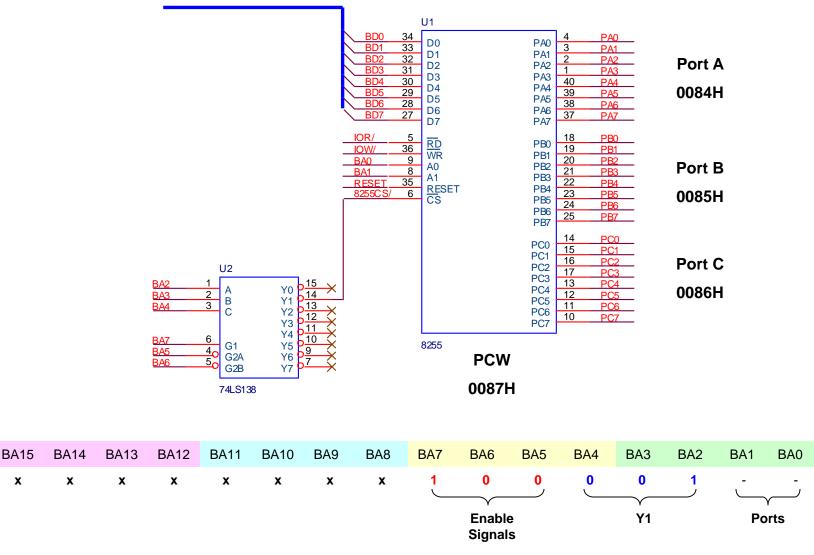

Programmable Peripheral Interface (PPI) – 8255A

CEN433 King Saud University Dr. Mohammed Amer Arafah

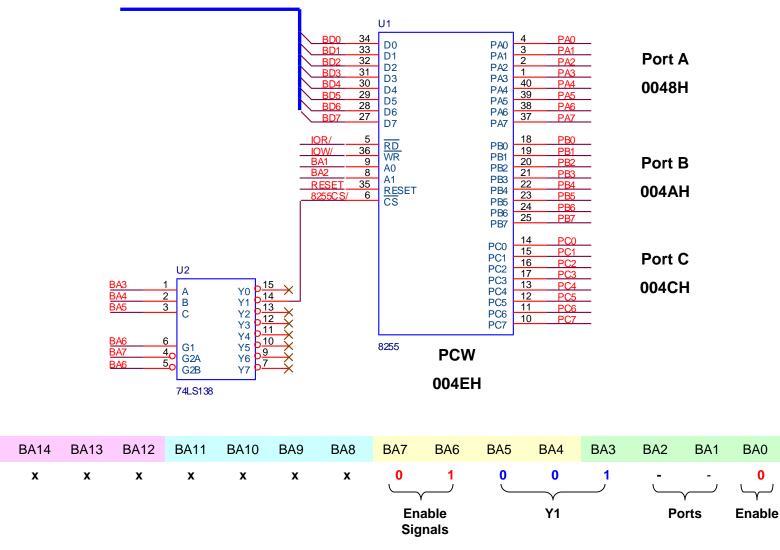
Functional Diagram

Pin Description

SYMBOL	PIN NUMBER	TYPE	DESCRIPTION
Vcc	26		V_{CC} : The +5V power supply pin. A 0.1 μF capacitor between pins 26 and 7 is recommended for decoupling.
GND	7		GROUND
D0-D7	27-34	I/O	DATA BUS: The Data Bus lines are bidirectional three-state pins connected to the system data bus.
RESET	35	I	RESET: A high on this input clears the control register and all ports (A, B, C) are set to the input mode with the "Bus Hold" circuitry turned on.
CS	6	I	CHIP SELECT: Chip select is an active low input used to enable the 82C55A onto the Data Bus for CPU communications.
RD	5	I	READ: Read is an active low input control signal used by the CPU to read status information or data via the data bus.
WR	36	I	WRITE: Write is an active low input control signal used by the CPU to load control words and data into the 82C55A.
A0-A1	8, 9	I	ADDRESS: These input signals, in conjunction with the RD and WR inputs, control the selection of one of the three ports or the control word register. A0 and A1 are normally connected to the least significant bits of the Address Bus A0, A1.
PA0-PA7	1-4, 37-40	I/O	PORT A: 8-bit input and output port. Both bus hold high and bus hold low circuitry are present on this port.
PB0-PB7	18-25	I/O	PORT B: 8-bit input and output port. Bus hold high circuitry is present on this port.
PC0-PC7	10-17	I/O	PORT C: 8-bit input and output port. Bus hold circuitry is present on this port.


