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Coordination System

1. Cartesian Coordinate System

v" In this Chapter, we use the Cartesian Coordinate System
horizontal and vertical axes intersect at a point d

origin .

v/ Cartesian coordinates are also called
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Designation of points in a Cartesian
coordinate system. Every point is ¢
labelled with coordinates (; J).

2. Polar Coordinate System

Sometimes it is more convenient
to represent a point in a plane by
its plane polar coordinates(r,0),
as shown in Figure.

In this Polar Coordinate System,
ris the distance from the origin
to the point having Cartesian
coordinates (x, J), and 0 is the
angle between a line drawn from
the origin to the point and a fixed
axis.
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Active Figure 3.2 (a) The plane
polar coordinates of a point are
represented by the distance rand
the angle @, where # is measured
counterclockwise from the positive
x axis. (b} The right triangle used

o relate (x, _‘."I oy (o B, 6




The Relation between Cartesian and

Polar Coordinate Systems

From the right triangle in the
figure, we find that
sin@ = yir

and, cos0=x/r

Therefore, starting with the plane

polar coordinates of any point,
we can obtain the Cartesian
coordinates by using the
equations:

)
tan fl = —
x

rcos

0

rsin ¢ =432 + 42

sinfd = =
cos f = —‘
?

.‘I
v
tan & = =
x

(b}

Active Figure 3.2 (a) The plane
polar coordinates of a point are
represented by the distance rand
the angle #, where f is measured
counterclockwise from the positive
xaxis. (b) The right triangle used
to relate (x, y) to (r, #).

Example

The Cartesian coordinates of a point in thex-y plane are
(x, ) = (-3.50, -2.50) m. Find the polar coordinates of this point.

Example 3.1 Polar Coordinates

The Cartesian coordinates of a point in the xy plane are
(x y) = (—3.50, —2.50) m, as shown in Figure 3.3. Find the
polar coordinates of this point.

Solution For the examples in this and the next two chap-
ters we will illusirate the use of the General Problem-Solving

yim)

el
A

(—3.50, —2.50)
e M | | |

Active Figure 3.3 (Example 3.1) Finding polar coordinates
when Cartesian coordinates are given.

ff At the Active Figures link at http:/ /www.pse6.com,
you can move the point in the xy plane and see how its
Cartesian and polar coordinates change.

Strategy outlined at the end of Chaper 2. In subsequent
chapters, we will make fewer explicit references to this strat-
egy, as you will have become familiar with it and should be
applying it on vour own. The drawing in Figure 3.3 helps us
to coneeptualize the problem. We can categorize this as a plug-
in problem. From Equation 3.4,

r=x+ 32 = (=350 m)? + (-250m)? = 4.30m
and from Equation 3.3,

1 — 250
). Z.0U0 M

Enfl=—= ———— =

X

0.714
—3.50m

216°
Note that you must use the signs of x and y to find that the

point lies in the third quadrant of the coordinate system.
Thatis, # = 216° and not 35.5%.




Vector and Scalar Quantities

A Scalar Quantity is completely specified by a single value with
an appropriate unit and has no direction.

Examples of scalar quantities are volume, mass, speed, and
time intervals.

A Vector Quantity is completely specified by a number and
appropriate units plus a direction.

Examples of a vector quantity is displacement and velocity.

In this text, we use a boldface letter, such as A, to represent a vector quantity. An-
other notation is useful when boldface notation is difficult, such as when writing on pa-
per or on a chalkboard—an arrow is written over the symbol for the vector: A. The
magnitude of the vector A is written either A or |A|. The magnitude of a vector has
physical units, such as meters for displacement or meters per second for velocity. The
magnitude of a vector is always a positive number.

QU !Ck Quiﬁ 3.1 Which of the following are vector quantities and which are

scalar quantities? (a) your age (b) acceleration (c) velocity (d) speed (e) mass
10




Some Properties of Vectors

Equality of Two Vectors

For many purposes, two vectors Aand B may be defined to be equal if they have the
same magnitude and point in the same direction. That is, A=B onlyif A = Band if A
and B point in the same direction along parallel lines. For example, all the vectors in
Figure 3.5 are equal even though they have different starting points. This property al-
lows us to move a vector to a position parallel to itself in a diagram without affecting
the vector.

e

0 / / .

