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PHYS 404 

HANDOUT 11 – Hermite and Laguerre Polynomials in Physics 
 
 

1. The eigenstates of a simple harmonic oscillator are given by 

ψn (x) =
mω
π!
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action of these operators on the ground state of the SHO ψ0 (x) .  
 
 

2. Repeat the above question for any of the states ψn (x)  of a SHO.  
 
 

3. The transition probability between two oscillator states, m and n, 

depends on the integral xe−x
2

Hn (x)
−∞

+∞

∫ Hm(x)dx . Evaluate this integral. 

(Arf. 719)          
 

4. The calculation of the mean square-displacement in a quantum 

SHO involves the evaluation of the integral x2e−x
2
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∫ Hn (x)dx . 

Evaluate this integral. 
(Arf. 719) 

 

5. Evaluate this integral x2e−x
2
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∫ Hm(x)dx . 

(Arf. 719) 
 

6. Show that: 
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(Arf. 719) 

 
7. In the hydrogen atom after solving the Schroedinger equation in 

spherical coordinates with the method of separating variables we 
get a radial equation which has the following solutions: 
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a) Find the expressions for the radial functions Rn=2,ℓ=0 r( ) , 

Rn=2,ℓ=1 r( ) . 

b) Show that the functions Rnℓ r( ) are normalized. 
 

 
8. Assume that solving the Schroedinger Equation for a quantum 

mechanical particle we get the solution:  
 

d 2 y
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a) Find the solution A(x)  for large asymptotic values of x. 
b) Find the solution B(x)  for small values of x such that 

0 < x <<1 . 
c) Create a solution of the form y = A(x)B(x)C(x) . Insert it in 

the differential equation and find the form of C(x)  
 

(Arf. 729) 
 

 