8255A Basic Operation

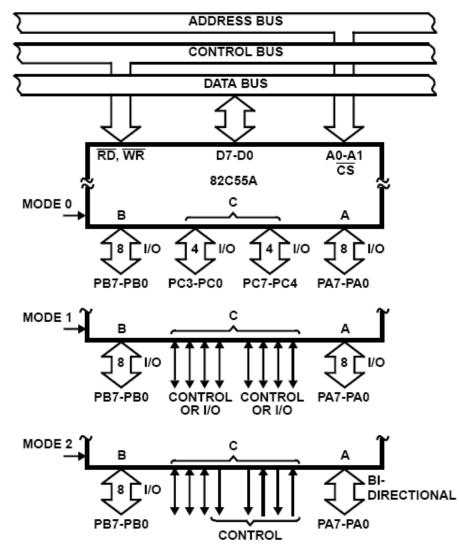
CEN433 - King Saud University


Interfacing 8255A to Buffered 8088 System

BD[0:7]

Interfacing 8255A to Buffered 8086 System

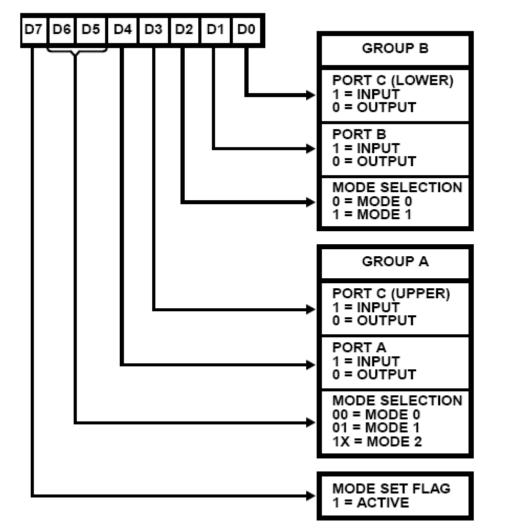
BD[0:7]



CEN433 - King Saud University

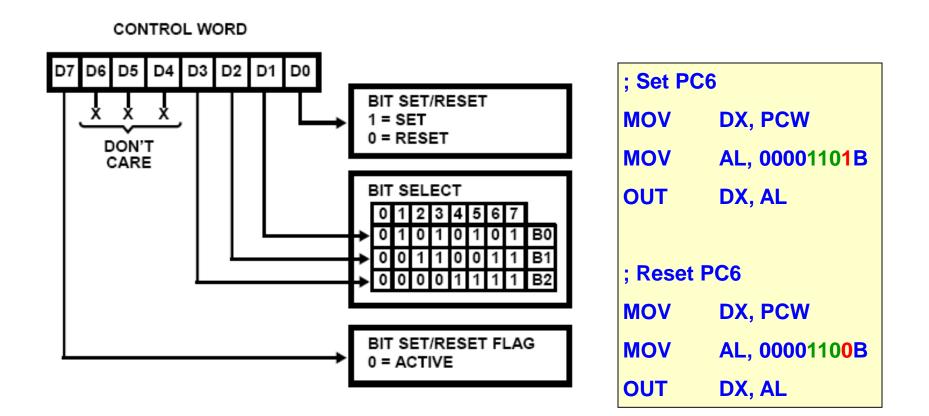
BA15

Х


Mode Definitions and Bus Interface

CEN433 - King Saud University

Mode Definition Format


CONTROL WORD

; Example					
MOV	DX, PCW				
MOV	AL, 10011001B				
OUT	DX, AL				

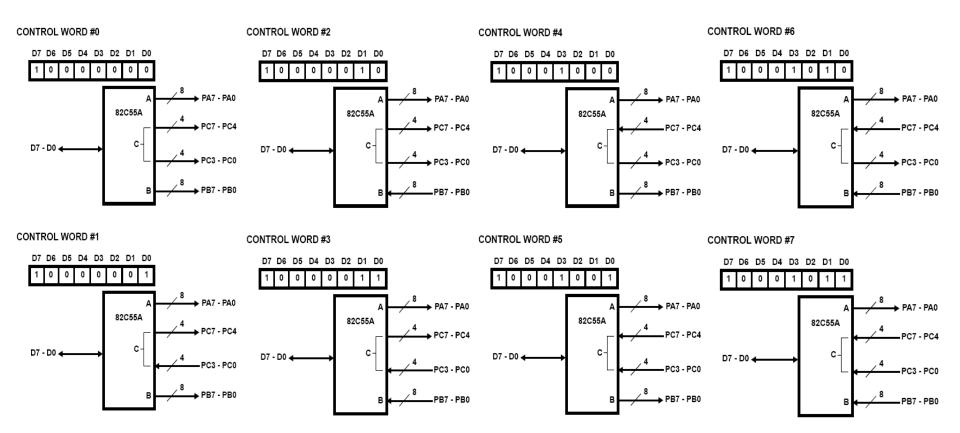
CEN433 - King Saud University

Bit Set/Reset Format

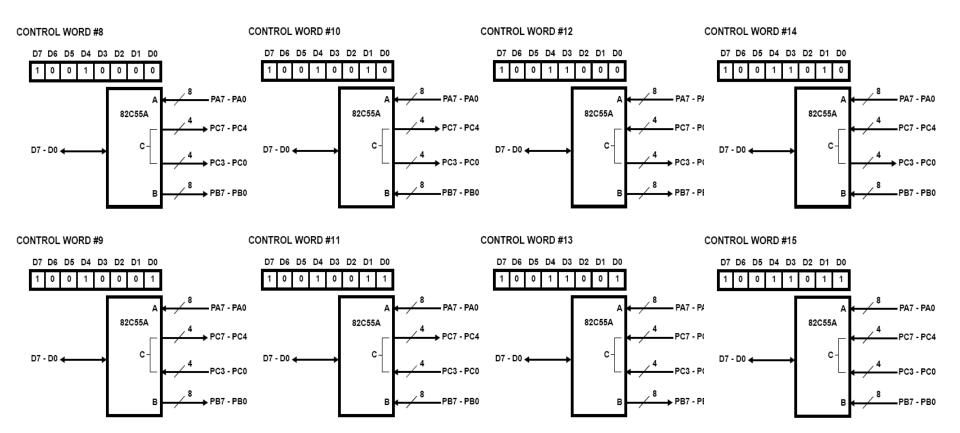
Mode 0 (Basic Input/Output)

This functional configuration provides simple input and output operations for each of the three ports. No handshaking is required, data is simply written to or read from a specific port.

