

# **PHYSICS FOR ENGINEERING I**

## (PHYS 1210)

## Dr. Nasser Mohamed Shelil

Assistant Professor, Mechanical Engineering Dept., College of Applied Engineering, King Saud University

B.Sc. & M.Sc., Suez Canal University; PhD, Cardiff University/UK

## **Course Contents**



- **Chapter 2:** Motion in One Dimension
- Chapter 3: Vectors
- **Chapter 4:** Motion in Two Dimensions
- Chapter 5: Laws of Motion
- **Chapter 6:** Circular Motion: Applications of Newton's Laws
- **Chapter 7:** Energy and Energy Transfer
- *Chapter 8:* Potential Energy

Applied Mechanical Engineering Program

2

جـــــامــعـــة الملكسعود

King Saud University

## **References**

- 1. Serway Jewett, "Physics for Scientists and Engineers", THOMSON BROOKS/COLE, 6th Edition. <u>Or 9th Edition</u>.
- 2. Halliday, Resnick, Walker, "Fundamentals of Physics", WILEY, 6th Edition.
- 3. Young and Freedmann, "University Physics", PEARSON ADDISON WESLEY, 11th Edition.

| Applied Mechanical Engineering Program |  |
|----------------------------------------|--|
| Physics for Engineering I              |  |

REFERENCES

3

## Assessment

|    | Assessment task                   |             |    |  |
|----|-----------------------------------|-------------|----|--|
|    | (e.g. essay, test, group project, | Week due    | %  |  |
|    | examination etc.)                 |             |    |  |
| 1  | Attendance, Participation and     | Every weeks | 15 |  |
| 12 | Homework                          |             |    |  |
| 2  | Mid Term Exam                     | 8           | 20 |  |
| 3  | Quizzes                           |             | 10 |  |
| 4  | Laboratory reports & Tests        | Every weeks | 15 |  |
| 5  | Final Exam                        | 17          | 40 |  |

Applied Mechanical Engineering Program





## **Physics and Measurement**

- ✓ Units & Dimensions.
- Dimensional Analysis.
- Conversion of Units.
- Density and Atomic Mass.
- Estimates and Order-of-Magnitude Calculations.
- ✓ Significant Figures.

Applied Mechanical Engineering Program



## **Units & Dimensions**

A dimension is a property that can be counted, measured, or calculated.

## **Basic quantities**

· Length, mass, time

## **Derived quantities**

• Velocity, acceleration, force, pressure etc...

Applied Mechanical Engineering Program

Chapter 1

PHYSICS

## Standards of Length, Mass, and Time

#### Length: (m)

The meter (m) was redefined as the distance traveled by light in vacuum during a time of 1/299 792 458 second.

#### Mass: (kg)

The kilogram (kg), is defined as the mass of a specific platinum–iridium alloy cylinder kept at the International Bureau of Weights and Measures at Sèvres, France.

#### Time: (s)

The second (s) is now defined as 9 192 631 770 times the period of vibration of radiation from the cesium atom.

| Applied Mechanical Engineering Program | Chapter 1 |  |
|----------------------------------------|-----------|--|
| Physics for Engineering I              | PHYSICS   |  |

| The seven funda  | mental (or primary) |
|------------------|---------------------|
| dimensions an    | d their units in SI |
| Dimension        | Unit                |
| Length           | meter (m)           |
| Mass             | kilogram (kg)       |
| Time             | second (s)          |
| Temperature      | Kelvin (K)          |
| Electric current | Ampere (A)          |
| Amount of light  | candela (cd)        |
| Amount of matter | mole (mol)          |

Applied Mechanical Engineering Program
PHYSICS FOR ENGINEERING I

| _ength          | m         | Work      |
|-----------------|-----------|-----------|
| Mass            | kg        | Heat      |
| Time            | S         | Energy    |
| Area            | m²        | Power     |
| Volume          | m³        | ないないのであると |
| Velocity        |           |           |
| Acceleration    |           |           |
| Density         |           |           |
| Specific Volume |           |           |
| Mass flow rate  |           |           |
| Discharge       |           |           |
| Pressure        |           |           |
| Force           | S. W. Ske |           |

