27. A man enters a tall tower, needing to know its height. He notes that a long pendulum extends from the ceiling almost to the floor and that its period is 12.0 s . (a) How tall is the tower? (b) What If? If this pendulum is taken to the Moon, where the free-fall acceleration is $1.67 \mathrm{~m} / \mathrm{s}^{2}$, what is its period there?

Solution:
(a) $\quad T=2 \pi \sqrt{\frac{L}{g}}$

$$
L=\frac{g T^{2}}{4 \pi^{2}}=\frac{\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(12.0 \mathrm{~s})^{2}}{4 \pi^{2}}=35.7 \mathrm{~m}
$$

(b) $\quad T_{\text {moon }}=2 \pi \sqrt{\frac{L}{g_{\text {moon }}}}=2 \pi \sqrt{\frac{35.7 \mathrm{~m}}{1.67 \mathrm{~m} / \mathrm{s}^{2}}}=29.1 \mathrm{~s}$
28. A "seconds pendulum" is one that moves through its equilibrium position once each second. (The period of the pendulum is precisely 2 s .) The length of a seconds pendulum is 0.9927 m at Tokyo, Japan and 0.9942 m at Cambridge, England. What is the ratio of the free-fall accelerations at these two locations?

Solution:

The period in Tokyo is

$$
\begin{aligned}
& T_{T}=2 \pi \sqrt{\frac{L_{T}}{g_{T}}} \\
& T_{C}=2 \pi \sqrt{\frac{L_{C}}{g_{C}}}
\end{aligned}
$$

and the period in Cambridge is
We know

$$
T_{T}=T_{\mathrm{C}}=2.00 \mathrm{~s}
$$

For which, we see

$$
\frac{L_{T}}{g_{T}}=\frac{L_{C}}{g_{C}}
$$

$$
\frac{g_{\mathrm{C}}}{g_{T}}=\frac{L_{\mathrm{C}}}{L_{T}}=\frac{0.9942}{0.9927}=1.0015
$$

30. The angular position of a pendulum is represented by the equation $\theta=(0.320 \mathrm{rad}) \cos \omega t$, where θ is in radians and $\omega=4.43 \mathrm{rad} / \mathrm{s}$. Determine the period and length of the pendulum.
Solution:

$$
\begin{array}{ll}
\omega=\frac{2 \pi}{T}: & T=\frac{2 \pi}{\omega}=\frac{2 \pi}{4.43}=1.42 \mathrm{~s} \\
\omega=\sqrt{\frac{g}{L}}: & L=\frac{g}{\omega^{2}}=\frac{9.80}{(4.43)^{2}}=0.499 \mathrm{~m}
\end{array}
$$

33. A particle of mass m slides without friction inside a hemispherical bowl of radius R. Show that, if it starts from rest with a small displacement from equilibrium, the particle moves in simple harmonic motion with an angular frequency equal to that of a simple pendulum of length R. That is, $\omega=\sqrt{g / R}$.

Referring to the sketch we have

$$
\begin{array}{ll}
F=-m g \sin \theta \quad \text { and } & \tan \theta=\frac{x}{R} \\
\text { For small displacements, } & \tan \theta \approx \sin \theta \\
\text { and } & F=-\frac{m g}{R} x=-k x
\end{array}
$$

Since the restoring force is proportional to the displacement from equilibrium, the motion is simple harmonic motion.
Comparing to $F=-m \omega^{2} x$ shows $\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{g}{R}}$.

FIG. P15.33
34. \square A small object is attached to the end of a string to form a simple pendulum. The period of its harmonic motion is measured for small angular displacements and three lengths, each time clocking the motion with a stopwatch for 50 oscillations. For lengths of $1.000 \mathrm{~m}, 0.750 \mathrm{~m}$, and 0.500 m , total times of $99.8 \mathrm{~s}, 86.6 \mathrm{~s}$, and 71.1 s are measured for 50 oscillations. (a) Determine the period of motion for each length. (b) Determine the mean value of g obtained from these three independent measurements, and compare it with the accepted value. (c) Plot T^{2} versus L, and obtain a value for g from the slope of your best-fit straight-line graph. Compare this value with that obtained in part (b).

Solution:

(a) $T=\frac{\text { total measured time }}{50}$

The measured periods are:

Length, $L(\mathrm{~m})$	1.000	0.750	0.500
Period, $T(\mathrm{~s})$	1.996	1.732	1.422

(b) $\quad T=2 \pi \sqrt{\frac{L}{g}} \quad$ so $\quad g=\frac{4 \pi^{2} L}{T^{2}}$

The calculated values for g are:

Period, $T(\mathrm{~s})$	1.996	1.732	1.422
$g\left(\mathrm{~m} / \mathrm{s}^{2}\right)$	9.91	9.87	9.76

FIG. P15.34

Thus, $g_{\text {ave }}=9.85 \mathrm{~m} / \mathrm{s}^{2}$ this agrees with the accepted value of $g=9.80 \mathrm{~m} / \mathrm{s}^{2}$ within 0.5%.
(c) From $T^{2}=\left(\frac{4 \pi^{2}}{g}\right) L$, the slope of T^{2} versus L graph $=\frac{4 \pi^{2}}{g}=4.01 \mathrm{~s}^{2} / \mathrm{m}$.

Thus, $g=\frac{4 \pi^{2}}{\text { slope }}=9.85 \mathrm{~m} / \mathrm{s}^{2}$. This is the same as the value in (b).
38. A torsional pendulum is formed by taking a meter stick of mass 2.00 kg , and attaching to its center a wire. With its upper end clamped, the vertical wire supports the stick as the stick turns in a horizontal plane. If the resulting period is 3.00 minutes, what is the torsion constant for the wire?

Solution:
We suppose the stick moves in a horizontal plane. Then,

$$
\begin{aligned}
& I=\frac{1}{12} m L^{2}=\frac{1}{12}(2.00 \mathrm{~kg})(1.00 \mathrm{~m})^{2}=0.167 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
& T=2 \pi \sqrt{\frac{I}{\kappa}} \\
& \kappa=\frac{4 \pi^{2} I}{T^{2}}=\frac{4 \pi^{2}\left(0.167 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)}{(180 \mathrm{~s})^{2}}=203 \mu \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

39. A clock balance wheel (Fig. P15.39) has a period of oscillation of 0.250 s . The wheel is constructed so that its mass of 20.0 g is concentrated around a rim of radius 0.500 cm . What are (a) the wheel's moment of inertia and (b) the torsion constant of the attached spring?

Solution:
$T=0.250 \mathrm{~s}, I=m r^{2}=\left(20.0 \times 10^{-3} \mathrm{~kg}\right)\left(5.00 \times 10^{-3} \mathrm{~m}\right)^{2}$
(a) $\quad I=5.00 \times 10^{-7} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
(b) $I \frac{d^{2} \theta}{d t^{2}}=-\kappa \theta ; \sqrt{\frac{\kappa}{I}}=\omega=\frac{2 \pi}{T}$

$$
\kappa=I \omega^{2}=\left(5.00 \times 10^{-7}\right)\left(\frac{2 \pi}{0.250}\right)^{2}=3.16 \times 10^{-4} \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{rad}}
$$

FIG. P15.39