Mode 0 Basic Functional Definitions:

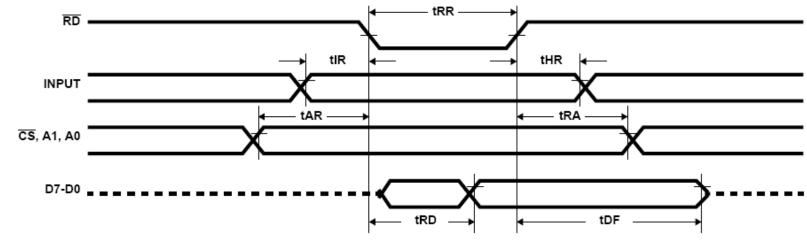

- Two 8-bit ports and two 4-bit ports.
- Any Port can be input or output.
- Outputs are latched.
- Input are not latched (tri-stated).
- 16 different Input/Output configurations possible.

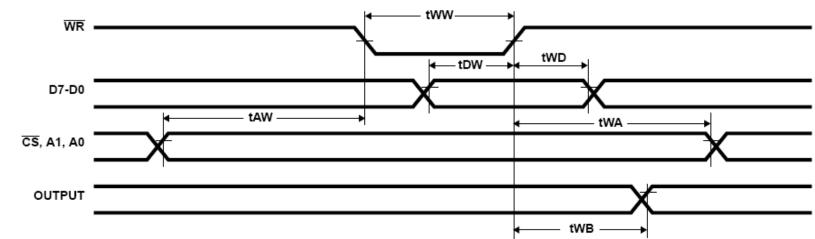
Mode 0 Port Definition


А		E	3	GRO	UP A		GROUP B		
D4	D3	D1	D0	PORT A	PORT C (Upper)	#	PORT B	PORTC (Lower)	
0	0	0	0	Output	Output	0	Output	Output	
0	0	0	1	Output	Output	1	Output	Input	
0	0	1	0	Output	Output	2	Input	Output	
0	0	1	1	Output	Output	3	Input	Input	
0	1	0	0	Output	Input	4	Output	Output	
0	1	0	1	Output	Input	5	Output	Input	
0	1	1	0	Output	Input	6	Input	Output	
0	1	1	1	Output	Input	7	Input	Input	
1	0	0	0	Input	Output	8	Output	Output	
1	0	0	1	Input	Output	9	Output	Input	
1	0	1	0	Input	Output	10	Input	Output	
1	0	1	1	Input	Output	11	Input	Input	
1	1	0	0	Input	Input	12	Output	Output	
1	1	0	1	Input	Input	13	Output	Input	
1	1	1	0	Input	Input	14	Input	Output	
1	1	1	1	Input	Input	15	Input	Input	

CEN433 - King Saud University

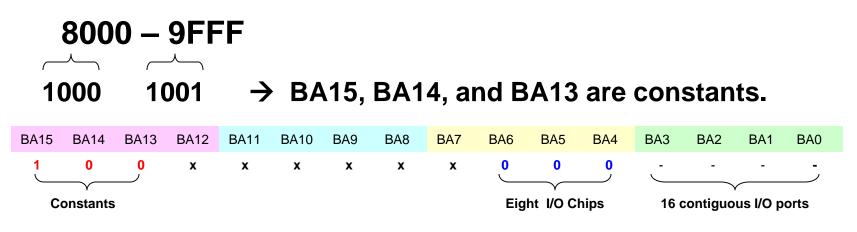
Mode 0 Configurations



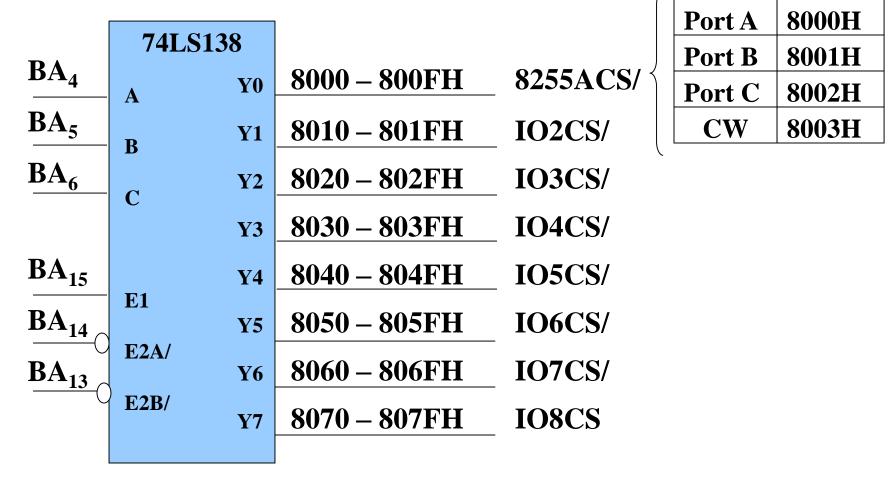

Mode 0 Configurations

Mode 0 Configurations

Mode 0 (Basic Input)