Applied Mechanical Engineering Program

*Chapter 1* 11 **PHYSICS** 

| SI Unit Prefixes        |        |        |  |  |
|-------------------------|--------|--------|--|--|
| Factor                  | Prefix | Symbol |  |  |
| 10 <sup>12</sup>        | tera   | Т      |  |  |
| 10 <sup>9</sup>         | giga   | G      |  |  |
| 10 <sup>6</sup>         | mega   | М      |  |  |
| 10 <sup>3</sup>         | kilo   | k      |  |  |
| 10 <sup>2</sup>         | hecto  | h      |  |  |
| 10 <sup>-2</sup>        | centi  | С      |  |  |
| <b>10</b> <sup>-3</sup> | milli  | m      |  |  |
| 10 <sup>-6</sup>        | micro  | $\mu$  |  |  |
| 10 <sup>-9</sup>        | nano   | n      |  |  |
| 10 <sup>-12</sup>       | pico   | р      |  |  |

Applied Mechanical Engineering Program

| Ser Contractor            | It is white it is white                                        |                       |                                                                                       |
|---------------------------|----------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------|
| Useful Con                | version Factors:                                               |                       |                                                                                       |
| Length:                   | 1  ft = 0.3048  m                                              | Power:                | 1 hp = 745.7 W                                                                        |
| M                         | 1  in. = 25.4  mm                                              |                       | $1 \text{ ft} \cdot \text{lbf/s} = 1.356 \text{ W}$                                   |
| Mass:                     | 1  lbm = 0.4536  kg<br>1 slug = 14.59 kg                       | Area                  | 1  Btu/nr = 0.2931  w<br>$1 \text{ ft}^2 = 0.0929 \text{ m}^2$                        |
| Force:                    | 1  lbf = 4.448  N                                              | / iicu                | $1 \text{ acre} = 4047 \text{ m}^2$                                                   |
|                           | 1  kgf = 9.807  N                                              | Volume:               | $1 \text{ ft}^3 = 0.02832 \text{ m}^3$                                                |
| Velocity:                 | 1  ft/s = 0.3048  m/s                                          |                       | $1 \text{ gal (US)} = 0.003785 \text{ m}^3$                                           |
|                           | 1  ft/s = 15/22  mph                                           | Volumo flow rate:     | 1 gal (US) = $3.785 \text{ L}$<br>1 ft <sup>3</sup> /s = 0.02822 m <sup>3</sup> /s    |
| Pressure:                 | 1  mpn = 0.447  m/s<br>1 psi = 6.895 kPa                       | volume now rate.      | $1 \text{ gpm} = 6.309 \times 10^{-5} \text{ m}^3/\text{s}$                           |
| i iessuie:                | $1 \text{ lbf/ft}^2 = 47.88 \text{ Pa}$                        | Viscosity (dynamic)   | $1 \text{ lbf} \cdot \text{s/ft}^2 = 47.88 \text{ N} \cdot \text{s/m}^2$              |
|                           | 1  atm = 101.3  kPa                                            |                       | $1 \text{ g/(cm} \cdot \text{s}) = 0.1 \text{ N} \cdot \text{s/m}^2$                  |
|                           | 1  atm = 14.7  psi                                             |                       | 1 Poise = $0.1 \text{ N} \cdot \text{s/m}^2$                                          |
|                           | 1 in. $Hg = 3.386 \text{ kPa}$<br>1 mm $Hg = 133.3 \text{ Pa}$ | Viscosity (kinematic) | 1 ft <sup>2</sup> /s = 0.0929 m <sup>2</sup> /s<br>1 Stoke = 0.0001 m <sup>2</sup> /s |
| Energy:                   | 1  Bin Hg = 155.5  Hz<br>1 Btu = 1.055 kJ                      |                       | 1  Stoke = 0.0001  III / S                                                            |
|                           | $1 \text{ ft} \cdot \text{lbf} = 1.356 \text{ J}$              |                       |                                                                                       |
|                           | 1  cal = 4.187  J                                              |                       |                                                                                       |
| No W                      |                                                                |                       |                                                                                       |
|                           | Applied Mechanical Engineering                                 | ng Program            | Chapter 1                                                                             |
| Physics for Engineering I |                                                                |                       | 13<br>Physics                                                                         |

# **Dimensional Analysis**

In physics, the word *dimension* denotes the physical nature of a quantity.

| the dimensions of | Length: | L, |
|-------------------|---------|----|
|                   | Mass:   | Μ, |
| and               | Time:   | T. |

| Quantity             | Area (A)        | Volume (V)      | Speed (v) | Acceleration (a) |
|----------------------|-----------------|-----------------|-----------|------------------|
| Dimensions           | $L^2$           | $L^3$           | L/T       | $L/T^2$          |
| SI units             | $\mathrm{m}^2$  | $\mathrm{m}^3$  | m/s       | $m/s^2$          |
| U.S. customary units | $\mathrm{ft}^2$ | $\mathrm{ft}^3$ | ft/s      | $ft/s^2$         |

Applied Mechanical Engineering Program

## Example 1.1

Show that the expression  $\nu = at$ , where  $\nu$  represents speed, *a* acceleration, and *t* an instant of time, is dimensionally correct.

