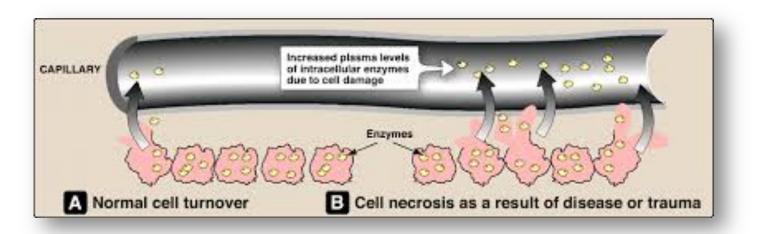


Determination of plasma enzymes Determination of LDH in serum

Objectives

- To determine the level of LDH in serum.
- To evaluate the presence of tissue damage.

Most clinical enzyme measurements using serum or plasma, occasionally other fluids, such as urine and gut secretions, are investigated.



Differences of Functional and Nonfunctional plasma enzymes

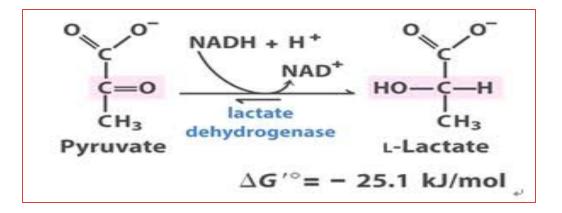
	Functional plasma enzymes	Nonfunctional plasma enzymes	
Their substrate	Always present in the blood	Absent from the blood	
Site of synthesis	Liver Different organs e.g. liver, heart, muscles, and b		
Effect of diseases	Decrease in liver diseases	Different enzymes increase in different organ diseases	
Examples	Clotting factors Lipoprotein Lipase	ALT LDH Acid Phosphatase Amylase	

Sources of Nonfunctional Plasma Enzyme

- <u>Cell damage</u> with the release of its content of enzymes into blood e.g. Myocardial infarction and viral hepatitis
- <u>Obstruction of normal pathways</u> e.g. Obstruction of bile duct increases alkaline phosphatase
- <u>Increase of the enzyme synthesis</u> e.g. bilirubin increases the rate of synthesis of alkaline phosphatase in obstructive liver disease
- Increased permeability of cell membrane as in hypoxia

Medical Importance of Non Functional Plasma Enzymes

Measurement of non functional enzymes is important for:


- Diagnosis of diseases
- Prognosis of the disease: following up of the treatment by measuring plasma enzymes before and after treatment.

Lactate Dehydrogenase (LDH)

- Lactic acid dehydrogenase (LDH) is an enzyme that helps produce energy.
- LDH is most often measured to evaluate the presence of tissue damage (diagnostic)
- The enzyme LDH is in many body tissues, especially the heart, liver, kidney, skeletal muscle, brain, blood cells, and lungs.

LDH Reaction

- LDH is a hydrogen transfer enzyme which catalyzes the interconversion of pyruvate and lactate with the mediation of NAD as hydrogen acceptor, eventually converting pyruvate to glucose.
- The optimum pH for lactate pyruvate (L \rightarrow P) reaction is 8.8 9.8
- While for pyruvate to lactate ($P \rightarrow L$) is 7.7 7.8.
- The enzyme is inhibited by sulfhydryl reagents and mercuric ions.

LDH Isoenzyms

- LDH exists in 5 forms (isoenzymes), which differ slightly in structure.
- All of these isoenzymes can be measured in the blood, and can be separated by electrophoresis.

LDH isoenzyme	Tissues	
LDH-1	is found primarily in heart muscle and red blood cells.	
LDH-2	is concentrated in while blood cells.	
LDH-3	is highest in the lung	
LDH-4	is highest in the kidney, placenta, and pancreas	
LDH-5	is highest in the liver and in skeletal muscle	

	Diseases	Examples
	Myocardial infarction	
	Liver Disease	Toxic jaundice
ALDH		Viral hepatitis
		Obstructive jaundice
in plasma		Pernicious anemia
	Anemia	Megaloblastic anemia
	Renal Diseases	Tubular necrosis
		Pyelonephritis
	Malignant Disease	Lung Cancer
		Hodgkin's disease

Principle: LDH catalysis the following reaction: L-Lactate + NAD+ → Pyruvate +NADH + H+ The rate of NADH formation is indicated by increase the absorbance at 340nm and it is directly proportional to serum LDH activity. If: NADH is product : increase the absorbance /min

NADH is reactant: decrease the absorbance /min

Method

	Tube			
LDH reagent	1 ml			
Pre-warm at 37 °C for 3 minutes and add				
Sample (serum)	25 µl			
Mix and incubate at 37 °C for 1 minutes, then read the absorbance at				
340 nm against distilled water (blank) every minute for 3 minutes and				
determine ΔA/min.				

2) Applications \rightarrow 2) Simple Kinetics \rightarrow wave length (340 nm) \rightarrow 1) Seconds \rightarrow Duration (180 sec = 3 min) \rightarrow Intervals (60 sec= 1 min) \rightarrow Print Data Table (off) \rightarrow Press start (2 times)

Results

	Time (min)	Absorbance at 340 nm
A1	1	
A2	2	
A3	3	

Calculations

$$\Delta A_1, = A_2 - A_1$$

$$\rightarrow \quad \Delta A/\min = (\Delta A_1 + \Delta A_2) / 2$$

$$\Delta A_2 = A_3 - A_2$$

LDH (U/L) = $\Delta A \times 6592$

• Normal Values 109 to 245 U/L