Mode 0 (Basic Output)

CEN433 - King Saud University


Example 1:

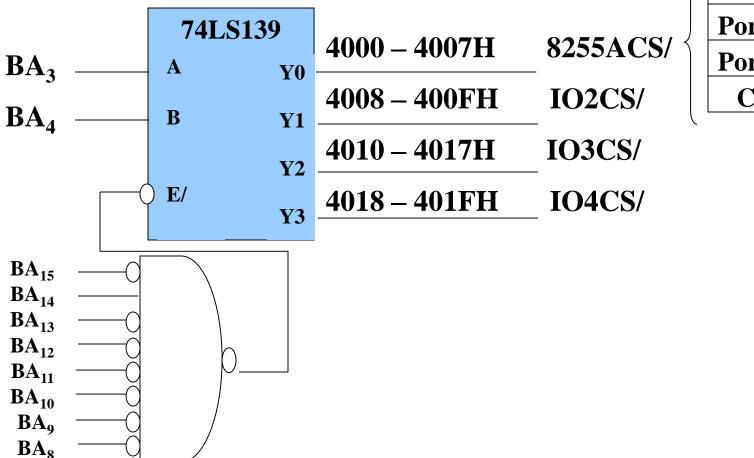
- A system has 8 I/O chips.
- The dedicated I/O space is: 8000H 9FFFH.
- Some of the I/O chips require 16 contiguous I/O ports.

Solution:

Solution of Example 1:

Example 2:

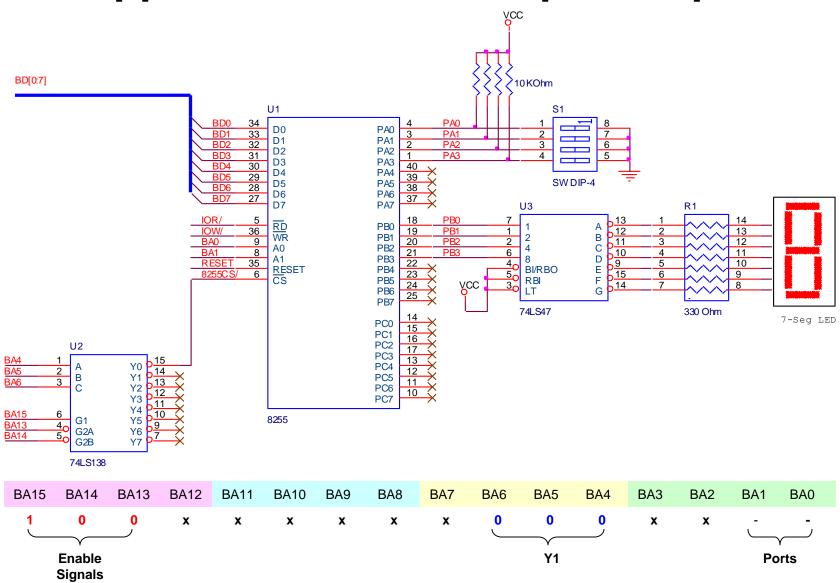
- A system has 4 I/O chips.
- The dedicated I/O space is: 4000H 40FFH.
- Some of the I/O chips require 8 contiguous I/O ports.


Solution:

4000 – 40FF

\rightarrow BA15 – BA8 are constants.

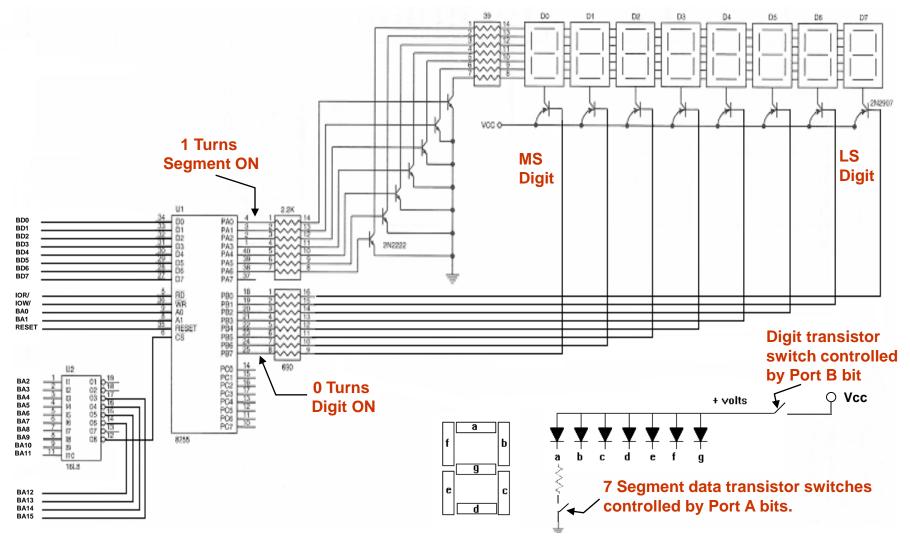
BA15	BA14	BA13	BA12	BA11	BA10	BA9	BA8	BA7	BA6	BA5	BA4	BA3	BA2	BA1	BA0
0	1	0	0	0	0	0	0	x	x	x	0	0	-	-	
			Cons	tants							Four I/	O Chips	8 cor	ntiguous	s I/O ports


