
PHYS	500:	Research	
Methodology	
Theory	of	Errors	–	What	is	an	error	in	a	
physical	measurement?	



Measurement	in	Physics	
•  An	essen8al	part	and	ul8mate	aim	of	an	experiment	is	the	
measurement.	

•  By	measuring	a	physical	quan8ty	we	actually	mean	its	
comparison	with	a	similar	physical	quan8ty	which	is	taken	as	
a	prototype	or	unit.	

•  For	example	we	can	use	the	length	of	our	foot	if	we	wish	to	
measure	the	length	of	an	object.	



Errors-a	
•  No	measurement	is	
exact;	there	is	always	
some	uncertainty	due	to	
limited	instrument	
accuracy	and	difficulty	
reading	results.	
•  The	photograph	to	the	
right	illustrates	this	–	it	
would	be	difficult	to	
measure	the	width	of	
this	object	to	beGer	
than	a	millimeter.	



Errors-b	
•  The	term	error	means:	the	inevitable	lack	of	accuracy	in	the	
measurement	of	any	physical	quan8ty	in	all	the	experiments	as	well	
as	the	imperfec8ons	of	our	instruments	or	methods.	

•  Example:	Three	different	ways	to	measure	the	height	of	a	door.	
•  A)	An	experienced	carpenter	just	using	his	eyes	says	that	the	height	
is	around	210	cm	plus	or	minus	5	cm.	If	we	write	down	his	
es8ma8on	in	a	“scien8fic	way”	the	height	is																							.	

•  B)	The	carpenter	then	uses	his	meter	and	finds	that	the	height	of	the	
door	is	211.3	cm.	Taking	into	account	factors	like	contrac8on/
compression	due	to	hea8ng	or	not	perfect	matching	of	his	meter	to	
the	door	we	can	write	that	the	height	of	the	door	is																														.	

•  	C)	The	owner	of	the	house	is	a	physicists	and	uses	an	
interferometer	of	high	accuracy	and	takes	the	following	recording	
for	the	height	of	the	door		

210± 5( )cm

211.30± 0.05( )cm

211.3001580± 0.0000005( )cm



Errors-c	
•  Ques1on:	What	is	then	the	“correct”	measurement	for	the	
height	of	the	door?	

•  Answer:	All	of	them!!!!	Their	difference	is	the	size	of	the	
accuracy.	

•  Ques1on:	What	is	then	the	height	of	the	door?	
•  Answer:	It	depends	on	the	reason	for	which	we	need	to	know	
the	height	of	the	door.	Case	A	may	cause	trouble	to	the	
carpenter.	Case	B	seems	OK	for	him.	Case	C	contains	
informa8on	which	is	useless	for	a	carpenter.		



Errors-d	
•  As	we	shall	see	later	some	types	of	errors	can	be	avoided.	But	
we	cannot	do	an	experiment	with	no	errors	at	all.	

•  Ques1on:	Are	the	errors	in	an	experiment	fundamentally	
unavoidable?	

•  Answer:	Although	we	can	build	experimental	devices	of	high	
accuracy	there	is	a	fundamental	reason.	This	is	the	limit	
imposed	by	Heisenberg’s	uncertainty	principle																											.			Δx ⋅ Δp ≥ ! / 2π



Errors-e	
•  Ques1on:	Why	we	should	know	the	errors	in	a	measurement?	
•  Answer:	Many	8mes	(especially	when	a	recording	is	very	close	
to	a	value	given	in	the	literature)	we	think	that	it	is	not	
necessary	to	quote	the	error	of	the	measurement.	
Unfortunately	if	we	do	not	know	the	errors	we	can	not	be	
sure	about	the	results	of	our	measurements.	

•  Example:	Let’s	assume	that	we	perform	an	experiment	to	
inves8gate	whether	the	resistance	of	a	coil	depends	on	
temperature.	We	do	two	measurements	and	we	get	the	
following	recordings:		

200.025  Ohm at  100  C
200.034  Ohm at  200  C



Errors-f	
•  Ques1on:	Is	there	any	difference	in	these	two	recordings?	
•  Answer:	If	we	do	not	know	the	error	we	cannot	answer.	
•  If	the	error	is	0.01	Ohm	we	cannot	answer	and	we	have	to	
increase	the	accuracy	of	our	experiment.	If,	on	the	contrary,	
the	error	is	0.001	Ohm	we	can	say	that	these	measured	values	
are	indeed	different.	

•  Example:	Which	of	the	values	given	below	are	equal?	a1	and	
a2	or	b1	and	b2?			

•  The	obvious	answer	is	that	b1	and	b2		are	almost	equal	while	
a1	and	a2		are	not.	But	what	about	if	we	take	into	account	the	
errors?								

a1 = 3.62,   a2 = 3.38
b1 = 2.820,   b2 = 2.880



Errors-g	
•  If	the	values	are	given	with	their	errors	as	follows,	

then	it	is	obvious	that	our	previous	conclusion	is	completely	
reversed!	

a1 = 3.62± 0.29,   a2 = 3.38± 0.26
b1 = 2.820± 0.006,   b2 = 2.880± 0.008



Accuracy	and	Precision	
•  It	is	very	important	to	dis8nguish	between	the	terms	accuracy	
and	precision.		

