PHYS 301 HANDOUT 8

1. Expand in Laurent series around the point $z_0 = 0$ the function $f(z) = e^{1/z}$.

(Ans:
$$\sum_{n=0}^{\infty} \frac{\left(1/z\right)^n}{n!}$$
)

- **2.** Expand in Laurent series around the point $z_0 = i$ the function $f(z) = 1/(z-i)^2$.
- 3. Expand in Laurent series the function $f(z) = \frac{-1}{(z-1)(z-2)}$.
- **4.** Find the Laurent series of the function f(z) = 1/(1+z) for |z| > 1.
- 5. Find the Laurent series for the function $f(z) = \frac{1}{(z+1)(z+3)}$ for a) 1 < |z| < 3, b) |z| > 3, c) 0 < |z+1| < 2, d) |z| < 1.
- 6. Find the first two, non-zero, terms of the Laurent series of the function $f(z) = \tan z$ around $z = \pi / 2$.
- 7. Show that $1/z^2 = \sum_{n=0}^{\infty} (-1)^n (n+1)(z-1)^n$ (for |z-1| < 1).
- 8. Laurent series holds in a circular sector $r_1 < |z z_0| < r_2$ for a given point z_0 . The power series coefficients a_n are unique. If z_0 changes then the coefficients a_n change and the series takes a different form. Study the Laurent series expansion of the function f(z) = 1/[z(z-1)] around $z_0 = 0$, $z_0 = 1$ and $z_0 = i$ respectively.