Solution of Example 2:

Port A	4000H
Port B	4001H
Port C	4002H
CW	4003H

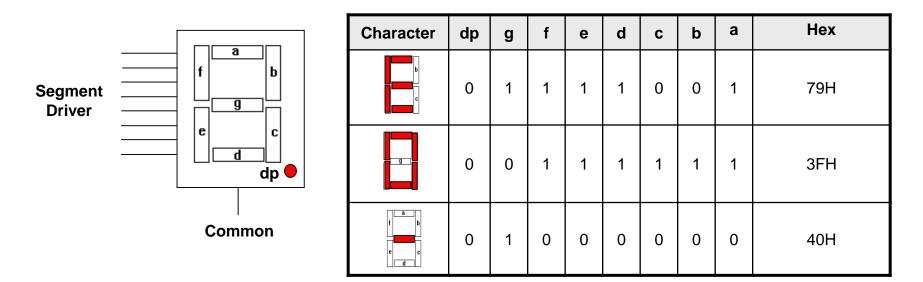
CEN433 - King Saud University

Application 1: Basic Input/Output

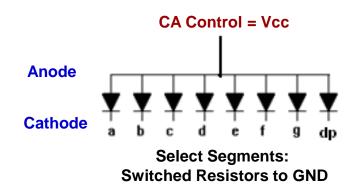

CEN433 - King Saud University

Mohammed Amer Arafah

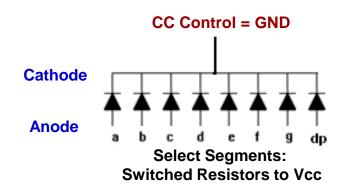
19

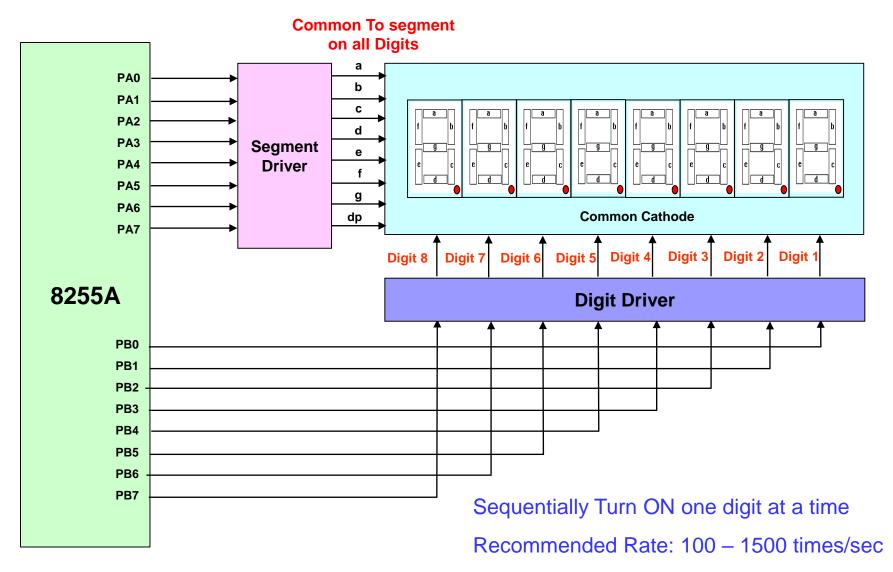

Application 1: Basic Input/Output

	PORTA	EQU	8000H
	PORTB	EQU	8001H
	PORTC	EQU	8002H
	PCW	EQU	8003H
; 8255A I	nitializatio	n	
	MOV	DX, PCW	7
	MOV	AL, 1001	1001B
	OUT	DX, AL	
; To read	port A und	conditional	ly
again:	MOV	DX, POR	TA
	IN	AL, DX	
• To write	e the value	to port R u	inconditionally
, 10 1110	INC	DX	inconditionally
	OUT	DX DX, AL	
	JMP	again	



An 8-digit LED display interfaced to an 8088 microprocessor through 8255A


CEN433 - King Saud University

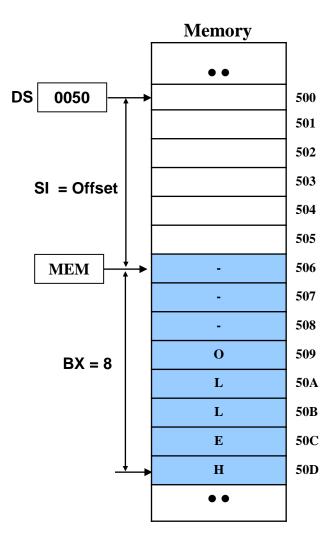


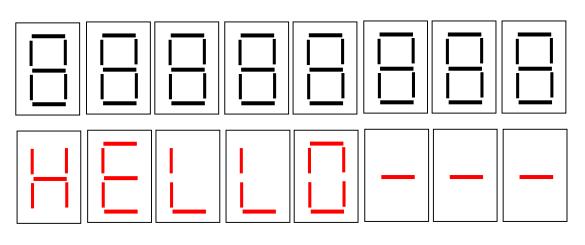
Two Types: Common Anode (CA)

Common Cathode (CC)

