PHYS 301

HANDOUT 3A

Dr. Vasileios Lempesis

1. Use the definition of the derivative to calculate the derivative at the corresponding point: a) $f(z)=3 z^{2}+4 i z-5+i$, at $z=2$, b) $f(z)=(2 z-i) /(z+2 i)$, at $z=-i$, c) $f(z)=3 z^{-2}, z=1+i$.
2. Show that the derivative $d\left(z^{2} \bar{z}\right) / d z$, does not exist.
3. Verify that the real and imaginary parts of the following functions satisfy the Cauchy-Riemann conditions: a) $f(z)=z^{2}+5 i z+3-i$, b) $f(z)=z e^{-z}$, c) $f(z)=\sin (2 z)$.
4. Verify that the real and imaginary parts of the following functions satisfy the Cauchy-Riemann conditions: a) $f(z)=e^{z^{2}}$, b) $f(z)=\cos (2 z)$, c) $f(z)=\sinh (4 z)$.
5. a) Show that the function $u=2 x(1-y)$ is harmonic. b) Find a function v such that the function $f(z)=u+i v$ is analytic. c) Express $f(z)$ as a function of z.
6. Find the orthogonal curve to the curve $x^{3} y-x y^{3}=a$.
7. Separating the function $f(z)=z+1 / z$ in a real and imaginary part, show that the familes $\left(r^{2}+1\right) \cos \theta=a r$ and $\left(r^{2}-1\right) \sin \theta=\beta r$ represent orthogonal curves.
8. Show that $\nabla^{2}|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$. Verify this relation for $f(z)=z^{2}+i z$.
9. Show that (a) $\frac{\partial}{\partial x}=\frac{\partial}{\partial z}+\frac{\partial}{\partial \bar{z}}$, (b) $\frac{\partial}{\partial y}=i\left(\frac{\partial}{\partial z}-\frac{\partial}{\partial \bar{z}}\right)$.
10. Show that $\nabla=\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}=2 \frac{\partial}{\partial \bar{z}}$.
11. Show that $\bar{\nabla}=\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}=2 \frac{\partial}{\partial z}$.
