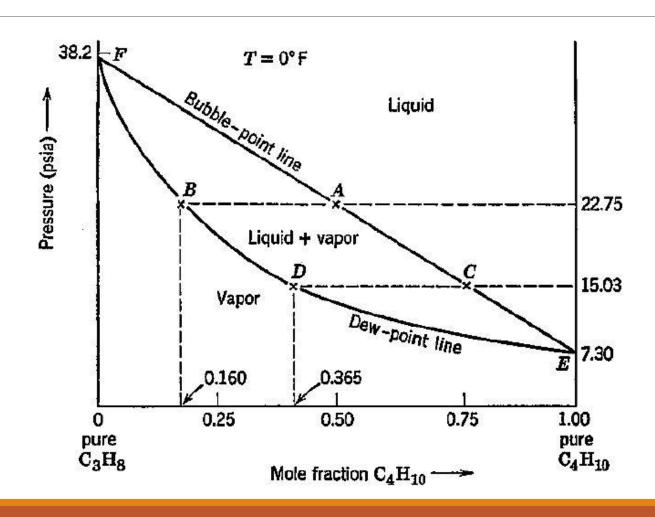


Properties of Reservoir Fluids (PGE 362)

Quantitative Phase Behavior


BY DR. MOHAMMED A. KHAMIS 29-11-2016

From the previous example (L11):

$ m C_{3}H_{8} \ C_{4}H_{10}$	
$egin{array}{c} ext{Component} \ ext{C}_3 ext{H}_8 \end{array}$	

$$P_{i} = x_{i}P_{i}^{0}$$
 $y_{i} = P_{i}/P_{T}$
 19.10 0.840
 3.65 0.160
 $P_{T} = 22.75 \text{ psia}$
 $P_{i} = x_{i}P_{i}^{0}$ $y_{i} = P_{i}/P_{T}$
 9.55 0.635
 5.48 0.365

 $P_T = 15.03 \text{ psia}$

Why bubble point is a straight line:

Bubble point line is a linear function of composition.

$$BPP = x_1 P_1^{\circ} + x_2 P_2^{\circ}$$

Since $x_1 = 1 - x_2$ for a binary system,

$$BPP = (P_1^{\circ} - P_2^{\circ}) x_1 + P_2^{\circ}$$

$$y = ax + b$$

Calculation of the liquid and vapor composition of two-component system in the two phase region:

Application of Raoult's Law:

$$P_T = x_1 P_1^{\circ} + x_2 P_2^{\circ}$$

 x_1 and x_2 : mole fraction of the two components in the **liquid** (generally, do not represent the overall composition of the system).

$$x_2 = 1 - x_1$$

$$P_T = x_1 P_1^{\circ} + (1 - x_1) P_2^{\circ}$$

Solving for x_1 :

$$x_1 = \frac{P_T - P_2^{\circ}}{P_1^{\circ} - P_2^{\circ}}$$

$$x_2 = \frac{P_T - P_1^{\circ}}{P_2^{\circ} - P_1^{\circ}}$$

If **Dalton's Law** is applicable to the vapor,

$$y_1 = \frac{P_1}{P_T} = \frac{x_1 P_1^{\circ}}{P_T}$$

$$y_2 = \frac{P_2}{P_T} = \frac{x_2 P_2^{\circ}}{P_T}$$

Example:

Assuming **ideal solution behavior** calculate the composition of the liquid and vapor at **180° F** and **95 psia** for a system containing **one mole** of **n-butane** and **one mole** of **n-pentane**.

The vapor pressure of pure components at 180° F are 160 psia for C_4H_{10} and 54 psia for C_5H_{12} . (Properties of petroleum reservoir fluids: Burcik – Appendix B)

$$x_{C_4H_{10}} = \frac{P_T - P_{C_5H_{12}}^{\circ}}{P_{C_4H_{10}}^{\circ} - P_{C_5H_{12}}^{\circ}} = \frac{95 - 54}{160 - 54} = \mathbf{0.3868}$$

$$x_{C_5H_{12}} = 1 - x_{C_4H_{10}} = 1 - 0.394 = \mathbf{0.6132}$$

$$y_{C_4H_{10}} = \frac{x_{C_4H_{10}}P_{C_4H_{10}}^{\circ}}{P_T} = \frac{0.3868 \times 160}{95} = \mathbf{0.6515}$$

$$y_{C_5H_{12}} = 1 - y_{C_4H_{10}} = 1 - 0.665 = 0.3485$$

Calculation of the dew point pressure of a two-component system:

At dew point the system is essentially all vapor except for tiny amount of liquid.