CEN433 - King Saud University

Address Port A₀ A₁ PLD Program for Address Decoding 0 0 700H Port A library ieee; Port B 701H 0 1 use ieee.std logic 1164.all; 702H Port C 1 0 entity DECODER_11_21 is 703H 1 1 Control Word port (A15, A14, A13, A12, A11, A10, A9, A8, A7, A6, A5, A4, A3, A2: in STD_LOGIC; D0: out STD LOGIC); end; architecture V1 of DECODER 11 17 is begin A15 or A14 or A13 or A12 or A11 or not A10 D0 <= or not A9 or not A8 or A7 or A6 or A5 or A4 or A3 or A2; end V1; BA15 **BA14** BA8 **BA13** BA12 **BA11 BA10** BA9 BA7 BA6 BA5 BA4 BA3 BA2 BA1 BA0 0 0 0 0 0 1 1 1 0 0 0 0 0 0


CEN433 - King Saud University

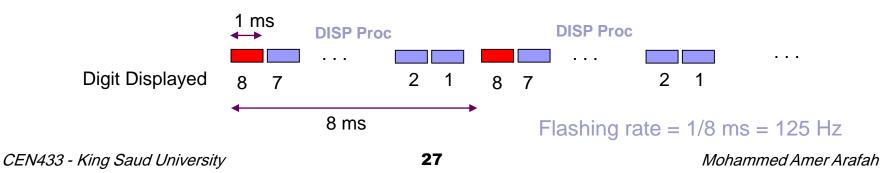

14-bit address decoding Using PLD

Mohammed Amer Arafah

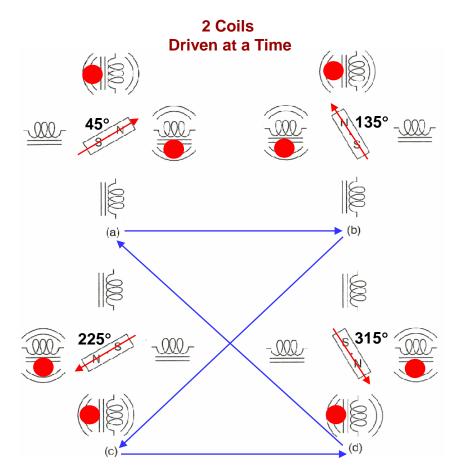
On chip

Selection

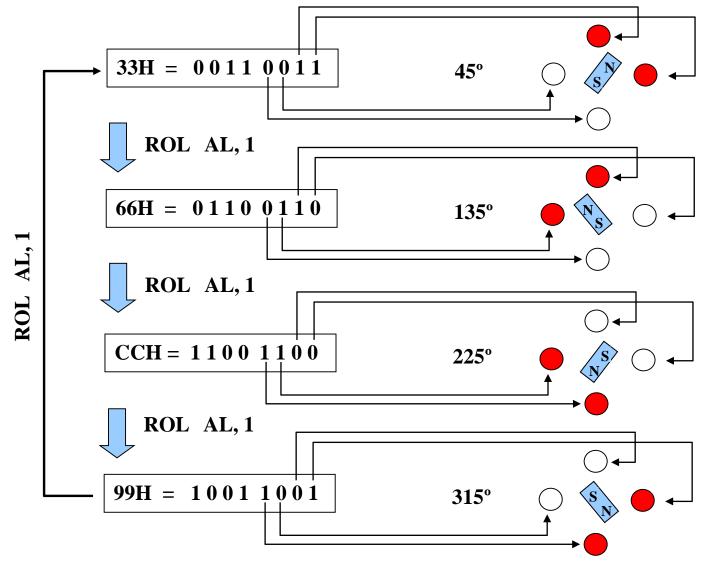
Content of the address 0050D is 'H'.


```
; Program the 82C55 for Port A and Port B are output ports in mode 0
                                               : Address of Command Port into DX
           MOV DX, 703H
           MOV AL, 80H
                                               : 80H Data into AL
           OUT DX, AL ; Write 80H into Command Port to program PPI
; An assembly language procedure that multiplexes the 8-digit display.
; This procedure must be called often enough for the display to appear stable
DISP
                       NEAR USES AX BX DX SI
           PROC
           PUSHF
           MOV BX, 8
                                               ;load counter BX with # of display digits
           MOV AH, 01111111B
                                               ;load initial digit selection pattern to enable MS digit
           MOV SI, OFFSET MEM - 1
                                               ;Load SI with offset (MEM) - 1
           MOV DX, 701H
                                               ;address Port B (for Port A: decrement DX)
;Sequentially display all 8 digits starting with MS digit
           .REPEAT
                       MOV AL, AH
                       OUT DX, AL; send digit selection pattern to Port B
                       DEC DX
                                               ;Address Port A (to send Digit Data)
                       MOV AL, [BX+SI]
                                               ;Load digit data from memory into AL
                                               ;send digit data to Port A
                       OUT DX, AL
                       CALL DELAY
                                               ;wait 1.0 ms leaving displayed digit ON
                       ROR AH, 1
                                               adjust selection pattern to point to next digit
                       INC DX
                                               ;Address port B
                       DEC BX
                                               ;decrement counter for data of next digit.
           .UNTIL BX == 0
           POPF
           RET
DISP
           ENDP
```