•  The	accuracy	of	an	experiment	is	a	measure	of	how	close	the	
result	of	the	experiment	is	to	the	true	value.		

•  The	precision	is	a	measure	of	how	well	the	result	has	been	
determined,	without	reference	to	its	agreement	with	the	true	
value.	The	precision	is	also	a	measure	of	the	reproducibility	of	
the	result	in	a	given	experiment.	



Random	Errors	
•  Always	in	an	experiment	there	is	a	difference	between	the	recorded	
value	and	the	“perfect”	or	“	correct”	or	“theore8cal”	value.	

•  Errors	are	classified	as	random	or	systema1c.	
•  A)	Random	errors	are	evident	when	repeated	measurements	of	the	
same	quan8ty	in	the	same	situa8on	give	different	readings.	Sources	
of	random	errors	include	

					a)	The	readability	of	the	instrument	
					b)	The	abili8es	of	the	observer	
					c)	Changes	in	the	surroundings	
•  				If	the	random	errors	result	from	instrumental	uncertain1es	we	
may	reduce	them	by	using	more	precise	and	reliable	instruments.	

•  	If	they	come	from	from	sta1s1cal	fluctua1ons	because	of	a	limited	
number	of	measurements		then	repea1ng	readings	reduce	random	
errors.	

•  	Random	errors	can	be	posi1ve	or	nega1ve.	They	are	always	
present	in	an	experiment.		

	
	



Systematic	Errors	
•  Sources	of	systema8c	errors	include:	
					a)	An	instrument	with	zero	error	
					b)	An	instrument	being	wrongly	calibrated	
					c)	The	observer	being	less	than	perfect	in	the	same	way	
every	measurement		

		Repea1ng	readings	do	not	reduce	systema1c	errors!	



2cm	 3cm	

2cm	 3cm	
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The	parallax	error:	An	example	of	random	error	



kg	

0	 1	 2	3	
4	

Weigh8ng	scale	with		
correct	calibra8on	

kg	

0	 1	 2	3	
4	

Weigh8ng	scale	with	wrong	calibra8on.		
The	reading	will	have	a	systema8c	error	
of	1	kg.	

An	example	of	systema1c	error	



Difference	between	Accuracy	
&	Precision	

•  An	accurate	experiment	
is	one	that	has	a	small	
systema8c	error	

•  A	precise	experiment	
has	is	one	that	has	a	
small	random	error	

•  The	first	graph	shows	an	
accurate	experiment	of	
low	precision,	while	the	
second	shows	a	less	
accurate	but	more	
precise	experiment	

True	value	 Measured	value	

value	

True	value	
Measured	value	



Difference	between	Accuracy	
&	Precision	



Errors	when	reading	an	
instrument-a	
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ȈȤȒµĮ 5 

ǹȞĮµĳȚıȕȒĲȘĲĮ ĲȠ ȐțȡȠ ĲȘȢ ȡȐȕįȠȣ ȕȡȓıțİĲĮȚ ʌȚȠ țȠȞĲȐ ıĲĮ 28 cm. ǲĲıȚ ȜȠȚʌȩȞ 
µʌȠȡȠȪµİ ȞĮ ʌȠȪµİ: 

28 cm "                    (3.1) 
ǹȜȜȐ ʌȡȠĳĮȞȫȢ ʌȚȠ ıȦıĲȐ : 

27.5 cm 28.5 cmd d"    (3.1Į) 

 
ȈȤȒµĮ 6 

ǹȞĲȓıĲȠȚȤĮ ȖȚĮ ĲȘȞ ȑȞįİȚȟȘ ĲȠȣ 
ȕȠȜĲȠµȑĲȡȠȣ (ȈȤȒµĮ 6) µʌȠȡȠȪµİ ȞĮ 
ʌȠȪµİ: 

                  6.7 VU                  (3.2) 
Ȓ ʌȚȠ ıȦıĲȐ  
            6.6 V 6.8 VUd d .      (3.2Į) 
ǲĲıȚ ȜȠȚʌȩȞ ȕȜȑʌȠȣµİ ȩĲȚ țȐșİ 

µȑĲȡȘıȒ µĮȢ ȑȤİȚ µȚĮ ıȤİĲȚțȒ ĮțȡȓȕİȚĮ. 
ǹȣĲȒ ĲȘȞ  ĮțȡȓȕİȚĮ  µʌȠȡȠȪµİ  țĮȜȪĲİȡĮ 
ȞĮ ĲȘȞ İțĳȡȐıȠȣµİ  ȤȡȘıȚµȠʌȠȚȫȞĲĮȢ    ĲȘȞ 

