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Introduction

When an extended object such as a wheel rotates about its axis, the
motion cannot be analyzed by treating the object as a particle because
at any given time different parts of the object have different linear
velocities and linear accelerations. We can, however, analyze the motion
by considering an extended object to be composed of a collection of
particles, each of which has its own linear velocity and linear
acceleration.

In dealing with a rotating object, analysis is greatly simplified by
assuming that the object is rigid. A rigid object is one that is
nondeformable—that is, the relative locations of all particles of which
the object is composed remain constant. All real objects are deformable
to some extent; however, our rigid-object model is useful in many
situations in which deformation is negligible.




10.5 Calculation of Moments of Inertia

We can evaluate the moment of inertia of an extended rigid object by
imagining the object to be divided into many small volume elements,
each of which has mass Am;.

We use the definition I = Y.; Am;7;* and take the limit of this sum as
Am;— 0. In this limit, the sum becomes an integral over the volume of
the object:

m
I = lim r;2Am; = jrzdm v p=—

Am;—0 L V
l

where p is the density of the object and Vs its
volume. From this equation, the mass of a small
elementisdm =pdVso I=[pr?av




10.5 Calculation of Moments of Inertia

m
p = v volumetric mass density

o = pt surface mass density

A =pA [linear mass density




10.5 Calculation of Moments of Inertia

parallel-axis theorem

The calculation of moments of inertia about an arbitrary axis can be cumbersome,
however, even for a highly symmetric object. Fortunately, use of an important
theorem, called the parallel-axis theorem, often simplifies the calculation. Suppose
the moment of inertia about an axis through the center of mass of an object is /.
The parallel-axis theorem states that the moment of inertia about any axis parallel to
and a distance Daway from this axis is

I=ICM+MD2

To prove the parallel-axis theorem, uppose that { --------------

an object rotates in the xy plane about the z axis, /]! |
as shown in Figure 10.12, and that the \ |

coordinates of the center of mass are xc, Jew. Let i :
the mass element drm have coordinates x; y. C — T =<

Because this element is a distance r = \/x? + y? — s
from the zaxis, the moment of inertia about the

zaxisis I = [r?dm = [(x* 4+ y?)dm
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10.5 Calculation of Moments of Inertia

Table 10.2

Moments of Inertia of Homogeneous Rigid Objects

with Different Geometries
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10.5 Calculation of Moments of Inertia

Table 10.2

Moments of Inertia of Homogeneous Rigid Objects

with Different Geometries
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10.6 Torque

The tendency of a force to rotate an object o
about some axis is measured by a vector 50 _
guantity called torque .

Torque is a vector, but we will consider only
its magnitude here and explore its vector N 2
nature in Chapter 11. d>~_ /7 action
T=rXF=rFsin¢g = Fd Kfy

where r is the distance between the pivot

point and the point of application of F and d

is the perpendicular distance from the pivot

point to the line of action of F. (The line of

action of a force is an imaginary line

extending out both ends of the vector

representing the force.

! 5
~ Fcos 0




10.7 Relationship Between Torque and Angular
Acceleration

Consider a particle of mass m rotating in a circle of radius r under the influence of
a tangential force F, and a radial force F,, as shown in Figure 10.16. The tangential
force provides a tangential acceleration a,, and

I, = ma,
The magnitude of the torque about the center of the circle due to F,is
T = Fr= (ma)r

Because the t;mgential acceleration 1s related to the angular acceleration through the
relationship @, = ra (see Eq. 10.11), the torque can be expressed as

T= (mra)r= (??2?'2)&‘

. — Ly I . N . .
Recall from Equauon 10.15 that mr- is the moment of inertia of the partlcle about the
z axis passing through the origin, so that

= lu (10.20)

That is, the torque acting on the particle is proportional to its angular accelera-
tion, and the proportionality constant is the moment of inertia. Note that 7 = /a is the
rotational analog of Newton’s second law of motion, I'= ma.




Acceleration

10.7 Relationship Between Torque and Angular

Now let us extend this discussion to a rigid object of arbitrary shape rotating about
a fixed axis, as in Figure 10.17. The object can be regarded as an infinite number of
mass elements dm of infinitesimal size. If we impose a Cartesian coordinate system on
the object, then each mass element rotates in a circle about the origin, and each has a
tangential acceleration a, produced by an external tangential force dF,. For any given
element, we know from Newton’s second law that

dF, = (dm)a,
The torque dr associated with the force dF,acts about the origin and is given by
dr = rdl, = a;rdm
Because @, = na, the expression for dr becomes
— 2
dr = ar- dm

Although each mass element of the rigid object may have a different linear accelera-
tion a;, they all have the same angular acceleration a. With this in mind, we can integrate
the above expression to obtain the net torque 271 about O due to the external forces:

9 9
Yr=|ar’dm=a | rdm

where a can be taken outside the integral because it is common to all mass elements.

. oy -9 . . . .
From Equation 10.17, we know that [r= dm is the moment of inertia of the object
about the rotation axis through O, and so the expression for 27 becomes

dYr=1Ia (10.21)
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10.7 Relationship Between Torque and Angular
Acceleration




Lecture Summary

If a particle moves in a circular path of radius r through an angle 8(measured in
radians), the arc length it moves through is s = ré.

The angular position of a rigid object is defined as the angle fbetween a reference
line attached to the object and a reference line fixed in space. The angular
displacement of a particle moving in a circular path or a rigid object rotating about a
fixed axis is A0 = 607 — 0;.

The instantaneous angular speed of a particle moving in a circular path or of a rigid
object rotating about a fixed axis is: w=dé@/dt

The instantaneous angular acceleration of a particle moving in a circular path or a
rotating rigid object is: a=dw/dt

When a rigid object rotates about a fixed axis, every part of the object has the same
angular speed and the same angular acceleration.




Thank You
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