#### **Solution:**

#### SOLUTION

Identify the dimensions of v from Table 1.5:

Identify the dimensions of *a* from Table 1.5 and multiply by the dimensions of *t*:

 $[at] = \frac{L}{T^{\emptyset}} \mathcal{P} = \frac{L}{T}$ 

 $[v] = \frac{L}{T}$ 

Therefore, v = at is dimensionally correct because we have the same dimensions on both sides. (If the expression were given as  $v = at^2$ , it would be dimensionally *incorrect*. Try it and see!)

| Applied Mechanical Engineering Program | Chapter 1 |
|----------------------------------------|-----------|
| Physics for Engineering I              | PHYSICS   |

#### **Conversion of Units** Length ft mi cm km in. m $10^{-3}$ $10^{2}$ $6.214 \times 10^{-4}$ l meter 1 39.37 3.281 $3.281 imes 10^{-2}$ $10^{-2}$ $10^{-5}$ 0.3937 $6.214 \times 10^{-6}$ I centimeter 1 $10^{5}$ $10^{3}$ $3.937 \times 10^4$ $3.281 \times 10^{3}$ 0.621 4 l kilometer 1 $2.540 \times 10^{-2}$ $2.540\times10^{-5}$ $8.333 \times 10^{-2}$ $1.578 \times 10^{-5}$ 1 inch 2.540 1 l foot 0.3048 30.48 $3.048 \times 10^{-4}$ 12 $1.894 \times 10^{-4}$ 1 1 609 $1.609 \times 10^5$ $6.336 imes 10^4$ 1 mile 1.609 5 280 1

Applied Mechanical Engineering Program

# **Conversion of Units**

| Mass                               |                        |                        |                                        |                       |
|------------------------------------|------------------------|------------------------|----------------------------------------|-----------------------|
|                                    | kg                     | g                      | slug                                   | u                     |
| 1 kilogram                         | 1                      | 10 <sup>3</sup>        | $6.852	imes10^{-2}$                    | $6.024 	imes 10^{26}$ |
| 1 gram                             | $10^{-3}$              | 1                      | $6.852	imes10^{-5}$                    | $6.024 	imes 10^{23}$ |
| 1 slug                             | 14.59                  | $1.459\times 10^4$     | 1                                      | $8.789 	imes 10^{27}$ |
| 1 atomic mass unit                 | $1.660 	imes 10^{-27}$ | $1.660 	imes 10^{-24}$ | $1.137 \times 10^{-28}$                | 1                     |
| <i>Note:</i> 1 metric ton $= 1000$ | kg.                    |                        |                                        |                       |
| Note: 1 metric ton = 1 000         | kg.                    |                        |                                        |                       |
|                                    |                        |                        |                                        |                       |
|                                    |                        |                        |                                        |                       |
|                                    | Contraction of the     | a martin and           | 144 - 14 - 14 - 14 - 14 - 14 - 14 - 14 | 1000                  |
| CARGE STATES                       | AND ALL AND            | New Jones Contra       | S. S. Sanat                            | 1 - Carrier           |
|                                    |                        | Sale Martin            |                                        | The Martin            |
|                                    |                        |                        |                                        |                       |

| Applied Mechanical Engineering Program | Chapter 1 |
|----------------------------------------|-----------|
| Physics for Engineering I              | PHYSICS   |

|           | · · · · · · · · · · · · · · · · · · · | <b>-</b> - |
|-----------|---------------------------------------|------------|
| Conversi  | on ot                                 | nite       |
| CUITVEISI |                                       | Units      |
|           |                                       |            |