/

Figure 3.5 These four vectors are
equal because they have equal
lengths and point in the same
direction.

Adding Vectors

The rules for adding vectors are conveniently described by graphical methods. To add
vector B to vector A, first draw vector A on graph paper, with its magnitude repre-
sented by a convenient length scale, and then draw vector B to the same scale with its
tail starting from the tip of A, as shown in Figure 3.6. The resultant vector R =
A + B is the vector drawn from the tail of A to the tip of B.

| |
N
/ﬂ
—W ) /
Y.
4.0 m —|
Active Figure 3.6 When vector B
7/ is added to vector A, the resultant
/9 . |(4_(]) ae R is the vector that runs from the
=tan~'| 55| = . o f
. 3.0 tail of A to the tip of B.
T
3.0m
L]

Vector addition. Walking first 3.0 m
due east and then 4.0m due north leaves you

2 . 12
5.0 m from your starting point.




A geometric construction can also be used to add more than two vectors. This is
shown in Figure 3.8 for the case of four vectors. The resultant vector R=A+ B +
C + D is the vector that completes the polygon. In other words, R is the vector drawn
from the tail of the first vector to the tip of the last vector,
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Figure 3.8 Geometric construc-
tion for summing four vectors. The
resultant vector R is by definition
the one that completes the
polygon.
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When two vectors are added, the sum is independent of the
order of the addition. (This fact may seem trivial, the order is
important when vectors are multiplied). This can be seen from
the geometric construction inFigure 3.9and is known as the
commutative law of addition:

A+B=B+A

Figure 3.9 This construction
shows that A+ B =B + A—in
other words, that vector addition
is commutative,

14




When three or more vectors are added. their sum is independent of the way in
which the individual vectors are grouped together. A geometric proof of this rule
for three vectors is given in Figure 3.10. This is called the associative law of

addition:
A+ B+C) =A+B) +C (3.8)

In summary, a vector quantity has both magnitude and direction and also
obeys the laws of vector addition as described in Figures 3.6 to 3.10. When two or

Associative Law

Figure 3.10 Geometric constructions for verifying the associative law of addition.

Negative of a Vector

The negative of the vector A is defined as the vector that when added to A gives zero
for the vector sum. Thatis, A + (—A) = 0. The vectors A and — A have the same mag-
nitude but point in opposite directions. 15

Subtracting Vectors

The operation of vector subtraction makes use of the definition of the negative of a
vector. We define the operation A — B as vector — B added to vector A:

A-B=A+(—B) (38.7)

The geometric construction for subtracting two vectors in this way is illustrated in
Figure 3.11a.

Another way of looking at vector subtraction is to note that the difference A—-B
between two vectors A and B is what you have to add to the second vector to obtain the
first. In this case, the vector A — B points from the tip of the second vector to the tip
of the first, as Figure 3.11b shows.

Vector Subtraction

(a) (b)

Figure 3.11 (a) This construction shows how to subtract vector B from vector A. The

vector — B is equal in magnitude to vector B and points in the opposite direction. To

subtract B from A, apply the rule of vector addition to the combination of A and — B:

Draw A along some convenient axis, place the tail of — B at the tip of A, and C is the
difference A — B. (b) A second way of looking at vector subtraction. The difference 16
vector C = A — B is the vector that we must add to B to obtain A.




Example 3.2 A Vacation Trip

A car travels 20.0 km due north and then 35.0 km in a di-
rection 60.0° west of north, as shown in Figure 3.12a. Find
the magnitude and direction of the car’s resultant

displacement.
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Figure 3.12 (Example 3.2) (a) Graphical method for
finding the resultant displacement vector R = A + B.
(b) Adding the vectors in reverse order (B + A) gives
the same result for R.
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The second way to solve the problem is to analyze it al-
gebraically. The magnitude of R can be obtained from
the law of cosines as applied to the triangle (see Appendix
B.4). With 6= 180° — 60° = 120° and R?*= A%+ B? —
2AB cos 0, we find that

== \.lr.-lf + B® — 2ABcos@

= V(20.0 km)2 + (35.0 km)2 — 2(20.0 km)(35.0 km) cos 120°

= 48.2 km

sinf8  sinf
B R

] B 350km W E—
sinf3 = B sinfl = 182 km sin 120° = 0.629

B = 39.0°

The resultant displacement of the car is 48.2 km in a direc-
tion 39.0° west of north.

