Phys 103

Chapter 1

Physics and Measurement

By
Dr. Saif M. H. Qaid

LECTURE OUTLINE

- 1.1 Standards of Length, Mass, and Time
- 1.4 Dimensional Analysis
- 1.5 Conversion of Units

1.1 Standards of Length, Mass, and

 TimeIn mechanics, there are three basic quantities: length, mass, and time

- All other quantities in mechanics can be expressed in terms of these three.
- In1960, an international committee established a set of standards for the fundamental quantities of science. It is called the SI (Système International)
- In the SI:
$>$ Units of length: meter
$>$ Units of mass : kilogram
$>$ Units of time : second

1.1 Standards of Length, Mass, and

 Time- Length: SI Unit of length is: meter (m).
- Mass: SI Unit of mass is: kilogram (kg)
- Time: SI Unit of time is: second (s)
- In many situations, you may have to derive or check a specific equation. A useful and powerful procedure called dimensional analysis can be used to assist in the derivation or to check your final expression.
- As a simple method:

Left Hand Side must $=$ Right Hand Side

1.4 Dimensional Analysis

- Dimension: it denotes the physical nature of a quantity
- Example: distance: could be in meters, yards, or micrometers. But over all it is: a length
- Symbols we are going to use are:
$>$ dimension of length: [L]
$>$ dimension of mass: [M]
dimension of time: [T]
Units of Area, Volume, Velocity, Speed, and Acceleration

System	Area $\left(\mathrm{L}^{2}\right)$	Volume $\left(\mathrm{L}^{3}\right)$	Speed $(\mathrm{L} / \mathbf{T})$	Acceleration $\left(\mathrm{L} / \mathrm{T}^{2}\right)$
SI	m^{2}	$\mathrm{~m}^{3}$	$\mathrm{~m} / \mathrm{s}$	$\mathrm{m} / \mathrm{s}^{2}$
U.S. customary	ft^{2}	ft^{3}	ft / s	$\mathrm{ft} / \mathrm{s}^{2}$

1.4 Dimensional Analysis

Example: Use dimensional analysis to check the equation:

$$
x=1 / 2 a t^{2}
$$

- Solution:

$$
L=\frac{L}{T^{2}} \cdot T^{2}=L
$$

Example: Show that $v=$ at is dimensionally correct.

- Solution:
L.H.S.: $[v]=\frac{L}{T}$ and L.H.S $[$ at $]=\frac{L}{T^{2}} \cdot T=\frac{L}{T}$
L.H.S=R.H.S

So the equation is dimensionally correct

1.5 Conversion of Units

Some times it is necessary to convert units from one measurement system to another, or to convert within a system, for example, from kilometers to meters.
Examples: 1 mile $=1609 \mathrm{~m}=1.609 \mathrm{~km}$

- $1 \mathrm{ft}=0.3048 \mathrm{~m}=30.48 \mathrm{~cm}$
- $1 \mathrm{~m}=39.37 \mathrm{in} .=3.281 \mathrm{ft}$
- $1 \mathrm{in} .=0.0254 \mathrm{~m}=2.54 \mathrm{~cm}$ (exactly)

PROBLEMS

- Section 1.4 Dimensional Analysis

13. The position of a particle moving under uniform acceleration is some function of time and the acceleration. Suppose we write this position

$$
S=k a^{m} t^{n}
$$

where k is a dimensionless constant. Show by dimensional analysis that this expression is satisfied if $m=1$ and $n=2$. Can this analysis give the value of k ?

PROBLEMS

- Section 1.4 Dimensional Analysis

15. The position of a particle moving under uniform

Which of the following equations are dimensionally correct?
a) $v_{f}=v_{i}+a x$
b) $y=(2 m) \cos (k x)$, where $k=2 m^{-1}$

PROBLEMS

- Section 1.5 Conversion of Units

21. A rectangular building lot is 100 ft by 150 ft . Determine the area of this lot in m^{2}.
22. A solid piece of lead has a mass of 23.94 g and a volume of $2.10 \mathrm{~cm}^{3}$. From these data, calculate the density of lead in SI units ($\mathrm{kg} / \mathrm{m}^{3}$).
23. One gallon of paint (volume $=3.78 \times 10^{-3} \mathrm{~m}^{3}$) covers an area of $25.0 \mathrm{~m}^{2}$. What is the thickness of the paint on the wall?

Lecture Summary

$>$ The three fundamental physical quantities of mechanics are length, mass, and time, which in the SI system have the units meters(m), kilograms(kg), and seconds(s), respectively.
$>$ The method of dimensional analysis is very powerful in solving physics problems.
$>$ Dimensions can be treated as algebraic quantities. By making estimates and performing order-of-magnitude calculations, you should be able to approximate the answer to a problem when there is not enough information available to completely specify an exact solution.

Thank You

