at the time of labor (delivery).
- Contraction of mammary gland myoepithelial cells of the alveoli & the ducts during suckling → Ejection of milk (milk letdown) as a reflex in lactating women.

Mammary Function

Oxytocin

 Causes contraction of myoepithelial cells, allowing milk ejection (release)

Prolactin

- Synthesis & production of milk.
- Growth of mammary glands

Control of oxytocin release

- 1. Stimulation of nipple (suckling reflex) $\rightarrow \uparrow$ oxytocin.
- 2. Visual or auditory stimuli from the baby $\rightarrow \uparrow$ oxytocin secretion.
- 3. Distension of uterus & stretching of cervix during delivery $\rightarrow \uparrow$ oxytocin release.
- 5. Psychological & emotional factors, e.g. Fear, anxiety & pain $\rightarrow \downarrow$ oxytocin.
- 6. Alcohol $\rightarrow \downarrow$ oxytocin secretion.
- 7. Hormones: a. progesterone $\rightarrow \downarrow$ uterine sensitivity to oxytocin. b. estrogen $\rightarrow \uparrow$ uterine sensitivity to oxytocin.