18




3.4 Components of a Vector and Unit Vectors

The graphical method of adding vectors is not recommended whenever high accuracy
is required or in three-dimensional problems, In this section, we describe a method of A

-

adding vectors that makes use of the projections of vectors along coordinate axes. a
These projections are called the components of the vector. Any vector can be com- o A

pletely described by its components.
From Figure 3.13 and the definition of sine and cosine, we see that cos # = A4,/A

and that sin § = A;/A. Hence, the components of Aare
A= Acos b (3.8)
A, = Asin § (3.9)

These components form two sides of a right triangle with a hypotenuse of length A.

Thus, it follows that the magnitude and direction of A are related to its components - . -

through the expressions o A

A=Al + A2 3.10) (b)
i Figure 3.13 (a) A vecior A lving in
i A. the X pl:{ru: can be repr@sa:nted h}:
f = tan : ("“L) (3.11) ils component vectors A and A,
x (b) The y component vector ..’L_l- can
be moved to the ndght so that it
Note that the signs of the components 4, and 4, depend on the angle 6. For . q4: 16 A The ,L_.L.E,_Gr i
example, if § = 120°, then A, is negative and Ay is positive. If § = 225°, then both 4,  component vectors is A These
i < three vectors form a right triangle.

19

and AT are negative. Figure 3.14 summarizes the signs of the components when A lies

in the various quadrants.

Vectors: Rules of addition

* Trigonometric Rule
— Law of Sines

— Law of Cosine

Sine law:

A B . C 5 3
sina sinbh sinc C=VA*+ B*—2ABcosc

Cosine law:

20




Figure 3.14 summarizes the signs of the components
when A lies in the various quadrants

"l
A, negalive A, positive
A, positive A, positive
X
A, negalive A, positive
;1.1'. neoativ ;'l}. neoative

Figure 3.14 The signs of the com-
ponents of a vector A de pt;*ml on
the quatlrant in which the vector is

located.
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Unit Vectors

Vector quantites ofien are expressed in terms of unit vectors, A unif vector is a dimen-

sionless vector having a magnitude of exactly L, Unit vectors are used to speciy a
given direction and have no other physical significance. They are used! solely as a conve:

nience in describing a direction in space, We shall use the symbols 1, §, and ko repre-
sent unil vectors pointing in the positve »,, and & directions, respectvey. (The *hats”on
the symbols are a standard notaion for unt vectors,) The unit vectors 1, , and k form a
set of mutually pe q}en(llcular veclors in 2 nght handed coor dmd[f systemn, as 'i]]O‘.\'ll In

Figure 3,162, The m:

(a)

(b}

Active Flgure 3.16

vectors i, j. and k are directed

(a) The unit

4.1-_1-115,, the x, ¥ and =z axes. FLHP{(
tively. (b) Vector A = A, i+ 1..,|11.—
ing in the xy plane has components
Ay, and A

22




Consider a vector A lying in the xy plane, as shown in Figure 3.16b. The product
of the component A, and the unit vector i is the vector A,i, which lies on the x axis
J-ix|. (The vector A, is an alternative representation of vector

and has magnitude
A..) Likewise, A,j is a vector of magnitude
iIs an alternative representation of vector Am..) Thus, the unit-vector notation for the

AJ.‘ lving on the y axis. (Again, vector .{_.[ _|

vector A is

j (3.12)

Ad
(b)

Active Figure 3.16 (a) The unit
vectors i, ; and k are directed
along the x, y. and z axes, respec-
tively. (b} Vector A = AI] Ak .‘1..‘._i Ty
ing in the xy plane has components
Ay and A

23

For example, consider a point lying in the xy plane and having Cartesian coordinates
(x, ), as in Figure 3.17. The point can be specified by the position vector r, which in
unit—=vector form is given by

-
"

r=axi+yj (3.13)

This notation tells us that the components of r are the lengths xand »y.

(x.y)

0

Figure 3.17 The point whose Cartesian coordinates
are (x, y) can be represented by the position vector

r=xi + yj.