|          | s                     | min                   | h                     | day                    | yr                     |
|----------|-----------------------|-----------------------|-----------------------|------------------------|------------------------|
| 1 second | 1                     | $1.667 	imes 10^{-2}$ | $2.778\times 10^{-4}$ | $1.157 \times 10^{-5}$ | $3.169 \times 10^{-8}$ |
| 1 minute | 60                    | 1                     | $1.667\times 10^{-2}$ | $6.994 	imes 10^{-4}$  | $1.901 \times 10^{-6}$ |
| 1 hour   | 3 600                 | 60                    | 1                     | $4.167	imes10^{-2}$    | $1.141 \times 10^{-4}$ |
| 1 day    | $8.640 	imes 10^4$    | 1 4 4 0               | 24                    | 1                      | $2.738 \times 10^{-5}$ |
| 1 year   | $3.156 \times 10^{7}$ | $5.259 \times 10^{5}$ | $8.766 \times 10^{3}$ | 365.2                  | 1                      |

Applied Mechanical Engineering Program

Physics for Engineering I

## **Conversion of Units**

| Speed                                      |                    |           |                        |                       |
|--------------------------------------------|--------------------|-----------|------------------------|-----------------------|
|                                            | m/s                | cm/s      | ft/s                   | mi/h                  |
| 1 meter per second                         | 1                  | $10^{2}$  | 3.281                  | 2.237                 |
| 1 centimeter per second                    | $10^{-2}$          | 1         | $3.281 \times 10^{-2}$ | $2.237 	imes 10^{-2}$ |
| 1 foot per second                          | 0.3048             | 30.48     | 1                      | 0.681 8               |
| 1 mile per hour                            | 0.447 0            | 44.70     | 1.467                  | 1                     |
| <i>Note:</i> 1 mi/min = 60 mi/h = 88 ft/s. |                    |           |                        |                       |
|                                            |                    |           |                        |                       |
| Applied Mech                               | anical Engineering | g Program | C                      | hapter 1              |
| Physic                                     | s for Engineer     | ING Í     | F                      | 19<br>HYSICS          |

## Example 1.2

On an interstate highway in a certain region of KSA, a car is traveling at a speed of 38.0 m/s. Is the driver exceeding the speed limit of 75.0 mi/h?

**Solution:** 



Applied Mechanical Engineering Program

#### SOLUTION

Convert meters in the speed to miles:

Convert seconds to hours:

$$(2.36 \times 10^{-9} \text{ mi/s}) \left(\frac{60 \text{ s}}{1 \text{ min}}\right)^{-2.30 \times 10^{-1} \text{ mi/s}}$$
$$(2.36 \times 10^{-9} \text{ mi/s}) \left(\frac{60 \text{ s}}{1 \text{ min}}\right) \left(\frac{60 \text{ min}}{1 \text{ h}}\right) = 85.0 \text{ mi/h}$$

(38.0 m/s)  $(1 \text{ mi}) = 3.86 \times 10^{-2} \text{ mi}/s$ 

The driver is indeed exceeding the speed limit and should slow down.

WHAT IF? What if the driver were from outside the United States and is familiar with speeds measured in kilometers per hour? What is the speed of the car in km/h?

Answer We can convert our final answer to the appropriate units:

$$(85.0 \text{ mt/h}) \left(\frac{1.609 \text{ km}}{1 \text{ mt}}\right) = 137 \text{ km/h}$$

Figure 1.3 shows an automobile speedometer displaying speeds in both mi/h and km/h. Can you check the conversion we just performed using this photograph?



Figure 1.3 The speedometer of a vehicle that shows speeds in both miles per hour and kilometers per hour.

| Applied Mechanical Engineering Program | Chapter 1     |
|----------------------------------------|---------------|
| Physics for Engineering I              | 21<br>PHYSICS |

## Density

The density  $\rho$  of any substance is defined as its mass per unit volume:

$$\rho \equiv \frac{m}{V}$$

Where:  $\rho$ : the density m: the mass V: the volume

#### **Densities of Various Substances**

| Substance                   | Density $ ho  (10^3  \mathrm{kg/m^3})$ |
|-----------------------------|----------------------------------------|
| Platinum                    | 21.45                                  |
| Gold                        | 19.3                                   |
| Uranium                     | 18.7                                   |
| Lead                        | 11.3                                   |
| Copper                      | 8.92                                   |
| Iron                        | 7.86                                   |
| Aluminum                    | 2.70                                   |
| Magnesium                   | 1.75                                   |
| Water                       | 1.00                                   |
| Air at atmospheric pressure | 0.0012                                 |

| Applied Mechanical Engineering Program |  |
|----------------------------------------|--|
| Physics for Engineering I              |  |



## **Atomic Mass**

The numbers of protons and neutrons in the nucleus of an atom of an element are related to **the atomic mass** of the element, which is defined as the mass of a single atom of the element measured in atomic mass units (**u**) where  $1 \text{ u} = 1.660 538 7 \text{ x} 10^{-27} \text{ kg}.$ 

Applied Mechanical Engineering Program

## Example 1.3

A solid cube of aluminium (density 2.70 g/cm<sup>3</sup>) has a volume of  $0.200 \text{ cm}^3$ . It is known that 27.0 g of aluminium contains 6.02 x  $10^{23}$  atoms. How many aluminium atoms are contained in the cube?

