PHYS 111

1st semester 1446

Prof. OMAR H. M. ABD-ELKADER

Problems L12

1. Calculate the wavelength of a photon emitted when an electron in H-atom makes a transition from n=2 to n=1.

Solution

According to Rydberg formula, Here, n1=1 and n2=2 and R is the Rydberg constant. Z is the atomic number of H-atom Z=1, R=109677 cm⁻¹

$$\frac{1}{\lambda} = R(\frac{1}{n_1^2} - \frac{1}{n_2^2})z^2$$

$$\frac{1}{\lambda} = 109677 \left(\frac{1}{1^2} - \frac{1}{2^2}\right) = 2.27 \times 10^{-6} cm$$

2. If an electron makes transition from the 7th excited state to 2nd state in a H-atom sample, find the maximum number of spectral lines observed.

Solution

The maximum number of spectral lines(N) can be calculated using the below formula:

$$N = \frac{(n_2 - n_1)(n_2 - n_1 + 1)}{2}$$

Here, $n_2 = 8$ (for 7th excited state) and $n_1 = 2$. Substituting in the formula, we get

$$N = \frac{(8-2)(8-2+1)}{2}$$

$$N = 21$$

- 3. The wavelength of Lyman series lies in the
 - a) Visible region
 - **b) Radio Waves region**
 - c)Ultraviolet region
 - d) Infrared region

Solution

c) Ultraviolet region

4. A line at 3802 cm⁻¹ is obtained in the infrared region of the atomic spectrum of hydrogen. Determine the energy of this photon.

Solution

Given, λ = (1/3802) cm We know that, Energy, E= $h\nu$ = hc/λ Where h is the Planck's constant and c is the speed of light, h= 6.63×10 $^{-34}$ Js , c= 3×10 8 m/s = 3×10 10 cm/s

E=
$$h\nu$$
= hc/λ = 7.56 x 10⁻²⁰ J

5. Which electronic level allows the hydrogen atom to absorb but not emit photons?

- a) 3s
- b) 2p
- c) 2s
- d) 1s

Solution

d) 1s

6. Calculate wavelength for the 2nd line of the Balmer series of He + ion

Solution

According to the Rydberg formula

$$\frac{1}{\lambda} = R(\frac{1}{n_1^2} - \frac{1}{n_2^2})z^2$$

For the balmer series, n_1 = 2 and for the second line, n_2 =4 For He $^+$ ion, z=2 (Atomic number of Helium)

R= 109677 cm⁻¹

$$\frac{1}{\lambda} = 109677(\frac{1}{2^2} - \frac{1}{4^2})2^2$$

Thus, $\lambda = 1.21 \times 10^{-5}$ cm

7. Calculate the frequency of light emitted when an electron drops from the higher to the lower state if the energy difference between the two electronic states is 214.68 kJ/mol. (Planck's constant, h= 39.79× 10 -14 kJs/mol)

$$\Delta E = h f 214.68 kJ/mol = 39.79 \times 10 -14 k J s / mol \times f$$

 $f = 5.395 \times 10 14 s^{-1}$

- 8. The diagram below represents some of the electron energy levels in the hydrogen atom.
- a) To which energy level does the electron drop when it emits visible light?
- b) Calculate the frequency of the photon produced when an electron drops from the second excited state (n = 3) to the ground state (n = 1). $h = 6.62607015 \times 10^{-34}$ joule-hertz⁻¹

a) 2nd level

b) E = E3 - E1 = h f f = E3-E2 / h = 2.92 x 10¹⁵ Hz

9. Calculate the shortest wavelength of the X-ray spectrum emitted by the X-ray production device When an electron accelerated with 18750 voltage is used.

$$\lambda_{\rm m} = 1.24 \times 10^{-6} / {\rm V} = 1.24 \times 10^{-6} / (18750) = 6.61 \times 10^{-11} {\rm m}$$

10. The wavelength la of the characteristic $\mathbf{K}\alpha$ spectral line of a given element is 0.07228 nm Calculate the atomic number of that element

$$\frac{1}{\lambda_{\alpha}} = RZ_{eff}^{2} \left(\frac{1}{1^{2}} - \frac{1}{2^{2}}\right) = \frac{3}{4} RZ_{eff}^{2}$$

$$, Z_{eff} = Z - 1$$

$$Z_{eff}^{2} = 168$$

$$Z_{eff} = 12.9 = 13$$

$$R = 1.09737 \times 10^{7} m^{-1}$$

$$Z = Z_{eff} + 1 = 14 \text{ (Si)}$$