PHYS 301

HANDOUT 3A

Dr. Vasileios Lempesis

- 1. Use the definition of the derivative to calculate the derivative at the corresponding point: a) $f(z) = 3z^2 + 4iz 5 + i$, at z = 2, b) f(z) = (2z i)/(z + 2i), at z = -i, c) $f(z) = 3z^{-2}$, z = 1 + i.
- **2.** Show that the derivative $d(z^2\overline{z})/dz$, does not exist.
- **3.** Verify that the real and imaginary parts of the following functions satisfy the Cauchy-Riemann conditions: a) $f(z) = z^2 + 5iz + 3 i$, b) $f(z) = ze^{-z}$, c) $f(z) = \sin(2z)$.
- **4.** Verify that the real and imaginary parts of the following functions satisfy the Cauchy-Riemann conditions: a) $f(z) = e^{z^2}$, b) $f(z) = \cos(2z)$, c) $f(z) = \sinh(4z)$.
- 5. a) Show that the function u = 2x(1-y) is harmonic. b) Find a function v such that the function f(z) = u + iv is analytic. c) Express f(z) as a function of z.
- **6.** Find the orthogonal curve to the curve $x^3y xy^3 = a$.
- 7. Separating the function f(z) = z + 1/z in a real and imaginary part, show that the familes $(r^2 + 1)\cos\theta = ar$ and $(r^2 1)\sin\theta = \beta r$ represent orthogonal curves.

1

- **8.** Show that $\nabla^2 |f(z)|^2 = 4|f'(z)|^2$. Verify this relation for $f(z) = z^2 + iz$.
- **9.** Show that (a) $\frac{\partial}{\partial x} = \frac{\partial}{\partial z} + \frac{\partial}{\partial \overline{z}}$, (b) $\frac{\partial}{\partial y} = i \left(\frac{\partial}{\partial z} \frac{\partial}{\partial \overline{z}} \right)$.
- **10.** Show that $\nabla = \frac{\partial}{\partial x} + i \frac{\partial}{\partial y} = 2 \frac{\partial}{\partial \overline{z}}$.
- **11.** Show that $\overline{\nabla} = \frac{\partial}{\partial x} i \frac{\partial}{\partial y} = 2 \frac{\partial}{\partial z}$.