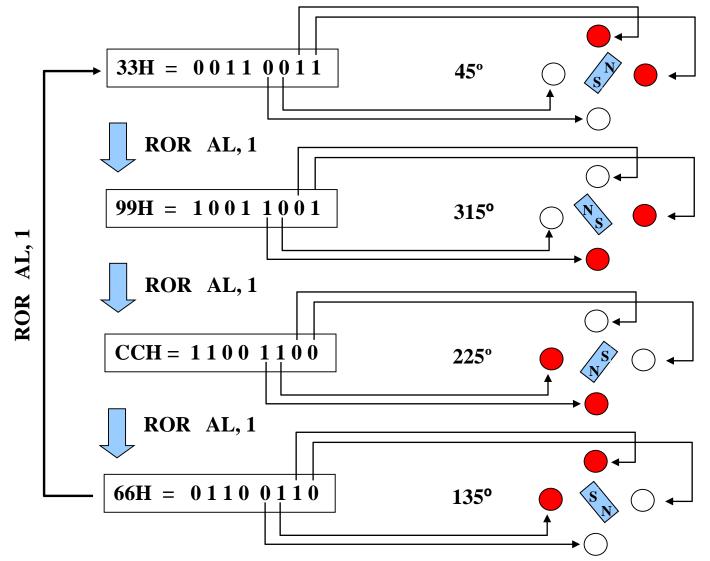
; Delay	Loop	
DELAY	PROC NEAR USES CX	
	MOV CX, XXXX	; XXXX determines delay, = Delay required / loop exec time
D1:		
	LOOP D1	
	RET	
DELAY	ENDP	


Loop execution time is calculated from instruction data and the clock frequency. An 80486 executes "LOOP D1" in 7 clock cycles With a 20 MHz clock, loop exec time = 7 x 50 = 350 ns XXXX = 1ms/350ns

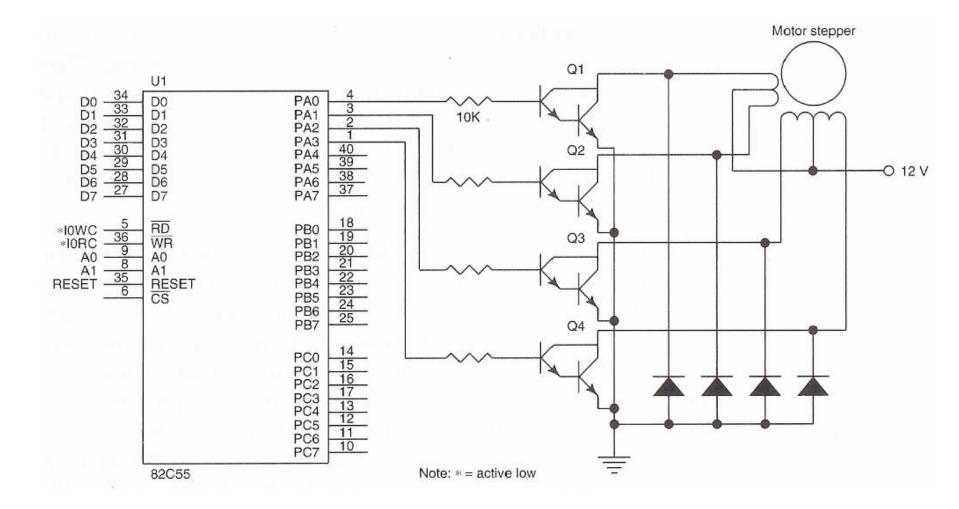
Display Flashing Rate:


- Assume the DISP Procedure is called continuously
- Ignore loop execution times relative to delay time (e.g. 350 ns << 1 ms)

- Stepper motor is digital in nature.
- It rotates in a sequence of discrete steps controlled by sequentially energizing a set of coils (windings).
- Step angles vary from 1° to 15 ° depending on precision required (and cost)



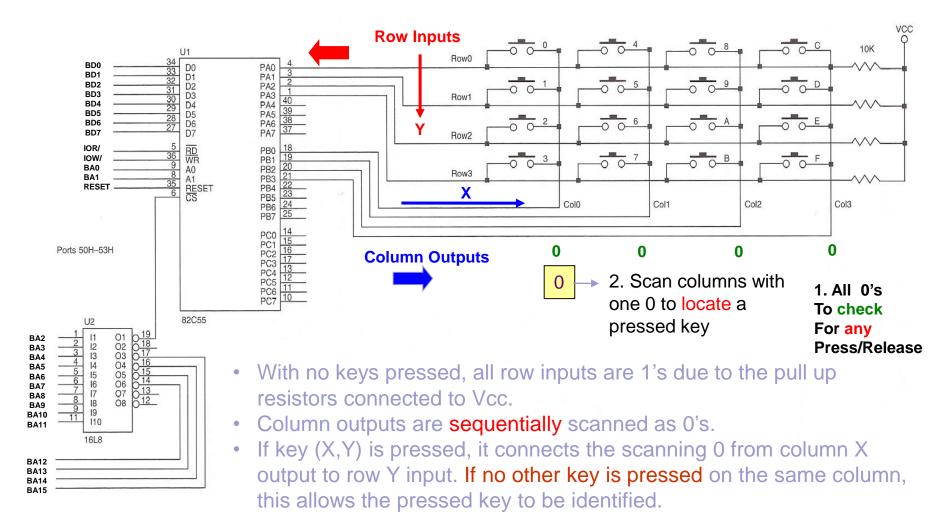
- N Pole lies between the two energized coils
- Rotation Direction: Anti-clock wise
- Step angle: 90°


