PHYS 301

HANDOUT 6

Dr. Vasileios Lempesis

1. Calculate the integral of the function $f(z)=z^{*}$ a) on a circle centered at the origin of the axes and having radius equal to one, b) for a contour from $z=0$ to $z=1$ and then $z=1+i, \mathrm{c}$) on a line segment from $z=0$ to $z=1+i$.

$$
(\text { Ans: a) } 2 \pi i, \text { b) } 1+i \text { c) } 1 \text {) }
$$

2. Calculate the integral of the function $f(z)=1 / z$ a) on any simple closed contour which does not include the origin of axes b) on a closed loop which contains the origin of axes.

$$
\text { (Ans: a) 0, b) } 2 \pi i \text {) }
$$

3. Calculate the integral of the function $f(z)=z^{n}$ (where n is an integer).
4. Calculate the integral of the function $f(z)=1 / z^{n}$ (where n is an integer different than zero).
5. Calculate the integral

$$
I=\int_{C} \frac{e^{\xi}}{\zeta^{n}} d \zeta
$$

along a contour which contains but does not pass through the point $z=0$.
(Ans: $2 \pi i$)
6. Calculate the integral (Ver. 53)

$$
I=\int_{C} \frac{P(\zeta)}{(\zeta-z)^{n+1}} d \zeta
$$

7. Evaluate the integral $\int(1 / z) d z$ along the two paths show in the figure below.

8. Verify that

$$
\int_{0,0}^{1,1} z^{*} d z
$$

depends on the path by evaluating the integral for the two paths shown in the figure below. Recall that $f(z)=z^{*}$ is not an analytic function of z and that Cauchy's integral theorem therefore does not apply

9. Show that

$$
\int_{C} \frac{d z}{z^{2}+z}=0
$$

in which the contour C is a circle with radius larger than 1.
Hint. Direct use of the Cauchy integral theorem is illegal. Why? The integral may be evaluated by transforming to polar coordinates.
10. Show that

$$
\int_{C}\left(z-z_{0}\right)^{n} d z=\left\{\begin{array}{lc}
2 \pi i, & n=-1 \\
0, & n \neq-1
\end{array}\right.
$$

where the contour C encircles the point $z=z_{0}$ in a positive (counterclockwise) sense. The exponent n is an integer.
11. Evaluate

$$
\int_{c} \frac{d z}{z^{2}-1} d z
$$

where C is the circle with radius 2 and centred at the origin.
12. Evaluate the line integral

$$
\int_{C} \frac{\left(z^{3}+z^{2}+z+1\right)}{z^{4}} d z
$$

where C is the lower quarter centered at 0 joining $\frac{-1-i}{\sqrt{2}}$ and $\frac{-1+i}{\sqrt{2}}$ in the positive (counterclockwise) sense.

$$
\text { (Ans: } \left.\frac{-2 \sqrt{2}}{3}+i\left(\frac{\pi}{2}-1\right)\right)
$$

13. Evaluate the integral

$$
\frac{1}{2 \pi i} \int_{C} \frac{e^{z}}{z-2} d z
$$

if C is the circumference (a) $|z|=3$, (b) $|z|=1$. (Sch. 134) (Ans: (a) $e^{2},(\mathrm{~b}) 0$)
14. Evaluate the integral

$$
\int_{c} \frac{\sin (3 z)}{z+\pi / 2} d z
$$

if C is the circumference. (Sch. 134)
15. Evaluate the integral

$$
\int_{C} \frac{e^{3 z}}{z-\pi i} d z
$$

if C is the circumference (a) $|z-1|=4$, (b) the ellipse $|z-2|+|z+2|=6$. (Sch. 134)
(Ans: (a) $-2 \pi i,(b) 0)$
16. Evaluate the integral

$$
\frac{1}{2 \pi i} \int_{C} \frac{\cos (\pi z)}{z^{2}-i} d z
$$

on an orthogonal which has its vertices at the points (a) $2 \pm i,-2 \pm i$ (b) $-i$, $2-i, 2+i, i$. (Sch. 134)
(Ans: (a) $0,(b)-1 / 2)$
17. Show that

$$
\frac{1}{2 \pi i} \int_{C} \frac{e^{z t}}{z^{2}+1} d z=\sin t
$$

if $t>0$ and C is the circle $|z|=2$. (Sch. 134)
18. Assuming that $f(z)$ is analytic on and within a closed contour C and that the point z_{0} is within C , show that

$$
\int_{C} \frac{f^{\prime}(z)}{\left(z-z_{0}\right)} d z=\int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z
$$

19. You know that $f(z)$ is analytic on and within a closed contour C. You suspect that the nth derivative $f^{(n)}\left(z_{0}\right)$ is given by

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z .
$$

20. If $f(z)=(z+6) /\left(z^{2}-4\right)$ show that the integral $\int_{C} f(z) d z$ is:
a) 0 if the contour is the circle $x^{2}+y^{2}=1$,
b) $4 \pi i$ if C is the circle $(x-2)^{2}+y^{2}=1$ and
c) $-2 \pi i$ if C is the circle $(x+2)^{2}+y^{2}=1$.
21. Let a polynomial $P(z)$ of degree n, having n simple roots, none of which lies on a simple closed contour C. Calculate the integral,

$$
I=\frac{1}{2 \pi i} \int_{C} \frac{P^{\prime}(z)}{P(z)} d z
$$