ȑȞȞȠȚĮ ĲȠȣ ıĳȐȜµĮĲȠȢ ĮȞȐȖȞȦıȘȢ. ǼʌȠµȑȞȦȢ ĮȞĲȓ ȞĮ ȤȡȘıȚµȠʌȠȚȒıȠȣµİ ĲȘ ȖȡĮĳȒ 
(3.1) Ȓ (3.1Į) µʌȠȡȠȪµİ ȞĮ ȖȡȐȥȠȣµİ ȚıȠįȪȞĮµĮ  

28.0 0.5 cm r"                  (3.3) 
țĮȚ ĮȞĲȓıĲȠȚȤĮ ȖȚĮ ĲȚȢ (3.2) țĮȚ (3.2Į): 

6.7 0.1 VU  r                  (3.4) 
ȅ  ʌȡȠıįȚȠȡȚıµȩȢ ĲȠȣ ıĳȐȜµĮĲȠȢ ĮȞȐȖȞȦıȘȢ ( Ȓ µȐȜȜȠȞ Ș İțĲȓµȘıȒ ĲȠȣ) įİȞ 

İȓȞĮȚ İȪțȠȜȘ ȣʌȩșİıȘ țĮȚ ĮʌĮȚĲİȓĲĮȚ ȖȚ’ ĮȣĲȩ ĮȡțİĲȒ ʌİȓȡĮ. ĭȣıȚțȐ İįȫ ʌĮȓȗİȚ ʌȠȜȜȑȢ 
ĳȠȡȑȢ ȡȩȜȠ țĮȚ Ƞ ʌȡȠıȦʌȚțȩȢ ʌĮȡȐȖȠȞĲĮȢ. ǹȣıĲȘȡȠȓ țĮȞȩȞİȢ ȖȚ’ ĮȣĲȩ įİȞ ȣʌȐȡȤȠȣȞ. 
ĬĮ µʌȠȡȠȪıĮµİ İȞįİȚțĲȚțȐ Ȟ’ ĮȞĮĳȑȡȠȣµİ ĲȠȣȢ İȟȒȢ: Į) ǹȞ ȠȚ ȖİȚĲȠȞȚțȑȢ ȣʌȠįȚĮȚȡȑıİȚȢ 
ĮʌȑȤȠȣȞ 1y2 mm ĲȠ ıĳȐȜµĮ ĲȠ șİȦȡȠȪµİ µȓĮ Ȓ µȚıȒ ȣʌȠįȚĮȓȡİıȘ. ȕ) ǹȞ ȠȚ ȖİȚĲȠȞȚțȑȢ 
ȣʌȠįȚĮȚȡȑıİȚȢ ĮʌȑȤȠȣȞ 2y5 mm ĲȠ ıĳȐȜµĮ ĲȠ İțĲȚµȠȪµİ ʌİȡȓʌȠȣ Įʌȩ µȚıȒ ȣʌȠįȚĮȓȡİıȘ 
ȦȢ ȑȞĮ įȑțĮĲȠ ĲȘȢ ȣʌȠįȚĮȓȡİıȘȢ ț.Ȝ.ʌ. 

5 ȈȘµİȓȦıȘ 1. ȉȠ ıĳȐȜµĮ ĮȞȐȖȞȦıȘȢ, įİȞ ȑȤİȚ ȞĮ țȐȞİȚ µİ ĲȠ ıĳȐȜµĮ 
ʌĮȡȐȜȜĮȟȘȢ, įȘȜĮįȒ ĲȠ ıĳȐȜµĮ ʌȠȣ ȠĳİȓȜİĲĮȚ ıĲȠ ȩĲȚ įİȞ țȠȚĲȐµİ ıȦıĲȐ ĲȘ ȕİȜȩȞĮ 
ĲȠȣ ĮȞĮȜȠȖȚțȠȪ µĮȢ ȠȡȖȐȞȠȣ. ǹȣĲȩ İȓȞĮȚ ȕĮıȚțȐ ıĳȐȜµĮ ĮȞİȟȐȡĲȘĲȠ Įʌȩ ĲȚȢ ıȣȞșȒțİȢ 
țĮȚ ĲĮ ȩȡȖĮȞĮ ĲȠȣ ʌİȚȡȐµĮĲȠȢ țĮȚ ĲȠ ȠʌȠȓȠ ʌȡȠıʌĮșȠȪµİ µİ țȐșİ ĲȡȩʌȠ ȞĮ ĲȠ 
ĮʌȠĳȪȖȠȣµİ. ǼȓȞĮȚ ȤĮȡĮțĲȘȡȚıĲȚțȩ ȩĲȚ ʌȠȜȜȐ ĮȞĮȜȠȖȚțȐ ȩȡȖĮȞĮ ȑȤȠȣȞ ʌȓıȦ Įʌȩ ĲȘ 
ȕİȜȩȞĮ ȑȞĮȞ µȚțȡȩ țĮșȡȑĳĲȘ ʌȠȣ µĮȢ ȕȠȘșȐİȚ ȞĮ İțµȘįİȞȓıȠȣµİ Ȓ ȞĮ µİȚȫıȠȣµİ ıĲȠ 
İȜȐȤȚıĲȠ ĲȠ ıĳȐȜµĮ ʌĮȡȐȜȜĮȟȘȢ ȕȜȑʌȠȞĲĮȢ ĲȘ ȕİȜȩȞĮ ȞĮ ĲĮȣĲȓȗİĲĮȚ µİ ĲȠ İȓįȦȜȩ ĲȘȢ, 
țȐȞȠȞĲĮȢ ȑĲıȚ ĲȘȞ ĮȞȐȖȞȦıȘ ĲȘȢ ȑȞįİȚȟȘȢ ĮȞĲȚțİȚµİȞȚțȒ. 

