Programmable Interval Timer - 8254

CEN433
King Saud University
Dr. Mohammed Amer Arafah

Functional Diagram

8254: Pin Description

8254: Read/Write Operations Summary

A1	A0	SELECTS
0	0	Counter 0
0	1	Counter 1
1	0	Counter 2
1	1	Control Word Register

$\overline{\mathbf{C S}}$	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	A1	A0	
0	1	0	0	0	Write into Counter 0
0	1	0	0	1	Write into Counter 1
0	1	0	1	0	Write into Counter 2
0	1	0	1	1	Write Control Word
0	0	1	0	0	Read from Counter 0
0	0	1	0	1	Read from Counter 1
0	0	1	1	0	Read from Counter 2
0	0	1	1	1	No-Operation (Three-State)
1	X	X	X	X	No-Operation (Three-State)
0	1	1	X	X	No-Operation (Three-State)

8254 System Interface

Control Word Format

$$
A 1, A 0=11 ; \overline{C S}=0 ; \overline{R D}=1 ; \overline{W R}=0
$$

D7	D6	D5	D4	D3	D2	D1	D0
SC1	SC0	RW1	RW0	M2	M1	M0	BCD

SC - Select Counter

SC1	SC0	
0	0	Select Counter 0
0	1	Select Counter 1
1	0	Select Counter 2
1	1	Read-Back Command (See Read Operations)

RW - Read/Write

RW1	RW0	
0	0	Counter Latch Command (See Read Operations)
0	1	Read/Write least significant byte only.
1	0	Read/Write most significant byte only.
1	1	Read/Write least significant byte first, then most significant byte.

M - Mode

M2	M1	M0	
0	0	0	Mode 0
0	0	1	Mode 1
X	1	0	Mode 2
X	1	1	Mode 3
1	0	0	Mode 4
1	0	1	Mode 5

BCD - Binary Coded Decimal

0	Binary Counter 16-bit
1	Binary Coded Decimal (BCD) Counter (4 Decades)

NOTE: Don't Care bits (X) should be 0 to insure compatibility with future products.

Possible Programming Sequence

	A1	A0
Control Word - Counter 0	1	1
LSB of Count - Counter 0	0	0
MSB of Count - Counter 0	0	0
Control Word - Counter 1	1	1
LSB of Count - Counter 1	0	1
MSB of Count - Counter 1	0	1
Control Word - Counter 2	1	1
LSB of Count - Counter 2	1	0
MSB of Count - Counter 2	1	0

	A1	A0
Control Word - Counter 0	1	1
Control Word - Counter 1	1	1
Control Word - Counter 2	1	1
LSB of Count - Counter 2	1	0
LSB of Count - Counter 1	0	1
LSB of Count - Counter 0	0	0
MSB of Count - Counter 0	0	0
MSB of Count - Counter 1	0	1
MSB of Count - Counter 2	1	0

	A1	A0
Control Word - Counter 2	1	1
Control Word - Counter 1	1	1
Control Word - Counter 0	1	1
LSB of Count - Counter 2	1	0
MSB of Count - Counter 2	1	0
LSB of Count - Counter 1	0	1
MSB of Count - Counter 1	0	1
LSB of Count - Counter 0	0	0
MSB of Count - Counter 0	0	0

	A1	A0
Control Word - Counter 1	1	1
Control Word - Counter 0	1	1
LSB of Count - Counter 1	0	1
Control Word - Counter 2	1	1
LSB of Count - Counter 0	0	0
MSB of Count - Counter 1	0	1
LSB of Count - Counter 2	1	0
MSB of Count - Counter 0	0	0
MSB of Count - Counter 2	1	0

Write Operations

- The programming procedure for the 82 C 54 is very flexible. Only two conventions need to be remembered:

1. For Each Counter, the Control Word must be written before the initial count is written.
2. The initial count must follow the count format specified in the Control Word (least significant byte only, most significant byte only, or least significant byte and then most significant byte).