24




We obtain the magnitude of R and the angle it makes with the x axis from its compo-
nents, using the relationships

R=VRZ+ R?=V(A,+ B)?+ (4, + B)? (3.16)
R, A,+ B
tanf=—~=—"2_" (317)
R, A, + B,

We can check this addition by components with a geometric construction, as shown
in Figure 3.18. Remember that you must note the signs of the components when using
either the algebraic or the graphical method.

e
| |
I B, R |
|
¥ |
k_ BRI - 1 :
A 4 A 1
| .
b 4‘1 g Bx_t
+ H‘_ *|

Figure 3.18 This geometric con-
struction for the sum of two vectors
shows the relationship between the
components of the resultant R and

the components of the individual
vectors. 25

At times, we need to consider situations involving motion in three component direc-
tions. The extension of our methods to three-dimensional vectors is straightforward. If
A and B both have x, y, and z components, we express them in the form

A=Ad+aj+ak (3.18)
B =B+ B,j+ Bk (3.19)

The sum of A and B is
R= (A, +B)i+ (4 +B)j+ (4 + Bk (3.20)

Note that Equation 3.20 differs from Equation 3.14: in Equation 3.20, the resultant vec-
tor also has a z component R, = A, + B_. If a vector R has x, y, and 2 components, the

magnitude of the vectoris R = \‘IR_,(Q + H.r.i’ + R;E. The angle 6, that R makes with the
x axis is found from the expression cos #, = R, /R, with similar expressions for the an-

gles with respect to the y and z axes.
) 26




Example 3.3 The Sum of Two Vectors

Find the sum of two vectors A and B lying in the xy plane
and given by

A=(20i +20j))m and B = (20i - 40j)m

Solution You may wish to draw the vectors to concepiualize
the sitnation. We categonze this as a simple plug-in problem.
Comparing this expression for A with the general expres
sion A = Ayi + Ay, we see that A, = 2.0 m and Ay = 2.0 m.
Likewise, B, = 2.0 m and B, = — 4.0 m. We obtain the resul-
ant vector R, using Equation 3.14:

R=A+B=(20+20)im+ (20 - 40)jm
= (4.0i — 2.0j) m
or

R,=40m R, =

y=—2.0m

The magnitude of R is found using Equation 3.16:

R=VRZ+R2=V(a0m)?+ (-20m)2 =20 m
= 4.bm

We can bfind the direction of R from Equation 3.17:

Ry —20m
R, 4.0 m

tanfl = = — .50

Your calculator likely gives the answer —27° for 0=

tan~ (= 0.50). This answer is correct il we interpret it o
mean 27° clockwise from the x axis. Our standard form has
been to quote the angles measured counterclockwise from

the + xaxis, and that angle for this vector is 8 = 333° |

27

Example 3.4 The Resultant Displacement

A |J'1Il.l€l{' undergoes three comecul.n’e clnpl'lcementﬁ
d = {l..)l + 30§ + qu) m, dy= (2%1 - 14j - 5.0k) cm
and dy=(-13i + IJJ} cm. Find the components of the
resultant displacement and its magnitude.

Solution Three-dimensional displacements are more diffi-
cult to imagine than those in two dimensions, because the
latter can be drawn on paper. For this problem, let us concef-
tualize that you start with your pencil at the origin of a piece
of graph paper on which you have drawn x and y axes. Move
your pencil 15 cm to the right along the x axis, then 30 cm
upward along the y axis, and then 12 cm vertically mway from
the graph paper. This provides the displacement described
by d,. From this point, move your pencil 23 cm to the right
parallel to the x axis, 14 cm parallel to the graph paper in
the —y direction, and then 5.0 cm vertically downward to-
ward the graph paper. You are now at the displacement
from the origin described by d; + dy. From this point, move
your pencil 13 cm to the left in the — x direction, and (fi-
nally!) 15 cm parallel to the graph paper along the y axis.

Your final position is at a displacement dj + dy + dj from
the origin.