5 ȈȘµİȓȦıȘ 2. ȉȠ țȐșİ ȩȡȖĮȞȠ ȑȤİȚ ʌȐȞĲĮ µȚĮ ĮțȡȓȕİȚĮ ʌȠȣ ȠĳİȓȜİĲĮȚ ıĲȠȞ 
țĮĲĮıțİȣĮıĲȒ țĮȚ ʌȠȣ țĮĲȐ țĮȞȩȞĮ ĮȞĮȖȡȐĳİĲĮȚ ʌȐȞȦ ĲȠȣ. ȈȣȞȒșȦȢ ĲȠ ıĳȐȜµĮ ʌȠȣ 
ȠĳİȓȜİĲĮȚ ıĲȘȞ ĮțȡȓȕİȚĮ ĲȠȣ ȠȡȖȐȞȠȣ İȓȞĮȚ ʌȚȠ µȚțȡȩ Įʌȩ ĲȠ ıĳȐȜµĮ ĮȞȐȖȞȦıȘȢ țȚ ȑĲıȚ 
įİȞ ĲȠ ʌĮȓȡȞȠȣµİ ȣʌ. ȩȥȘ µĮȢ (ĮȣĲȩȢ İȟȐȜȜȠȣ İȓȞĮȚ țĮȚ Ƞ ıĲȩȤȠȢ ĲȠȣ țĮĲĮıțİȣĮıĲȒ). 
ǹȞ ȩµȦȢ ĲȪȤİȚ ĲȠ ıĳȐȜµĮ ĮȣĲȩ ȞĮ İȓȞĮȚ ĲȘȢ ĲȐȟȘȢ Ȓ µİȖĮȜȪĲİȡȠ ĲȠȣ ıĳȐȜµĮĲȠȢ 
ĮȞȐȖȞȦıȘȢ ʌȡȑʌİȚ ȞĮ ĮȖȞȠȒıȠȣµİ ĲȠ įİȪĲİȡȠ. 

5 ȈȘµİȓȦıȘ 3. ȈȒµİȡĮ ĮȡțİĲȐ ʌȜĮĲȚȐ ȤȡȘıȚµȠʌȠȚȠȪȞĲĮȚ ȥȘĳȚĮțȐ ȩȡȖĮȞĮ. Ǽįȫ 
įȚĮțȡȓȞȠȣµİ įȣȠ ʌİȡȚʌĲȫıİȚȢ: 

Į) Ǿ ȑȞįİȚȟȘ țĮĲȐ ĲȘ µȑĲȡȘıȘ įİȞ İȓȞĮȚ ıĲĮșİȡȒ, ĮȜȜȐ ĲȠ ĲİȜİȣĲĮȓȠ ȥȘĳȓȠ 
«ʌĮȓȗİȚ» ȖȪȡȦ Įʌȩ µȚĮ ĲȚµȒ. ȉȩĲİ ıĮȞ µȑĲȡȘıȘ ʌĮȓȡȞȠȣµİ ĮȣĲȒ ĲȘ «µȑıȘ» ĲȚµȒ, İȞȫ 
ıĮȞ ıĳȐȜµĮ ĲȠ İȪȡȠȢ ĲȘȢ µİĲĮȕȠȜȒȢ 
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ȈȤȒµĮ 5 

ǹȞĮµĳȚıȕȒĲȘĲĮ ĲȠ ȐțȡȠ ĲȘȢ ȡȐȕįȠȣ ȕȡȓıțİĲĮȚ ʌȚȠ țȠȞĲȐ ıĲĮ 28 cm. ǲĲıȚ ȜȠȚʌȩȞ 
µʌȠȡȠȪµİ ȞĮ ʌȠȪµİ: 

28 cm "                    (3.1) 
ǹȜȜȐ ʌȡȠĳĮȞȫȢ ʌȚȠ ıȦıĲȐ : 

27.5 cm 28.5 cmd d"    (3.1Į) 

 
ȈȤȒµĮ 6 

ǹȞĲȓıĲȠȚȤĮ ȖȚĮ ĲȘȞ ȑȞįİȚȟȘ ĲȠȣ 
ȕȠȜĲȠµȑĲȡȠȣ (ȈȤȒµĮ 6) µʌȠȡȠȪµİ ȞĮ 
ʌȠȪµİ: 

