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Abstract: The path-independerkintegral is used as a fracture prediction criterfor loading
beyond the elastic limit as Linear Elastic Fractitechanics (LEFM) cannot be applied. While
was originally defined from an energy perspective/as demonstrated that it could be inferred from
load-displacement diagrams. Therefore, the Compaaision (CT) specimen testing is used to
compute] for materials. In this work, thg-factor, an important parameter in the computatibthe
J-integral, is investigated for compact tension gpea for materials with pressure sensitive
yielding. This is achieved by using a lower boumgra@ach to derive the appropriate expression
from n from the test geometry and material propertie® $pecimen is considered at fully plastic
loading where it is in the state of collapse. Tiffead of pressure sensitivity is accounted for by
using a Drucker-Prager yield criterion for solidteréls. Since CT testing is usually conducted on
metallic materials, strain-hardening behavior & thaterial is incorporated in this analysis. This i
done by assuming a simple linear hardening curvi@fmaterial. Numerical results computed for
different cases show that as the material straiddmng increases.
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INTRODUCTION stress. While such assumption is acceptable foryman
classes of materials especially metals, it is hetdase
The Linear Elastic Fracture Mechanics (LEFM) for other classes of materials such as polymeraseh
theory is useful for estimation of fracture behavid  transformation ceramics, cast irons and even some
materials in the elastic range. However, as largelasses of steels. In such materials, yielding Wiehas
inelastic strain behavior is encountered, the LEEM affected by the state of hydrostatic stress andyidie
not adequate to describe the toughness and fractugfivelope on the equivalent stress versus the hgdios
behavior. Attempts to model such behavior is gaisg stress plang(0s—0r) is not horizontal, but rather
early as Ricé"? who introduced a path-independent having a negative slope. Such phenomenon, which is
line integral around the tip of the fracture notith also known as pressure-sensitivity, is also denmatest
describe the elastic-plastic fracture behavioretamn, by the variety between the values of yield stress i
Begley and Land&s"! demonstrated that it is possible tension and compression
to estimate thel integral from the load-displacement The effect of pressure sensitivity on yield can be
curves of various test specimen geometries. Betci accounted for using the Drucker-Prager yield doter
al® and Riceet al® proposed possible estimation Where, a generalized equivalent yield stress isesged
methods ofJ for compact tension specimens amongas a function of the effective yield stress and the
other specimen geometries hydrostatic stress using a pressure sensitivityofac
Later on, Merkle and Cort€h improved the The pressure sensitivity factor is a material meits
estimation of J by considering the effects of the property dependent on the difference between yield
bending moment resulting from the applied loadhie t stresses in tension and compression.
remaining ligament of the compact tension specimen. The reported values of pressure sensitivity show a

They used a lower-bound approach to derive sthe wide range of different engineering materials. For
example, for polymers it was reported by Sternstei

factor for the J integral estimation. The; factor 4 Ongchiffl, Spitzig and Richmord, and Kinloch
approach has been used to estimateJtimegral from .4 Youn§?, that the pressure sensitivity facte,
the area under the load-displacemé?l) curve of a has a range of 0.1 ~ 0.25. In cast irons it haslaev
test specimen or structure around 0.22, according to Dorgt al™. It is also
The Von-Mises yield criterion assumes an idealpresent, to a lesser degree, in some steels andhmpw
material yield that only depends on the equivajesid  Richmond and Spitzitf! with 1 has quite a low value
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of 0.064. Phase transformation in some ceramic
materials is highly dependent on pressure sertgiths
reported by experimental investigations of Yu and
Shetty*® and Chefi” wherep has a large value up to (c)
0.93 for zirconia-containing phase-transformation
ceramics. (b)
Al-Abduljabbar and PdR' incorporated the

material pressure-sensitivity, into the calculatimfry (a)
to produce a better estimate of the toughness psope
using the same approach and assumption of rigid
perfectly-plastic material behavior used in pregiou
works.

Since most metals exhibit strain hardening in
various degrees, incorporating the effect of strain £
hardening on the estimate of fracture toughness as
described byl will indeed result in an improvement of
this measure of material fracture behavior. Al-Fig. 1: Stress-strain for different cases: (a)deulized

o

Abduljabbal*® considered strain hardening effect dn perfectly-plastic material, (b) an idealized

for normal solids without pressure sensitivity linearly hardening material and (c) a typical
In this work, a procedure similar to those adopted ductile metal

in previous works in order to produce expressians f

they factor of theJ integral for a material with pressure ; _ 1 S, 3)

sensitivity and strain hardening. The pressure © 1-p
sensitivity is modeled using a Drucker-Prager yield
criterion for solid materials, while strain hardemiis  where, ' =p/+/3.

depicted by assuming a simple linear hardening mode 14 describe the material stress strain relatios, w
for the material. adopt the Ludwik's expressidt:

