PHYS 301

HANDOUT 8

1. Expand in Laurent series around the point $z_{0}=0$ the function $f(z)=e^{1 / z}$.

$$
\text { (Ans: } \left.\sum_{n=0}^{\infty} \frac{(1 / z)^{n}}{n!}\right)
$$

2. Expand in Laurent series around the point $z_{0}=i$ the function $f(z)=1 /(z-i)^{2}$.
3. Expand in Laurent series the function $f(z)=\frac{-1}{(z-1)(z-2)}$.
4. Find the Laurent series of the function $f(z)=1 /(1+z)$ for $|z|>1$.
5. Find the Laurent series for the function $f(z)=\frac{1}{(z+1)(z+3)}$ for a) $1<|z|<3$, b) $|z|>3$, c) $0<|z+1|<2$, d) $|z|<1$.
6. Find the first two, non-zero, terms of the Laurent series of the function $f(z)=\tan z$ around $z=\pi / 2$.
7. Show that $1 / z^{2}=\sum_{n=0}^{\infty}(-1)^{n}(n+1)(z-1)^{n}$ (for $\left.|z-1|<1\right)$.
8. Laurent series holds in a circular sector $r_{1}<\left|z-z_{0}\right|<r_{2}$ for a given point z_{0}. The power series coefficients a_{n} are unique. If z_{0} changes then the coefficients a_{n} change and the series takes a different form. Study the Laurent series expansion of the function $f(z)=1 /[z(z-1)]$ around $z_{0}=0, z_{0}=1$ and $z_{0}=i$ respectively.