                  6.7 VU                  (3.2) 
Ȓ ʌȚȠ ıȦıĲȐ  
            6.6 V 6.8 VUd d .      (3.2Į) 
ǲĲıȚ ȜȠȚʌȩȞ ȕȜȑʌȠȣµİ ȩĲȚ țȐșİ 

µȑĲȡȘıȒ µĮȢ ȑȤİȚ µȚĮ ıȤİĲȚțȒ ĮțȡȓȕİȚĮ. 
ǹȣĲȒ ĲȘȞ  ĮțȡȓȕİȚĮ  µʌȠȡȠȪµİ  țĮȜȪĲİȡĮ 
ȞĮ ĲȘȞ İțĳȡȐıȠȣµİ  ȤȡȘıȚµȠʌȠȚȫȞĲĮȢ    ĲȘȞ 

ȑȞȞȠȚĮ ĲȠȣ ıĳȐȜµĮĲȠȢ ĮȞȐȖȞȦıȘȢ. ǼʌȠµȑȞȦȢ ĮȞĲȓ ȞĮ ȤȡȘıȚµȠʌȠȚȒıȠȣµİ ĲȘ ȖȡĮĳȒ 
(3.1) Ȓ (3.1Į) µʌȠȡȠȪµİ ȞĮ ȖȡȐȥȠȣµİ ȚıȠįȪȞĮµĮ  

28.0 0.5 cm r"                  (3.3) 
țĮȚ ĮȞĲȓıĲȠȚȤĮ ȖȚĮ ĲȚȢ (3.2) țĮȚ (3.2Į): 

6.7 0.1 VU  r                  (3.4) 
ȅ  ʌȡȠıįȚȠȡȚıµȩȢ ĲȠȣ ıĳȐȜµĮĲȠȢ ĮȞȐȖȞȦıȘȢ ( Ȓ µȐȜȜȠȞ Ș İțĲȓµȘıȒ ĲȠȣ) įİȞ 

İȓȞĮȚ İȪțȠȜȘ ȣʌȩșİıȘ țĮȚ ĮʌĮȚĲİȓĲĮȚ ȖȚ’ ĮȣĲȩ ĮȡțİĲȒ ʌİȓȡĮ. ĭȣıȚțȐ İįȫ ʌĮȓȗİȚ ʌȠȜȜȑȢ 
ĳȠȡȑȢ ȡȩȜȠ țĮȚ Ƞ ʌȡȠıȦʌȚțȩȢ ʌĮȡȐȖȠȞĲĮȢ. ǹȣıĲȘȡȠȓ țĮȞȩȞİȢ ȖȚ’ ĮȣĲȩ įİȞ ȣʌȐȡȤȠȣȞ. 
ĬĮ µʌȠȡȠȪıĮµİ İȞįİȚțĲȚțȐ Ȟ’ ĮȞĮĳȑȡȠȣµİ ĲȠȣȢ İȟȒȢ: Į) ǹȞ ȠȚ ȖİȚĲȠȞȚțȑȢ ȣʌȠįȚĮȚȡȑıİȚȢ 
ĮʌȑȤȠȣȞ 1y2 mm ĲȠ ıĳȐȜµĮ ĲȠ șİȦȡȠȪµİ µȓĮ Ȓ µȚıȒ ȣʌȠįȚĮȓȡİıȘ. ȕ) ǹȞ ȠȚ ȖİȚĲȠȞȚțȑȢ 
ȣʌȠįȚĮȚȡȑıİȚȢ ĮʌȑȤȠȣȞ 2y5 mm ĲȠ ıĳȐȜµĮ ĲȠ İțĲȚµȠȪµİ ʌİȡȓʌȠȣ Įʌȩ µȚıȒ ȣʌȠįȚĮȓȡİıȘ 
ȦȢ ȑȞĮ įȑțĮĲȠ ĲȘȢ ȣʌȠįȚĮȓȡİıȘȢ ț.Ȝ.ʌ. 