Programming the 8254

MOV	DX, TCW	
MOV	AL, 00110110B	; Control Word of Counter0: LSB then MSB, Mode 3, Binary
OUT	DX, AL	
MOV	DX, TCW	
MOV	AL, 01110110B	; Control Word of Counter1: LSB then MSB, Mode 3, Binary
OUT	DX, AL	
MOV	DX, TCW	
MOV	AL, 10110110B	; Control Word of Counter2: LSB then MSB, Mode 3, Binary
OUT	DX, AL	
; Initialize value of Counter 0		
MOV	DX, COUNTERO	
MOV	AL, Counter0_LSB	;LSB of Counter 0
OUT	DX, AL	
MOV	AL, Counter0_MSB	;MSB of Counter 0
OUT	DX, AL	
; Initialize value of Counter 1		
MOV	DX, COUNTER1	
MOV	AL, Counter1_LSB	;LSB of Counter 1
OUT	DX, AL	
MOV	AL, Counter1_MSB	;MSB of Counter 1
OUT	DX, AL	
; Initialize value of Counter 2		
MOV	DX, COUNTER2	
MOV	AL, Counter2_LSB	;LSB of Counter 2
OUT	DX, AL	
MOV	AL, Counter2_MSB	;MSB of Counter 2
OUT	DX, AL	

Counter Internal Block Diagram

8254: Read Operation

- There are three possible methods for reading a counter: A Simple Read Operation.
The Counter Latch Command. The Read-Back Command.

8254: Counter Latch Command

- This Counter Latch Command is written to the Control Word Register, which is selected when $\mathbf{A 1} \mathbf{A 0}=11$.
- The SC1 and SC0 bits select one of the three counters.
- D5 D4 = 00 designates Counter Latch Command.
- The selected counter's output latch (OL) latches the count at the time Counter Latch Command is received.
- The count is held in the OL until it is read by the CPU (or until the counter is reprogrammed).
- The count is then unlatched automatically and the OL returns to "following" the counting element (CE).
- If the counter is latched, and then latched again before the count is read, the second Counter Latch Command is ignored.

8254: Counter Latch Command

$$
A 1, A 0=11 ; \overline{C S}=0 ; \overline{R D}=1 ; \overline{W R}=0
$$

D7	D6	D5	D4	D3	D2	D1	D0
SC 1	SC 0	0	0	X	X	X	X

SC1, SC0 - specify counter to be latched

SC1	SC0	COUNTER
0	0	0
0	1	1
1	0	2
1	1	Read-Back Command

D5, D4 - 00 designates Counter Latch Command, X - Don't Care. NOTE: Don't Care bits (X) should be 0 to insure compatibility with future products.

8254: Counter Latch Command

; Latching Counter 0
MOV DX, TIMER_PORT3
MOV AL, 00000000B ; Count Latched for Counter 0 OUT DX, AL
; Reading Counter 0
MOV DX, TIMER_PORTO
IN AL, DX

8254: Read-Back Command

- The Read-Back Command allows the user to check the count value, programmed mode, and current states of the OUT pin and NULL Count flag of the selected counter(s).
- The Read-Back Command is written into the Control Word Register.
- The Read-Back Command may be used to latch multiple counter output latches(s) by setting COUNT/ bit D5 = 0 and selecting the desired counters.
- A single Read-Back Command is equivalent to several Count Latch Commands.
- Each Counter's latched count is held in the OL until it is read by CPU (or the counter is reprogrammed).
- The counter is automatically unlatched when read, but other counters remain latched until they are read.

8254: Read-Back Command

- If multiple Read-Back Command are issued to the same counter without reading the count, all but the first are ignored; i.e., the count which will be read is the count at the time the first Read-Back Command was issued.
- The Read-Back Command may also be used to latch status information of selected counter(s) by setting STATUS/ bit D4 $=0$.
- Status must be latched to be read; status of a counter is accessed by a read from that counter.
- If multiple status latch operations of the counter(s) are performed without reading the status, all but the first are ignored.
- If both count and status of a counter are latched, the first read operation of that counter will return latched status. The next one or two reads return latched count.

