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Gauss’ Law

•Gauss’ Law can be used as an alternative procedure for calculating 
electric fields.

•Gauss’ Law is based on the inverse-square behavior of the electric 
force between point charges.

•It is convenient for calculating the electric field of highly symmetric 
charge distributions.

•Gauss’ Law is important in understanding and verifying the 
properties of conductors in electrostatic equilibrium.

Introduction



Introduction

Symbol Name Unit 

  Charge per length C/m  
  Charge per area C/m

2
 

  Charge per volume C/m
3
 

 

We will use a “charge density” to describe the distribution of charge.

This charge density will be different depending on the geometry



Electric Flux

Section  24.1

• Electric flux is the product of the magnitude of the electric field and the 
surface area, A, perpendicular to the field

ΦE = EA



Electric Flux, General Area

•The electric flux is proportional to the 
number of electric field lines 
penetrating some surface.

•The field lines may make some angle θ
with the perpendicular to the surface.

•Then ΦE = EA cos θ Section  24.1

• The electric flux is proportional to the 

• number of electric field lines

• penetrating some surface

• The field lines may make some 

• angle θ with the perpendicular to the surface

• Then       ΦE = EA cos θ
• The flux is a maximum 

when the surface is 

perpendicular to the field

• The flux is a minimum

(zero) when the surface is (parallel) to the field



Electric Flux, Interpreting the Equation

•The flux is a maximum when the surface is 
perpendicular to the field.

• θ = 0°

•The flux is zero when the surface is parallel to the 
field.

• θ = 90°

•If the field varies over the surface, Φ = EA cos θ is 
valid for only a small element of the area.

Section  24.1



Electric Flux, General

•In the more general case, look at a small area 
element.

•In general, this becomes

• The surface integral means the 
integral must be evaluated over the 
surface in question.

•In general, the value of the flux will depend both on 
the field pattern and on the surface.
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Electric Flux, Closed Surface

•Assume a closed surface

•The vectors        point in different directions.

• At each point, they are 
perpendicular to the surface.

• By convention, they point 
outward.

i
A
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Flux Through Closed Surface, cont.

•At (1), the field lines are crossing the surface from the inside to the 
outside; θ < 90o, Φ is positive.

•At (2), the field lines graze surface; θ = 90o, Φ = 0

•At (3), the field lines are crossing the surface from the outside to the 
inside;180o > θ > 90o, Φ is negative.

Section  24.1



Flux Through Closed Surface, final

•The net flux through the surface is proportional to the net number of 
lines leaving the surface.

• This net number of lines is the number of lines leaving the surface minus the 
number entering the surface.

•If En is the component of the field perpendicular to the surface, then

• The integral is over a closed surface. E n
d E dA    E A

Section  24.1



Flux Through a Cube, Example

•The field lines pass through two 
surfaces perpendicularly and are 
parallel to the other four surfaces.

•For face 1, E = -El 2

•For face 2, E = El 2

•For the other sides, E = 0

•Therefore, Etotal = 0

Section  24.1



Karl Friedrich Gauss

•1777 – 1855

•Made contributions in

• Electromagnetism

• Number theory

• Statistics

• Non-Euclidean geometry

• Cometary orbital 
mechanics

• A founder of the German 
Magnetic Union

• Studies the Earth’s 
magnetic field

Section  24.2



Gauss’s Law, Introduction

•Gauss’s law is an expression of the general relationship between the net 
electric flux through a closed surface and the charge enclosed by the 
surface.

• The closed surface is often called a Gaussian surface.

•Gauss’s law is of fundamental importance in the study of electric fields.

Section  24.2



Gauss’s Law – General 

•A positive point charge, q, is located at the center of a 
sphere of radius r.

•The magnitude of the electric field everywhere on the 
surface of the sphere is 

E = keq / r2

Section  24.2
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Gauss’s Law – General, cont.

•The field lines are directed radially outward and are perpendicular to 
the surface at every point.

•This will be the net flux through the gaussian surface, the sphere of 
radius r.

•We know E = keq/r2 and Asphere = 4πr2,
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Gauss’s Law – General, notes

•The net flux through any closed surface surrounding a point charge, q, 
is given by q/εo and is independent of the shape of that surface.

•The net electric flux through a closed surface that surrounds no charge 
is zero.

•Since the electric field due to many charges is the vector sum of the 
electric fields produced by the individual charges, the flux through any 
closed surface can be expressed as 

 1 2
d d    E A E E A
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Gaussian Surface, Example
•Closed surfaces of various 
shapes can surround the 
charge.

• Only S1 is spherical

•Verifies the net flux through 
any closed surface 
surrounding a point charge q 
is given by q/o and is 
independent of the shape of 
the surface.

Section  24.2
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Gaussian Surface, Example 2

•The charge is outside the closed surface 
with an arbitrary shape.

•Any field line entering the surface 
leaves at another point.

•Verifies the electric flux through a 
closed surface that surrounds no charge 
is zero.

Section  24.2
0 0

0
0in

c

q


 
  



Gauss’s Law – Final

E

•The mathematical form of 
Gauss’s law states

• qin is the net charge inside 
the surface.

• represents the electric field at 
any point on the surface.

• is the total electric field
and may have contributions 
from charges both inside and 
outside of the surface.

•Although Gauss’s law can, in 
theory, be solved to find for any 
charge configuration, in practice it 
is limited to symmetric situations.
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Applying Gauss’s Law

•To use Gauss’s law, you want to choose a gaussian surface over which 
the surface integral can be simplified and the electric field determined.

•Take advantage of symmetry.

•Remember, the gaussian surface is a surface you choose, it does not 
have to coincide with a real surface.