5 ȈȘµİȓȦıȘ 1. ȉȠ ıĳȐȜµĮ ĮȞȐȖȞȦıȘȢ, įİȞ ȑȤİȚ ȞĮ țȐȞİȚ µİ ĲȠ ıĳȐȜµĮ 
ʌĮȡȐȜȜĮȟȘȢ, įȘȜĮįȒ ĲȠ ıĳȐȜµĮ ʌȠȣ ȠĳİȓȜİĲĮȚ ıĲȠ ȩĲȚ įİȞ țȠȚĲȐµİ ıȦıĲȐ ĲȘ ȕİȜȩȞĮ 
ĲȠȣ ĮȞĮȜȠȖȚțȠȪ µĮȢ ȠȡȖȐȞȠȣ. ǹȣĲȩ İȓȞĮȚ ȕĮıȚțȐ ıĳȐȜµĮ ĮȞİȟȐȡĲȘĲȠ Įʌȩ ĲȚȢ ıȣȞșȒțİȢ 
țĮȚ ĲĮ ȩȡȖĮȞĮ ĲȠȣ ʌİȚȡȐµĮĲȠȢ țĮȚ ĲȠ ȠʌȠȓȠ ʌȡȠıʌĮșȠȪµİ µİ țȐșİ ĲȡȩʌȠ ȞĮ ĲȠ 
ĮʌȠĳȪȖȠȣµİ. ǼȓȞĮȚ ȤĮȡĮțĲȘȡȚıĲȚțȩ ȩĲȚ ʌȠȜȜȐ ĮȞĮȜȠȖȚțȐ ȩȡȖĮȞĮ ȑȤȠȣȞ ʌȓıȦ Įʌȩ ĲȘ 
ȕİȜȩȞĮ ȑȞĮȞ µȚțȡȩ țĮșȡȑĳĲȘ ʌȠȣ µĮȢ ȕȠȘșȐİȚ ȞĮ İțµȘįİȞȓıȠȣµİ Ȓ ȞĮ µİȚȫıȠȣµİ ıĲȠ 
İȜȐȤȚıĲȠ ĲȠ ıĳȐȜµĮ ʌĮȡȐȜȜĮȟȘȢ ȕȜȑʌȠȞĲĮȢ ĲȘ ȕİȜȩȞĮ ȞĮ ĲĮȣĲȓȗİĲĮȚ µİ ĲȠ İȓįȦȜȩ ĲȘȢ, 
țȐȞȠȞĲĮȢ ȑĲıȚ ĲȘȞ ĮȞȐȖȞȦıȘ ĲȘȢ ȑȞįİȚȟȘȢ ĮȞĲȚțİȚµİȞȚțȒ. 

5 ȈȘµİȓȦıȘ 2. ȉȠ țȐșİ ȩȡȖĮȞȠ ȑȤİȚ ʌȐȞĲĮ µȚĮ ĮțȡȓȕİȚĮ ʌȠȣ ȠĳİȓȜİĲĮȚ ıĲȠȞ 
țĮĲĮıțİȣĮıĲȒ țĮȚ ʌȠȣ țĮĲȐ țĮȞȩȞĮ ĮȞĮȖȡȐĳİĲĮȚ ʌȐȞȦ ĲȠȣ. ȈȣȞȒșȦȢ ĲȠ ıĳȐȜµĮ ʌȠȣ 
ȠĳİȓȜİĲĮȚ ıĲȘȞ ĮțȡȓȕİȚĮ ĲȠȣ ȠȡȖȐȞȠȣ İȓȞĮȚ ʌȚȠ µȚțȡȩ Įʌȩ ĲȠ ıĳȐȜµĮ ĮȞȐȖȞȦıȘȢ țȚ ȑĲıȚ 
įİȞ ĲȠ ʌĮȓȡȞȠȣµİ ȣʌ. ȩȥȘ µĮȢ (ĮȣĲȩȢ İȟȐȜȜȠȣ İȓȞĮȚ țĮȚ Ƞ ıĲȩȤȠȢ ĲȠȣ țĮĲĮıțİȣĮıĲȒ). 
ǹȞ ȩµȦȢ ĲȪȤİȚ ĲȠ ıĳȐȜµĮ ĮȣĲȩ ȞĮ İȓȞĮȚ ĲȘȢ ĲȐȟȘȢ Ȓ µİȖĮȜȪĲİȡȠ ĲȠȣ ıĳȐȜµĮĲȠȢ 
ĮȞȐȖȞȦıȘȢ ʌȡȑʌİȚ ȞĮ ĮȖȞȠȒıȠȣµİ ĲȠ įİȪĲİȡȠ. 

5 ȈȘµİȓȦıȘ 3. ȈȒµİȡĮ ĮȡțİĲȐ ʌȜĮĲȚȐ ȤȡȘıȚµȠʌȠȚȠȪȞĲĮȚ ȥȘĳȚĮțȐ ȩȡȖĮȞĮ. Ǽįȫ 
įȚĮțȡȓȞȠȣµİ įȣȠ ʌİȡȚʌĲȫıİȚȢ: 

Į) Ǿ ȑȞįİȚȟȘ țĮĲȐ ĲȘ µȑĲȡȘıȘ įİȞ İȓȞĮȚ ıĲĮșİȡȒ, ĮȜȜȐ ĲȠ ĲİȜİȣĲĮȓȠ ȥȘĳȓȠ 
«ʌĮȓȗİȚ» ȖȪȡȦ Įʌȩ µȚĮ ĲȚµȒ. ȉȩĲİ ıĮȞ µȑĲȡȘıȘ ʌĮȓȡȞȠȣµİ ĮȣĲȒ ĲȘ «µȑıȘ» ĲȚµȒ, İȞȫ 
ıĮȞ ıĳȐȜµĮ ĲȠ İȪȡȠȢ ĲȘȢ µİĲĮȕȠȜȒȢ 



Errors	when	reading	an	
instrument-b	
•  An	important	class	of	errors	is	the	error	we	do	when	we	read	an	
instrument.	Let’s	assume	we	wish	to	read	the	voltage	in	(a)	or	the	
length	of	the	rod	(b).	There	are	no	strict	rules	for	this.	We	can	
consider	it	as	equal	to	half	or	one	division	of	the	instrument.	So	we	
write	as	our	answers:	

•  Note	1:	Every	instrument	has	an	error	given	by	its	manufacturer.	We	
must	compare	this	to	the	reading	error	in	order	to	check	which	one	
we	are	going	to	consider.	If	it	is	of	the	same	order	as	the	reading	
error	we	must	ignore	the	reading	error.	