Despite the difficulty in conceptualizing in three dimen-
sions, we can cafegorize this problem as a plug-in problem due
to the careful bookkeeping methods that we have developed
for vectors, The mathematical manipulation keeps track of
this motion along the three perpendicular axes in an orga-
nized, compact way:

R=d +ds+d;

= (15.+ 23— 13)icm + (30 - 14+ 15)j cm
+(12-504+ 0)kcm

= (2 5 + ‘11] + 70]() cm

The resultant displacement has components R, = 25 cm,
R,= 31 cm, and R, = 7.0 cm. Its magnitude is

R =VRF + R} + R}

- \.'(‘26 cm) + (31 cm} + (7.0 cm)? =

40 cm

28




Example 3.5 Taking a Hike

A hiker begins a trip by first walking 25.0 km southeast from
her car. She stops and sets up her tent for the night. On the
second day, she walks 40.0 km in a direction 60.0° north of
east, at which point she discovers a forest ranger’s tower.

(A) Determine the components of the hiker’s displacement
for each day.

Solution We conceptualize the problem by drawing a sketch as
in Figure 3.19. If we denote the displacement vectors on the
first and second days by A and B, respectively, and use the car
as the origin of coordinates, we obtain the vectors shown in
Figure 3.19. Drawing the resultant R, we can now categorize this
as a problem we've solved before—an addition of two vectors.
This should give you a hint of the power of categorization—
many new problems are very similar to problems that we have
already solved if we are careful to conceptualize them.

B, = Bcos 60.0° = (40.0 km)(0.500) = 20.0 km

. = Bsin 60.0° = (40.0 km) (0.866) = 34.6 km

We will analyze this problem by using our new knowledge
of vector components. Displacement A has a magnitude of
25.0 km and is directed 45.0” below the positive x axis. From
Equations 3.8 and 3.9, its components are

A; 17.7 km

Acos (—45.0°) = (25.0 km)(0.707) =

Ay = Asin(— 45.0°%) = (25.0 km)(—-0.707) = —17.7km

The negative value of A, indicates that the hiker walks in the
negative y direction on the first day. The signs of A, and A,
also are evident from Figure 3.19. -

The second displacement B has a magnitude of 40.0 km
and is 60.0° north of east. [ts components are

y(km) IN
/ ¥
T w=p=e T [T T T
.qo s
] D 0 I [ D | Tower
ID R ..........
! (;9 x(km)
| ST NG ap.0020. 30 40 1 50| | | |
110 A 5 o S D06 IS 165 I K S
=1 .A. : 600 | | | | [ ] |
1 —20 e e

Figure 3.19 (Example 3.5) The total displace-
ment of the hiker is the vector R = A + B.

(B) Determine the components of the hiker’s resultant dis-
placement R for the trip. Find an expression for R in terms

of unit vectors.

Solution The resultant displacement for the tip R = A + B y(km) N
" . - A
has components given by Equation 3.15: [ W_aE |
- BES IS] i
R_\- == A{.\- Ak B.\' = 17.7km + 200 km = 37.7km 2 | Tower
10 B
R,=A + B,=—17.7km + 346 km = 16.9 km [ To ] x(km)
: : : | CarN/a5.0020 f30. | 40 50| | | |
=101 AN B n
Ty o i % oum . 60.0
In unit-vector form, we can write the total displacement as A=
=20 Tent

R= (37.71 + 16.9j) km

Figure 3.19 (Example 3.5) The total displace-
ment of the hiker is the vector R = A + B.

30




Unit vector in 3-D :

v Unit vectorsin x, y, z coordinate arei, j, k ]

Applied Mechanical Engineering Program Chapter 3
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Dot Product

Let a and b be two vectors defined as
a=ai+aj+tazkandb=Db; i+ b,j+bskthen the
dot product is ascalarvalue defined as

a-b=ab;+ab,+a;b; Or =]|la]|||b]| co

Example : Calculate the dot product of C=(-4,-9)
and D=(-1,2).

Solution:

C-D=-4(-1) - 9(2) = 4-18 = -14.

Applied Mechanical Engineering Program Chapter 3
32
VECTORS




Cross Product

Let a and b be two vectors defined as
a=ali+ajt+azkandb=Db; i+ b,j+ bskthen the cross
product is avector value defined as

axb = (ah;—agh,) 7+ (ayby—35b,) / + (ayb, — &b,) &

Example : Calculate the cross product between a=(3,-3,1)
and b=(4,9,2).

Solution: The cross product is

i j k
axb=|3 -3 1
4 9 2

—i(-3-2-1-9)—j(3-2—1-4)+k(3-9+3-4)

- — —15i—2j+ 39k

/ k
a as
b, bs
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