8254: Read-Back Command

$A 0, A 1=11 ; \overline{C S}=0 ; \overline{R D}=1 ; \overline{W R}=0$

D7	D6	D5	D4	D3	D2	D1	D0
1	1	$\overline{\text { COUNT }}$	$\overline{\text { STATUS }}$	CNT 2	CNT 1	CNT 0	0

D5: $0=$ Latch count of selected Counter (s)
D4: $0=$ Latch status of selected Counter(s)
D3: $1=$ Select Counter 2
D2: $1=$ Select Counter 1
D1: $1=$ Select Counter 0
D0: Reserved for future expansion; Must be 0
Read-Back Command Example:

COMMANDS								DESCRIPTION	RESULT
D7	D6	D5	D4	D3	D2	D1	D0		
1	1	0	0	0	0	1	0	Read-Back Count and Status of Counter 0	Count and Status Latched for Counter 0
1	1	1	0	0	1	0	0	Read-Back Status of Counter 1	Status Latched for Counter 1
1	1	1	0	1	1	0	0	Read-Back Status of Counters 2, 1	Status Latched for Counter 2, But Not Counter 1
1	1	0	1	1	0	0	0	Read-Back Count of Counter 2	Count Latched for Counter 2
1	1	0	0	0	1	0	0	Read-Back Count and Status of Counter 1	Count Latched for Counter 1, But Not Status
1	1	1	0	0	0	1	0	Read-Back Status of Counter 1	Command Ignored, Status Already Latched for Counter 1

8254: Read-Back Command

; Count and Status Latched for Counter 0
MOV DX, TIMER_PORT3
MOV AL, 11000010B ; Count Latched for Counter 0
OUT DX, AL
; Reading the Latched Status for Counter 0
MOV DX, TIMER_PORTO
IN AL, DX ; Reading Status
MOV AH, AL
; Reading the Latched Count for Counter 0

IN	AL, DX	; Reading LSB of Counter 0
MOV	BL, AL	
IN	AL, DX	; Reading MSB of Counter 0
MOV	BH, AL	

8254: Status Byte

D7	D6	D5	D4	D3	D2	D1	D0
OUTPUT	NULL COUNT	RW1	RW0	M2	M1	M0	BCD

D7: $1=$ Out pin is 1
$0=$ Out pin is 0
D6: 1 =Null count
$0=$ Count available for reading
D5 - D0 = Counter programmed mode (See Control Word Formats)

THIS ACTION:

A. Write to the control word register:(1)

CAUSES:

B. Write to the count register (CR):(2) Null Count $=1$
C. New count is loaded into CE (CR - CE).

Null Count $=1$
(1) Only the counter specified by contol will have its null
(1) Only the counter specified by the control word will have its null count set to 1. Null count bits of other counters are unaffected.
(2) If the counter is programmed for two-byte counts (least significant byte then most significant byte) null count goes to 1 when the second byte is written.

Modes of Operation

Mode 0: Interrupt on Terminal Count
Mode 1: Hardware Retriggerable One-Shot
Mode 2: Rate Generator
Mode 3: Square Wave Mode
Mode 4: Software Triggered Mode
Mode 5: Hardware Triggered Mode

Mode 0: Interrupt on Terminal Count

- At the rising edge of WR/ (Control Word), OUT = low.
- At the first falling edge of CLK after the rising edge of WR/ (LSB), CR \rightarrow CE.
- GATE is level sensitive.
- GATE is sampled at the rising edge of CLK.
- Decrement the counter at the falling edge, if the sample of GATE is high. Otherwise, freeze.

Mode 1: Hardware Retriggerable One-Shot

- At the rising edge of WR/ (Control Word), OUT = high.
- At the first falling edge of CLK after the rising edge of GATE, CR \rightarrow CE.
- At the first falling edge of CLK after the rising edge of GATE, reinitialize CE with the last value written to CR.

Mode 2: Rate Generator

Freeze

- At the rising edge of WR/ (Control Word), OUT = high.
- At the first falling edge of CLK after the rising edge of WR/ (LSB), CR \rightarrow CE.
- When counter reaches to value 1 , it is reloaded with the value of CR at the next falling edge of CLK.
- GATE is sampled at the rising edge of CLK.
- Decrement the counter at the falling edge, if the sample of GATE is high. Otherwise, freeze.
- At the first falling edge of CLK after the rising edge of the GATE, reinitialize CE.