PLASTICLIMIT ANALYSIS 0=0, +He" 4)
The Drucker-Prager vyield criteridh® is a

generalization of the Coulomb rule is solid mechani where, oy is the initial yield stress is the hardening
where the shear stress required for simple slip igonstantgis the strain and is the hardening exponent.
linearly dependent upon the normal pressure omslthe The expression is further simplified by assumimgér
surface. In the D-P criterion, a generalized yieldhardening case with =1. This relation can be used to
function is proposed as a combination of the effect describe cold worked metals such as high carbon and
yield stress @) and the mean stresgif) by using the alloy steels where there is a high amount of pre-

pressure sensitivity factoplf as follows: straining™® 2(,)]- , o
Shown in Fig. 1 are three curves describing stress
strain behavior. The first one (a) is in an ideadizigid
perfectly-plastic material, where the material &si
_ . no elastic strain and the stress remains at thetaon
In equation (1)ge- (§5)°", where § is the yie|d value ofa, throughout the deformation and plastic
deviatoric stress components defined 8y oj - om 4. straining. Such behavior is the one assumed iniquev
Here, o; represent stress components apdis the  \yorks for estimation of thd integral*®. The second
Kronecker delta. The summation convention is adbpte - rve is for a rigid linear hardening material as
for repeated indices. The mean streg$ (s defined by  gescribed by equation (4) with=1.
the relationoy, =0/3. The stress quantityy is the The third curve is for a typical ductile materigbr
generalized effective tensile stress at the orfsgiell.  meals, the elastic strain is usually very smallewh
Considering the uniaxial tensile and compressive,qmnared with the plastic strain, especially athhig
loading conditions and applying the yield criterion loading levels, as is considered here. This facinjis

equation (1) val_ues for the ef_fectlve tensile sirgg) the assumption of neglecting the contribution o th
and the effective compressive stresg) (can be . A ;
elastic strain in this analysis.

obtained as follows: Next, we consider the compact tension (CT)
specimen of a rigid strain-hardening material asagh
o= g, @) in Fig. 2!l Due to the symmetry of the specimen
1+ geometry and loading condition along the horizontal
1297

f(8) =0, ++3uc,, = g, (1)
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axis, only the upper half of the specimen is aradyz For the plastic limit load, we consider the axial
here. The total width of the specimenVis the crack force and the bending moment equilibrium due to the
length isa, the remaining ligament width ts and the in-plane force and stresses. The force equilibiiiutie
thickness of the specimen (through the paper) iy.un vertical direction requires that:

The fully plastic load value applied as shownPFs
Also shown in the figure, is the stress distribntin the 0, +0, Og+0, _

remaining ligament, where the portion near theigip Fo+ cll-a) Az = otra) Bz =0 ()
under tensile stress resulting from the tension and

bending moment of the load and the other portion is  Hence, equation (7) is used with equations (5) and

under compressive Ioad_ing. At the _point Qf stresg6) to get the plastic limit loaB, as follows:
reversal, both compressive and tensile portionst sta

with initial yield stresses with stress levels e&sing 5 = (2+N)@-1)
=

linearly up to their maximum values at the edges. O "o 1-2 0 (8)

the compressive side, the starting stress leweg] iand

the stress at the outer edge of the specimep aid on Further, the moment equilibrium around stress
stress at the inner edgenis moment balances the moment generated by the applied

The dimensionless parameter, is introduced as load M,. The internal resisting moment is composed of
an indicator of the deviation of the neutral axgnfi the  two portions:M, due to the tensile stress ahd due to
center of the remaining ligament width where the the compressive stress. This produces:
tensile side length i§1+a)c, because it has lower
stress levels and the compressive side length-&)¢1

Within the factora lies the effect of the pressure
sensitivity of the material resulting from the \&ion of The values of these moment components are
yield stresses. Another dimensionless paraméteis determined, with the help of equations (2-3, S

introduced to account for the hardening effecthe t Fig. 2, as follows:

material. Assuming that the slope of the linear

hardening curve on the stress diagram is propatittn =(} +X) (1+°‘)20200 (10)

M, +M_ M, =0 )

V¥, the values of the two end stresses are deternaisted 2 3 1y
0, =[1+Ylo, S (11)
©\2 3) 1-¢
Og =[1+Y]o, (6)
M =Pg[a + (1+a)c] (12)
2

Substituting values for moments from equations
- w - (10-12) into equation (9) and also using equat®)rfdr
the limit load; a quadratic expression for the paster
a'is obtained in the form

‘4—12—»4 b=2c >

G-A
Aa?+Ba+C=0 (13)
O-f.'
Where:
pa o (T+z) c—p»
a(T-)C> A=(A-1), (14)
[e)
! B:('i‘+1—p'j)\+2p' (15)
C
O-B
And:

Fig. 2: Geometry of the upper half of the compact
tension specimen and the stress diagram for th%:_(E'FlJ)\IJ'—l (16)
remaining ligament. Unit thickness is assumed c
129:
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In equations (14-16),A4 is a dimensionless NERE Lo - 2)-a?p-1) 22)
parameter which is defined by: c )7 a-y
Finally, from equations (20-22), we can determine
A :3[:++2\’y] an . Y a (20-22)

(23)

12 r r
From the above relationgy can be solved for n= 2*,‘; “-2 “}\+(1,“)>\O;
easily using the standard quadratic equation swiuti LU -2)= 0 - D@ra-a”)
Recalling the work for pressure sensitive rigid _ o )
perfectly-plastic ~ materials, presented by Al If the material hardening is removed by setting th