$$y_{1} = \frac{x_{1}P_{1}^{\circ}}{P_{T}}$$

$$x_{1} = \frac{P_{T} - P_{2}^{\circ}}{P_{1}^{\circ} - P_{2}^{\circ}}$$

$$y_1 = \frac{\frac{P_T - P_2^{\circ}}{P_1^{\circ} - P_2^{\circ}} P_1^{\circ}}{P_T}$$

$$P_T = \frac{-P_2^{\circ}}{\frac{y_1}{P_1^{\circ}}[P_1^{\circ} - P_2^{\circ}] - 1}$$

Example:

Assuming **ideal solution behavior** calculate the dew-point pressure and the composition of the liquid at the dew-point at **180° F** for a system containing **one mole** of **n-butane** and **one mole** of **n-pentane**.

The vapor pressure of pure components at 180° F are 160 psia for C_4H_{10} and 54 psia for C_5H_{12} .

$$y_{C_4H_{10}} = \frac{\frac{P_T - P_{C_5H_{12}}^{\circ}}{P_{C_4H_{10}}^{\circ} - P_{C_5H_{12}}^{\circ}} P_{C_4H_{10}}^{\circ}}{P_T}$$

$$\mathbf{0.5} = \frac{\frac{P_T - 54}{160 - 54} \ 160}{P_T}$$

$$P_T = 80.8 \text{ psia} = \text{DPP}$$

Solution:

The composition of the liquid at the dew point;

$$x_{C_4H_{10}} = \frac{P_T - P_{C_5H_{12}}^{\circ}}{P_{C_4H_{10}}^{\circ} - P_{C_5H_{12}}^{\circ}}$$

$$x_{C_4 H_{10}} = \frac{80.8 - 54}{160 - 54} = \mathbf{0.2528}$$

$$x_{C_5H_{12}} = 1 - x_{C_4H_{10}} = 1 - 0.2528 =$$
0.7472

Solution:

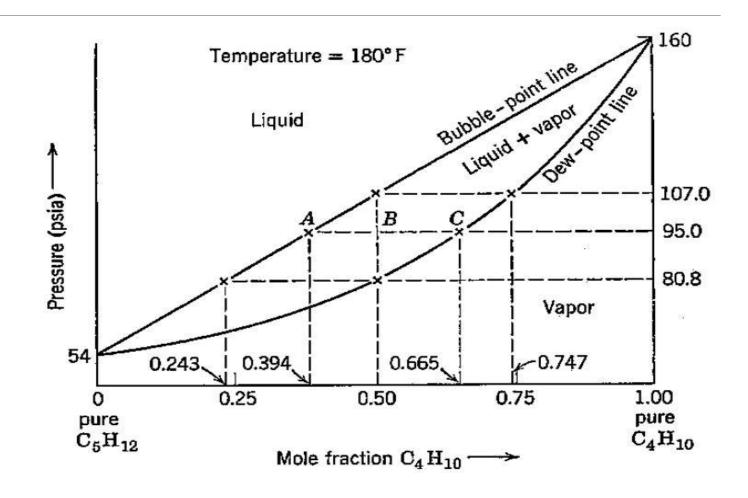
The bubble point pressure;

$$x_{C_4H_{10}} = \frac{P_T - P_2^{\circ}}{P_1 - P_2^{\circ}}$$

$$\mathbf{0.5} = \frac{P_T - 54}{160 - 54}$$

$$P_T = 107 \text{ psia} = BPP$$

$$y_{C_4 H_{10}} = \frac{x_{C_4 H_{10}} P_{C_4 H_{10}}^{\circ}}{P_T}$$


$$y_{C_4H_{10}} = \frac{0.5 \times 160}{107} = \mathbf{0.7477}$$

$$y_{C_5H_{12}} = 1 - x_{C_4H_{10}} = 1 - 0.7477 = 0.2523$$

- 1. BBP = 107 psia
- 2. Composition of vapor at BBP $(y_{C_4H_{10}} = \mathbf{0.7477}, y_{C_5H_{12}} = \mathbf{0.2523})$
- 3. Composition of liquid vapor at 95 psia ($x_{C_4H_{10}} = 0.3868$, $x_{C_5H_{12}} = 0.6132$,

$$y_{C_4H_{10}} = \mathbf{0.6515}, y_{C_5H_{12}} = \mathbf{0.3485})$$

- 1. DPP = 80.8 psia
- 2. Composition of liquid at DPP ($x_{C_4H_{10}} = 0.2528$, $x_{C_5H_{12}} = 0.7472$)