## **Solution:**



Chapter 1

Physics



**Solution** Because density equals mass per unit volume, the mass of the cube is

 $m = \rho V = (2.70 \text{ g/cm}^3)(0.200 \text{ cm}^3) = 0.540 \text{ g}$ 

To solve this problem, we will set up a ratio based on the fact that the mass of a sample of material is proportional to the number of atoms contained in the sample. This technique of solving by ratios is very powerful and should be studied and understood so that it can be applied in future problem solving. Let us express our proportionality as m = kN, where *m* is the mass of the sample, *N* is the number of atoms in the sample, and *k* is an unknown proportionality constant. We write this relationship twice, once for the actual sample of aluminum in the problem and once for a 27.0-g sample, and then we divide the first equation by the second:

$$\frac{m_{\text{sample}} = kN_{\text{sample}}}{m_{27.0 \text{ g}} = kN_{27.0 \text{ g}}} \longrightarrow \frac{m_{\text{sample}}}{m_{27.0 \text{ g}}} = \frac{N_{\text{sample}}}{N_{27.0 \text{ g}}}$$

Notice that the unknown proportionality constant k cancels, so we do not need to know its value. We now substitute the values:

$$\frac{0.540 \text{ g}}{27.0 \text{ g}} = \frac{N_{\text{sample}}}{6.02 \times 10^{23} \text{ atoms}}$$
$$N_{\text{sample}} = \frac{(0.540 \text{ g})(6.02 \times 10^{23} \text{ atoms})}{27.0 \text{ g}}$$
$$= 1.20 \times 10^{22} \text{ atoms}$$



#### **Estimates and Order-of-Magnitude Calculations**

The estimate may be made even more approximate by expressing it as an order of magnitude, which is a power of ten.

We use the symbol ~, for "is on the order of."

The orders of magnitude for the following lengths:

 $0.008~6~m \sim 10^{-2}~m \qquad 0.002~1~m \sim 10^{-3}~m \qquad 720~m \sim 10^{3}~m$ 



## **Significant Figures**

The number of *significant figures* in a measurement can be used to express something about the uncertainty.

Suppose we are asked to measure the radius of a compact disc using a meter-stick as a measuring instrument. Let us assume the accuracy to which we can measure the radius of the disc is  $6 \pm 0.1$ cm.

radius lies somewhere between 5.9 cm and 6.1 cm.

Note that *the significant figures* include the first estimated digit. Therefore, we could write the radius as  $(6.0 \pm 0.1)$  cm.

| Applied Mechanical Engineering Program | Chapter 1 |
|----------------------------------------|-----------|
| Physics for Engineering I              | PHYSICS   |

Zeros may or may not be significant figures.

Those used to position the decimal point in such numbers as **0.03** and **0.0075** are not significant. Therefore, there are **one** and **two** significant figures, respectively, in these two values.



1500
1.5 x 10<sup>3</sup> if there are two significant figures in the measured value, 1.5 x 10<sup>3</sup> if there are three significant figures, and 1.50 x 10<sup>3</sup> if there are four.
The same rule holds for numbers less than 1, so 2, 3 x 10<sup>4</sup> has two significant figures (ad therefore could be written 0.000 23).
and 2.30 x 10<sup>-4</sup> has three significant figures (above rule as 0.000 230).

When multiplying several quantities, the number of significant figures in the final answer is the same as the number of significant figures in the quantity having the smallest number of significant figures. The same rule applies to division.

$$A = \pi r^2 = \pi (6.0 \text{ cm})^2 = 1.1 \times 10^2 \text{ cm}^2$$

When numbers are added or subtracted, the number of decimal places in the result should equal the smallest number of decimal places of any term in the sum or difference.

$$23.2 + 5.174 = 28.4$$

Applied Mechanical Engineering Program *Physics for Engineering I*