Abduljabbar and P4f7, we can see that once we set theparametery to zero, so tha#l = 2, then the equation
strain hardening coefficient to zero, the const#gtB  (23) reduces to
andC of equation (13) above revert to the result given

in equation no. 14 in that work, thereby confirmihg _p(d+a)d-p) (24)
validity of relations developed here. i 1-20'a +a?
THE JINTEGRAL ANALYSIS This expression fom is exactly the same one

presented for perfectly plastic matef@l This result

The expression for th&integral for materials with  for the case without strain hardening serves dseakc
negligible elastic strain can be adopted from tlwekw for the solution obtained fromin the analysis above.
of Merkle and Cortéfl as follows:

DISCUSSION
=g Py, + I [7a, 0P (18) _ _
The relations that were developed fpr in the

. preceding section will be used to assess the sffefct
where, 7 and # are parameters dependent on thethe strain hardening and pressure sensitivity an th
specimen geometry and loading conditions. The firsfracture behavior of metals based on the compact
and second integrals of the equation (18) are lgegtip  tension specimen parameters. Since those relatians
work and the complementary plastic work done on théased on the aforementioned assumptions in a previo

specimen, respectively. Thefactor is defined by: section, they serve as indicative measures of the
material behavior, not direct evaluators of thel rea
n:bi% (19) property. The relations developed for earlier were
R db presented in terms af/c. It is appropriate to express

them here in terms of the normalized crack lersgth.
As will be shown latery; is dependent on the This is achieved by recalling from the geometrythef

geometry, loading conditions and material behaviorSPEcimen in Fig. 2, that:
The y-factor can be determined by first differentiating

equation (8) with respect tm noting thatdc/db= 1/2. a 2%\/
Then, using equations (8) and (19): P :W (25)
W
n=1+ c ,a—a (20)
a-p ac We first consider the behavior of thefactor as a

_ o _ _ function of the normalized crack length for a pettie
Differentiating equation (13) with respectdand  plastic material and two cases of strain hardening

using the relatiora = W-2c; we get an expression for materials ¢ =0, 0.5and 1.0, respectively) where all

the last term in the equation (20): materials having no pressure sensitiity = 0). The
results for this case are shown in Fig. 3. Therégu

;\(E‘J,z) shows that at low values of crack length the change
¢ oa_ ¢ (21)  the hardness factor produces a change in the \dlue
a-=y dc 20 (A —1)+)\[g+1j—u'()\ -2 then factor in the same direction. An increase in the

value of ygives an increase im, resulting in a higher
) i i ) . value of theJ integral. The case of no hardening
Equation (13) is again used to obtain an expressioggresponds to the results obtained by previous
for A (a/c+1): workd16 171
129:
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Fig. 3:Then factor as a function of the normalized
crack length &/W) for different values of the
strain hardening coefficieny and no pressure
sensitivity (1 = 0)
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Fig. 4:Then factor as a function of the normalized
crack length & W) for different values of the
strain hardening coefficieny and a pressure
sensitivity facto = 0.1
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Fig. 5: The 57 factor as a function of the normalized

crack length &/W) for different values of the

strain hardening coefficieny and a pressure
sensitivity factor/ = 0.3

Figure 5 is a plot ofy as a function of the crack
length for a higher value of the pressure isigityg;
M = 0.3. The figure shows the changefjiras the crack
length increases for different cases of strain ésairdy.
By comparison with Fig. 3, we can see that theceibé
pressure sensitivity is to reduce the valugyathile the
main features of the dependence of the strain harge
coefficient are the same. It is noted that the gban 77
due to the change in hardening generally gets mide
the strain hardening gets higher and pressuretséysi
tends to reduce the counter balance effects pradoge
hardening.

CONCLUSION

In this work, an improved estimate of the factor
involved in the evaluation of the integral was dtxd.
As a fracture toughness criterion for the compact
tension specimen,] estimation for strain-hardening
pressure-sensitive materials were possible by using
plastic limit load analysis and assigning a linear

Next, consider the change gfwith respect to the hardening behavior of the specimen material; which
normalized crack length for different cases of istra provided the basis for derivation of analytical
hardening coefficienty, for a low value of pressure expressions for the relevant parameters.
sensitivity # = 0.1 as depicted in Fig. 4. The same The numerical results for different cases of
observation that at low values of crack length, thepressure sensitivity and strain hardening provide
change in the hardness factor produces a chantpe in quantification of expected increase in fracture
value of 77 in the same direction with the increaseyin toughness of the material due to hardening when
resulting in an increase i, although the effect is compared with perfectly plastic behavior. The same
milder. It can be seen from the figure that theefiof result is obtained for the decrease due to material
hardening decreases as the crack extension becom@@ssure sensitivity. The assumptions introducetheén
large and converges to the value of 2 becausecfeply ~ computation of factor limit the validity of the s,
cracked specimens, the factor approaches 2 regardlerequiring a more rigorous model of hardening arsb al
of the material constitutive behavir a comparison with experimental data.
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