•  Note	2:	We	must	not	confuse	the	reading	error	with	the	parallax	
error.	The	parallax	error	may	be	eliminated	by	placing	a	mirror	
behind	the	pointer.	If	we	look	at	the	pointer	in	such	a	way	that	its	
image	on	the	mirror	is	totally	covered	by	the	pointer	then	we	have	
eliminated	the	parallax	error.	

l = 28.0± 0.5 cm
V = 6.7± 0.1  V



Errors	when	reading	an	
instrument-c	
•  If	the	instrument	used	is	a	digital	one	then	we	have	two	case:	
a.  If	the	recorded	value	is	not	constant	because	the	last	digit	

“changes”	con8nuously	then	our	recording	is	the	average	
value	of	what	we	see	and	the	“width”	of	the	last	digit	
changes	is	taken	as	the	error.		

b.  If	the	recorded	value	is	constant	then	as	error	we	take	the	
0.5	of	the	last	digit.	The	same	we	do	if	we	use	an	electronic	
calculator.	



Errors	when	reading	an	
instrument-c	

V = (234.5± 0.5) V



SigniCicant	Figures-a	
•  The	precision	of	an	experimental	result	is	implied	by	the	
number	of	digits	recorded	in	the	result,	although	generally	the	
uncertainty	should	be	quoted	specifically	as	well.	The	number	
of	significant	figures	in	a	result	is	defined	as	follows:		

•  The	leemost	non-zero	digit	is	significant	and	is	in	fact	the	
most	significant	digit	in	the	number.	

•  If	the	number	has	no	decimal	point,	the	right	most	non-zero	
digit	is	significant.		

•  If	the	number	does	have	a	decimal	point,	the	least	significant	
digit	is	the	rightmost	digit	(which	may	be	zero).	

•  The	number	of	significant	digits	of	a	number	is	the	number	of	
digits	from	the	most	to	the	least	significant	digit.	



SigniCicant	Figures-b	
•  For	example	all	the	following	numbers	each	have	four	significant	
digits:	1234,	123,400,	123.4,	1001,	1000.,	10.10,	0.0001010,	100.0.	

•  If	there	is	no	decimal	point,	there	are	ambigui8es	when	the	
rightmost	digit	is	0.	Thus,	the	number	1010	is	considered	to	
have	only	three	significant	digits	even	though	the	last	digit	
might	be	physically	significant.	To	avoid	ambiguity,	is	beGer	to	
supply	decimal	points	or	to	write	such	numbers	in	scien1fic	
nota1on,	that	is,	as	an	argument	in	decimal	nota8on	
mul8plied	by	the	appropriate	power	of	10.	Thus,	our	example	
of	1010	would	be	wriGen	as	1010.	or																					if	all	four	
digits	are	significant.		

1.010×103



SigniCicant	Figures-c	
•  When	quo8ng	an	experimental	result,	the	number	of	significant	
figures	should	be	approximately	one	more	than	that	dictated	by	the	
experimental	precision.	The	reason	for	including	the	extra	digit	is	to	
avoid	errors	that	might	be	caused	by	rounding	errors	in	later	
calcula8ons.	

•  Ques1on:	When	we	find	a	result	aeer	processing	our	data	how	
many	decimal	points	shall	we	keep?	For	example	let’s	say	we	have	
found	the	average	value	of	the	length	of	a	cylinder	to	be	x=7.333333	
mm.	How	many	decimal	digits	we	must	keel?	

•  Answer:	We	must	know	the	error	of	our	measurements.	In	this	case	
we	round	the	error	up	to	one	non-zero	digit.	For	example	if	the	
error	in	the	above	measurement	is	δx=0.06273273.	Then	we	round	
it	to	δx=0.06	(unless	the	first	non-zero	digit	is	1	or	2	where	we	keep	
two	digits	in	the	error).	And	from	our	measurement	we	shall	keep	
the	decimal	of	the	same	order	by	doing	rounding.	Thus	we	write	

x = 7.33± 0.06



SigniCicant	Figures-d	
•  When	mul1plying	or	dividing,	the	number	of	significant	
figures	in	the	final	answer	is	the	same	as	the	number	of	
significant	figures	in	the	quan1ty	having	the	lowest	number	
of	significant	figures.	

•  Example:		25.57	m	x	2.45	m	=	62.6	m2	
•  The	2.45	m	limits	your	result	to	3	significant	figures	

•  When	adding	or	subtrac1ng,	the	number	of	decimal	places	in	
the	result	should	equal	the	smallest	number	of	decimal	
places	in	any	term	in	the	sum.	