Mode 3: Square Wave Mode

Freeze
CEN433 - King Saud University
24

Mode 4: Software Triggered Mode

Freeze

- At the rising edge of WR/ (Control Word), OUT = high.
- At the first falling edge of CLK after the rising edge of WR/ (LSB), CR \rightarrow CE.
- GATE is level sensitive.
- GATE is sampled at the rising edge of CLK.
- Decrement the counter at the falling edge, if the sample of GATE is high. Otherwise, freeze.
- When counter reaches to zero, it wraps around to the highest value.

Mode 5: Hardware Triggered Mode

- At the rising edge of WR/ (Control Word), OUT = high.
- At the first falling edge of CLK after the rising edge of GATE, CR \rightarrow CE.
- At the first falling edge of CLK after the rising edge of GATE, reinitialize CE with the last value written to CR.
- When counter reaches to zero, it wraps around to the highest value.

Gate Pin Operations Summary

SIGNAL STATUS MODES	LOW OR GOING LOW	RISING	HIGH
0	Disables Counting	-	Enables Counting
1	-	1) Initiates Counting 2) Resets output after next clock	-
2	1) Disables counting 2) Sets output im- mediately high	Initiates Counting	Enables Counting
3	1) Disables counting 2) Sets output im- mediately high	Initiates Counting	Enables Counting
4	1) Disables Counting	-	Enables Counting
5	-	Initiates Counting	-

Minimum and Minimum Initial Counts

MODE	MIN COUNT	MAX COUNT
0	1	0
1	1	0
2	2	0
3	2	0
4	1	0
5	1	0

NOTE: 0 is equivalent to 2^{16} for binary counting and 10^{4} for $B C D$ counting.

Example 1

Example 1

```
;A procedure that programs the 8254 timer
TIME PROC NEAR USES AX DX
    MOV DX, 703H ; Control register
    MOV AL, 00010110B ; Program counter 0: Mode 3, LSB only
    OUT DX,AL
    MOV AL, 01010100B ; Program counter 1: Mode 2, LSB only
    OUT DX,AL
    MOV DX,700H ; Counter 0
    MOV AL, 80
    OUT DX, AL
    MOV DX,701H
    MOV AL, 40
    OUT DX,AL
    MOV AL, 0 ;Then MS byte of initial count
OUT DX,AL
RET
TIME ENDP
```


Example 2: DC Motor Speed and Direction Control-Hardware

Example 2: DC Motor Speed and Direction Control - Timing

Example 2: DC Motor Speed and Direction Control-Software

;AH determines the speed and direction of the motor where AH is between 00 H and FFH .

Example 2: DC Motor Speed and Direction Control - Timing

Example 3: Mode 0

Example 6: Mode 3

Example 7: Mode 4

Example 8: Mode 5

Example 9

A 22.1184 MHz crystal is connected to a clock generator (8284A). The PCLK output of the 8284 A is connected to the CLKO input of 8254 . You need to generate $14400 \times 64 \mathrm{~Hz}$ square wave clock output using the counter 0 of the 8254. Write the instructions to initialize the 8254.

Solution:

CO_LSB $=(22.1184 \times 106 / 6) /(14400 \times 64)$
\rightarrow CO_LSB $=4$

; 8254 initialization		
MOV	DX, TCW	
MOV	AL, 00010110B	; Control Word
OUT	DX, AL	
;		
MOV	DX, COUNTER0	
MOV	AL, 4H	;LSB
OUT	DX, AL	

Examples

; Example 10: Initialize value of Counter 0 to $\mathbf{2 0}_{\mathbf{d}}$		
MOV	DX, COUNTER0	
MOV	AL, 20	;LSB
OUT	DX, AL	
; Example 11: Initialize value of Counter 0 to 256		
d		
MOV	DX, COUNTER0	
MOV	AL, 0	
OUT	DX, AL	

; Example 12: Initialize value of Counter 0 to $\mathbf{1 0 0 0}_{\mathrm{d}}$
MOV DX, COUNTER0
MOV AX, 1000
OUT DX, AL ;LSB
MOV
AL, AH
OUT DX, AL ;MSB

; Example 13: Initialize value of Counter 0 to 03E8H		
MOV	DX, COUNTER0	
MOV	AL, 0E8H	
OUT	DX, AL	;LSB
MOV	AL, 03H	
OUT	DX, AL	;MSB

Example 14

Example 15

Solution of Example 15

