PHYS 301 HANDOUT 6 Dr. Vasileios Lempesis

1. Calculate the integral of the function $f(z) = z^*$ a) on a circle centered at the origin of the axes and having radius equal to one, b) for a contour from z = 0 to z = 1 and then z = 1+i, c) on a line segment from z = 0 to z = 1+i.

(Ans: a)
$$2\pi i$$
, b) $1+i$ c) 1)

2. Calculate the integral of the function f(z) = 1/z a) on any simple closed contour which does not include the origin of axes b) on a closed loop which contains the origin of axes.

(Ans: a) 0, b) $2\pi i$)

- **3.** Calculate the integral of the function $f(z) = z^n$ (where *n* is an integer).
- **4.** Calculate the integral of the function $f(z) = 1/z^n$ (where *n* is an integer different than zero).

(Ans: 0)

5. Calculate the integral

$$I = \int_{C} \frac{e^{\zeta}}{\zeta^{n}} d\zeta$$

along a contour which contains but does not pass through the point z = 0.

(Ans: $2\pi i$)

6. Calculate the integral (Ver. 53)

$$I = \int_C \frac{P(\zeta)}{\left(\zeta - z\right)^{n+1}} d\zeta \,.$$

7. Evaluate the integral $\int (1/z)dz$ along the two paths show in the figure below.

8. Verify that

$$\int_{0,0}^{1,1} z^* dz$$

depends on the path by evaluating the integral for the two paths shown in the figure below. Recall that $f(z) = z^*$ is not an analytic function of z and that Cauchy's integral theorem therefore does not apply

9. Show that

 $\int_{C} \frac{dz}{z^2 + z} = 0$

in which the contour C is a circle with radius larger than 1. Hint. Direct use of the Cauchy integral theorem is illegal. Why? The integral may be evaluated by transforming to polar coordinates.

10. Show that

$$\int_C (z - z_0)^n dz = \begin{cases} 2\pi i, & n = -1 \\ 0, & n \neq -1 \end{cases}$$

where the contour C encircles the point $z = z_0$ in a positive (counterclockwise) sense. The exponent *n* is an integer.

11. Evaluate

$$\int_{C} \frac{dz}{z^2 - 1} dz$$

where C is the circle with radius 2 and centred at the origin.

12. Evaluate the line integral

$$\int_{C} \frac{\left(z^{3} + z^{2} + z + 1\right)}{z^{4}} dz$$

where C is the lower quarter centered at 0 joining $\frac{-1-i}{\sqrt{2}}$ and $\frac{-1+i}{\sqrt{2}}$ in the positive (counterclockwise) sense.

3

(Ans:
$$\frac{-2\sqrt{2}}{3} + i\left(\frac{\pi}{2} - 1\right)$$
)

13. Evaluate the integral

$$\frac{1}{2\pi i} \int_C \frac{e^z}{z-2} dz$$

if C is the circumference (a) |z| = 3, (b) |z| = 1. (Sch. 134)

(Ans: (a) e^2 , (b) 0)

14. Evaluate the integral

 $\int_{C} \frac{\sin(3z)}{z + \pi/2} dz$

if C is the circumference. (Sch. 134)

15. Evaluate the integral

$$\int_C \frac{e^{3z}}{z - \pi i} dz$$

if C is the circumference (a) |z - 1| = 4, (b) the ellipse |z - 2| + |z + 2| = 6. (Sch. 134)

(Ans: (a) $-2\pi i$, (b) 0)

16. Evaluate the integral

$$\frac{1}{2\pi i}\int_C \frac{\cos(\pi z)}{z^2 - i}dz$$

on an orthogonal which has its vertices at the points (a) $2 \pm i$, $-2 \pm i$ (b) -i, 2-i, 2+i, i. (Sch. 134)

(Ans: (a) 0, (b) -1/2)

17. Show that

$$\frac{1}{2\pi i} \int_C \frac{e^{zt}}{z^2 + 1} dz = \sin t$$

if t > 0 and C is the circle |z| = 2. (Sch. 134)

18. Assuming that f(z) is analytic on and within a closed contour C and that the point z_0 is within C, show that

$$\int_{C} \frac{f(z)}{(z-z_{0})} dz = \int_{C} \frac{f(z)}{(z-z_{0})^{2}} dz$$

19. You know that f(z) is analytic on and within a closed contour C. You suspect that the *n*th derivative $f^{(n)}(z_0)$ is given by

(Ans: $2\pi i$)

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^{n+1}} dz \,.$$

- **20.** If $f(z) = (z+6)/(z^2-4)$ show that the integral $\int_C f(z)dz$ is:
- a) 0 if the contour is the circle $x^2 + y^2 = 1$,
- b) $4\pi i$ if C is the circle $(x-2)^2 + y^2 = 1$ and
- c) $-2\pi i$ if C is the circle $(x+2)^2 + y^2 = 1$.
- **21.** Let a polynomial P(z) of degree n, having n simple roots, none of which lies on a simple closed contour C. Calculate the integral,

$$I = \frac{1}{2\pi i} \int_{C} \frac{P'(z)}{P(z)} dz$$