Section  24.3



Conditions for a Gaussian Surface

E

•Try to choose a surface that satisfies one or more of these 
conditions:

• The value of the electric field can be argued from symmetry to be 
constant over the surface.

• The dot product of can be expressed as a simple algebraic 
product EdA because and       are parallel.

• The dot product is 0 because and       are perpendicular.

• The field is zero over the portion of the surface.

•If the charge distribution does not have sufficient symmetry 
such that a Gaussian surface that satisfies these conditions 
can be found, Gauss’ law is not useful for determining the 
electric field for that charge distribution.
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Field Due to a Spherically Symmetric Charge 
Distribution
•Select a sphere as the gaussian surface.

•For r >a

in

2 2
4

E

o

e

o

q
d EdA

ε

Q Q
E k

πε r r

    

 

 E A

Section  24.3



•Total Charge Q ،Volume charge density 

Fig 24-11, p.747
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Spherically Symmetric, cont.

•Select a sphere as the gaussian surface, r < a.

•qin < Q

•qin = r (4/3πr3)
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Spherically Symmetric Distribution, final

•Inside the sphere, E varies linearly with r

• E → 0 as r → 0

•The field outside the sphere is equivalent to that of a 
point charge located at the center of the sphere.

Section  24.3



Fig 24-13, p.748

r > a
r < a



Fig 24-13a, p.748
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Fig 24-13c, p.748
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Field at a Distance from a Line of Charge

•Select a cylindrical charge distribution .

• The cylinder has a radius of r and a 
length of ℓ.

• is constant in magnitude and perpendicular to the 
surface at every point on the curved part of the 
surface.

•Use Gauss’s law to find the field.
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Field Due to a Line of Charge, cont.

•The end view confirms the field is perpendicular to 
the curved surface.

•The field through the ends of the cylinder is 0 since 
the field is parallel to these surfaces.

Section  24.3



Field Due to a Plane of Charge

•

• must be perpendicular to the plane and 
must have the same magnitude at all 
points equidistant from the plane.

•Choose a small cylinder whose axis is 
perpendicular to the plane for the 
gaussian surface.

• is parallel to the curved surface and 
there is no contribution to the surface 
area from this curved part of the cylinder.

•The flux through each end of the 
cylinder is EA and so the total flux is 2EA.

E
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Field Due to a Plane of Charge, final

•The total charge in the surface is σA.

•Applying Gauss’s law:

•Note, this does not depend on r.

•Therefore, the field is uniform everywhere.
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Properties of a Conductor in Electrostatic 
Equilibrium
•When there is no net motion of charge within a conductor, the conductor is 
said to be in electrostatic equilibrium.

•The electric field is zero everywhere inside the conductor.
• Whether the conductor is solid or hollow

•If the conductor is isolated and carries a charge, the charge resides on its 
surface.

•The electric field at a point just outside a charged conductor is 
perpendicular to the surface and has a magnitude of σ/εo.

•  is the surface charge density at that point.

•On an irregularly shaped conductor, the surface charge density is greatest at 
locations where the radius of curvature is the smallest.

Section  24.4



Property 1: Fieldinside = 0

•Consider a conducting slab in an 
external field.

•If the field inside the conductor 
were not zero, free electrons in the 
conductor would experience an 
electrical force.

•These electrons would accelerate.

•These electrons would not be in 
equilibrium.

•Therefore, there cannot be a field 
inside the conductor.

Section  24.4



Property 1: Fieldinside = 0, cont.

•Before the external field is applied, free electrons are distributed 
throughout the conductor.

•When the external field is applied, the electrons redistribute until the 
magnitude of the internal field equals the magnitude of the external field.

•There is a net field of zero inside the conductor.

•This redistribution takes about 10-16 s and can be considered instantaneous.

•If the conductor is hollow, the electric field inside the conductor is also zero.
• Either the points in the conductor or in the cavity within the conductor can be 

considered. 

Section  24.4



Property 2: Charge Resides on the Surface

•Choose a gaussian surface inside but close to the 
actual surface.

•The electric field inside is zero (property 1).

•There is no net flux through the gaussian surface.

•Because the gaussian surface can be as close to the 
actual surface as desired, there can be no charge 
inside the surface.

Section  24.4



Property 2: Charge Resides on the Surface, 
cont.
•Since no net charge can be inside the surface, any net charge must 
reside on the surface.

•Gauss’s law does not indicate the distribution of these charges, only 
that it must be on the surface of the conductor.

Section  24.4



Property 3: Field’s Magnitude and 
Direction

•Choose a cylinder as the gaussian 
surface.

•The field must be perpendicular to 
the surface.

• If there were a parallel component 

• to    , charges would experience a 
force and accelerate along the 
surface and it would not be in 
equilibrium.

E

Section  24.4



Property 3: Field’s Magnitude and Direction, 
cont.
•The net flux through the gaussian surface is through only the flat face 
outside the conductor.

• The field here is perpendicular to the surface.

•Applying Gauss’s law
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Sphere and Shell Example

•Conceptualize

• Similar to the sphere example

• Now a charged sphere is 
surrounded by a shell

• Note charges

•Categorize

• System has spherical symmetry

• Gauss’ Law can be applied

Section  24.4



Sphere and Shell Example, cont.

•Analyze

• Construct a Gaussian sphere 
between the surface of the solid 
sphere and the inner surface of 
the shell.

• Region 2

• a < r < b

• Charge inside the surface is +Q

• The electric field lines must be 
directed radially outward and be 
constant in magnitude on the 
Gaussian surface.

Section  24.4



Sphere and Shell Example, 3

•Analyze, cont.
• The electric field for each area can be calculated.
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Sphere and Shell Example

•Finalize
• Check the net charge.

• Think about other possible combinations.
• What if the sphere were conducting instead of insulating?

Section  24.4