•  Example:		135	cm	+	3.25	cm	=	138	cm	
•  The	135	cm	limits	your	answer	to	the	units	decimal	value	
	



Roundoff-a	
•  When	insignificant	digits	are	dropped	from	a	number,	the	last	digit	
retained	should	be	rounded	off	for	the	best	accuracy.	To	round	off	a	
number	to	fewer	significant	digits	than	were	specified	originally,	we	
truncate	the	number	as	desired	and	treat	the	next	digits	as	follows:	

1.  If	the	next	digit	is	larger	than	5	then	we	increase	the	last	digit	we	
wish	to	keep	by	1	and	all	the	rest	are	put	equal	to	zero.		

2.  If	the	next	digit	is	smaller	than	5	then	we	keep	the	last	digit	we	
wish	to	keep	as	it	is		and	all	the	rest	are	put	equal	to	zero.		

3.  If	the	next	digit	is	equal	to	5	we	check	if	there	is	aeer	this	any	non-
zero	digit	at	any	posi8on.	If	there	is	then	we	increase	the	last	digit	
we	wish	to	keep	by	1	and	all	the	rest	are	put	equal	to	zero.	If	there	
is	no	then	we	do	anything	we	like.	

4.  If	the	next	digit	is	equal	to	5	and	there	are	no	digits	aeer	it	then	
we	could	increase	the	last	digit	we	wish	to	keep	by	1	or	keep	it	the	
same.	If	we	have	a	lot	of	cases	like	this	in	half	of	them	we	increase	
the	last	digit	and	in	the	other	half	we	keep	it	the	same.		



Roundoff-b	
•  In	a	calcula8ons	involving	several	arithme8c	steps,	it	is	very	
good	advice	not	to	round	numbers	un8l	all	the	calcula8ons	
have	been	completed;	otherwise	the	rounding	process	itself	
can	have	a	large	effect	on	the	numbers	that	emerge	from	the	
calcula8ons	



SigniCicant	Figures	&	ScientiCic	Notation-a	

•  It	is	not	always	clear	how	many	figures	in	a	number	are	significant.	By	
changing	the	unit	in	which	a	number	is	expressed,	it	can	appear	that	the	
number	of	significant		figures	changes.	For	example,	suppose	in	an	
experiment	a	8me	interval	was	recorded	as	346s.	We	could	choose	to	write	
the	8me	in	other	units	such	as	milliseconds	or	microseconds.	These	would	
be	wriGen	as	346000ms	and	346000000	μs,	respec8vely.	In	both	cases	the	
number	of	significant	figures	remains	as	three.		

•  However,	if	someone	asked	you	for	your	value	for	the	8me	interval	to	be	
expressed	in	ms,	how	would	they	know	that,	in	your	value	of	346	000	ms,	
only	the	first	three	figures	were	significant?	It	is	possible	that	you	used	a	
8ming	device	capable	of	a	resolu8on	of	1	ms	and	that	the	8me	interval	
came	out,	to	the	nearest	millisecond,	as	346	000	ms;	that	is,	all	six	figures	
are	significant.		



SigniCicant	Figures	&	ScientiCic	Notation-b	

•  The	way	to	get	around	this	difficulty	is	to	present	numbers	in	scien8fic	
nota8on	.	In	scien8fic	nota8on	the	first	non-zero	figure	that	appears	is	
followed	by	a	decimal	point,	so	that	346	becomes	3.46.	To	bring	the	number	
back	to	its	original	value	we	must	mul8ply	3.46	by	100	or	102	.	We	can	now	
write	the	8me	interval	as	3.46×102	s.	In	terms	of	milliseconds	and	
microseconds	this	becomes	3.46×105	ms	and	3.46×105	μs,	respec8vely	

•  	The	number	of	significant	figures	is	equal	to	the	number	of	figures	that	
appear	to	the	lee	of	the	mul8plica8on	sign.	In	situa8ons	where	a	number	
lies	between	1	and	10,	for	example	7.15,	we	could	write	this	as	7.15×100.	
Though	this	is	technically	correct,	it	is	far	more	usual	for	the	number	to	be	
expressed	simply	as	7.15.	Table	2.7	contains	a	variety	of	numbers	and	their	
representa8on	in	scien8fic	nota8on	(we	assume	here	that	all	the	figures	
given	are	significant).	



Examples	of	numbers	expressed	in	scien1fic	nota1on	

Number	 Scien8fic	Nota8on	

12.65	 1.265×101	

0.00023	 2.3×10-4	

342.5	 3.245×102	

34001	 3.4001×104	



On-Line	Quizes	
Below	you	can	find	nice	on-line	quizes	on	significant	figures.		
•  hGp://www.dallassd.com/our%20schools/high%20school/
chemsite/chem/hotpot/sf.htm	

•  hGp://ths.sps.lane.edu/chemweb/unit1/problems/
significanpigures/	

•  hGp://slc.umd.umich.edu/slconline/SIGF/lastpage.html	
•  hGp://www.sciencegeek.net/APchemistry/APtaters/
sigfigs.htm	

•  hGp://www.chemistrywithmsdana.org/wp-content/uploads/
2012/07/SigFig.html	

	