CEN433 - King Saud University

29

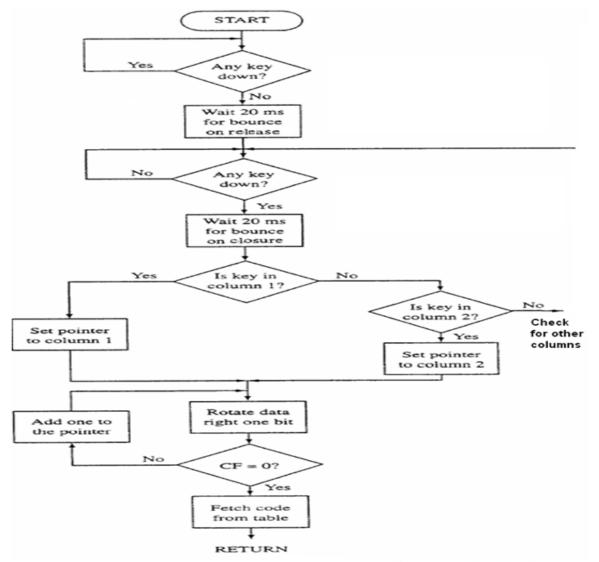
CEN433 - King Saud University

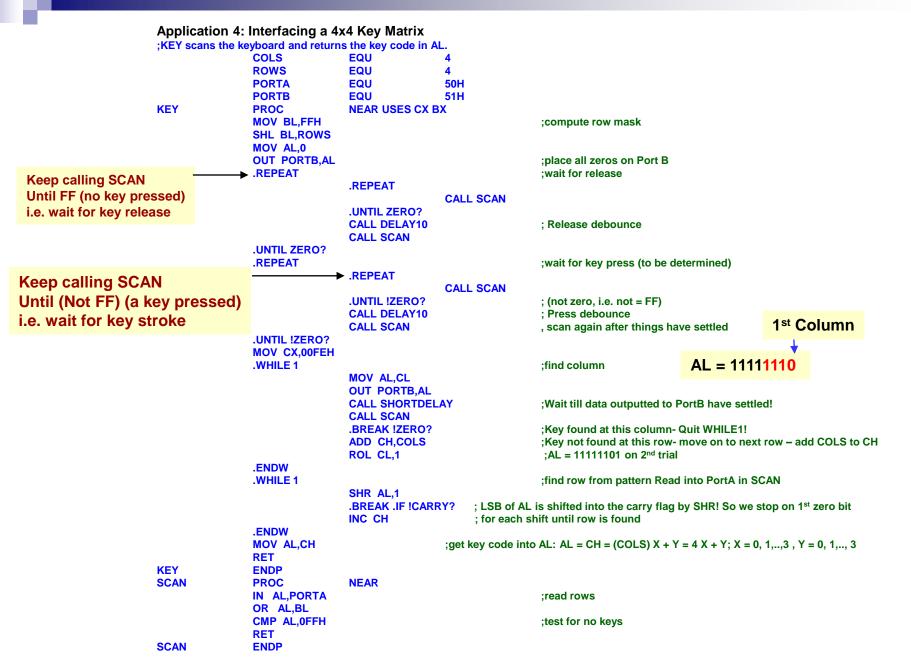
30



CEN433 - King Saud University

CEN433 - King Saud University

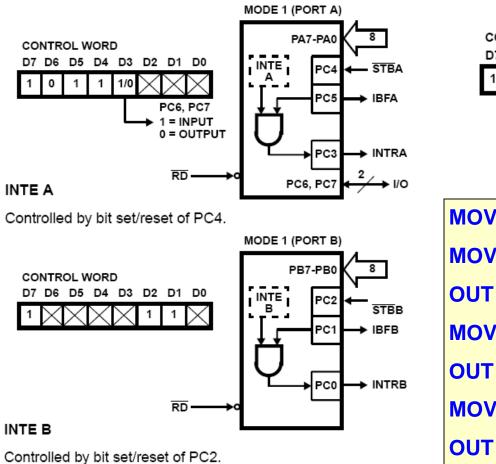

Application 4: Interfacing a 4x4 Key Matrix

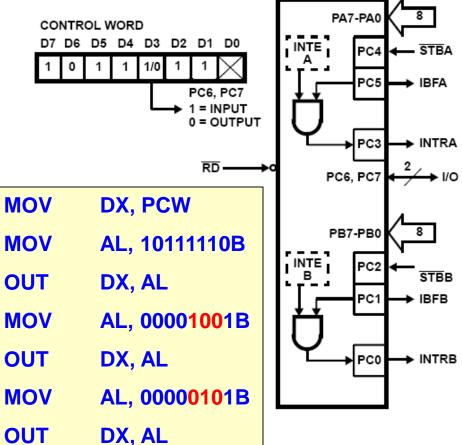

An 4 ×4 keyboard matrix interfaced to an 8088 microprocessor through 8255A

CEN433 - King Saud University

Application 4: Interfacing a 4x4 Key Matrix

CEN433 - King Saud University




CEN433 - King Saud University

Mode 1 (Strobed Input/Output)

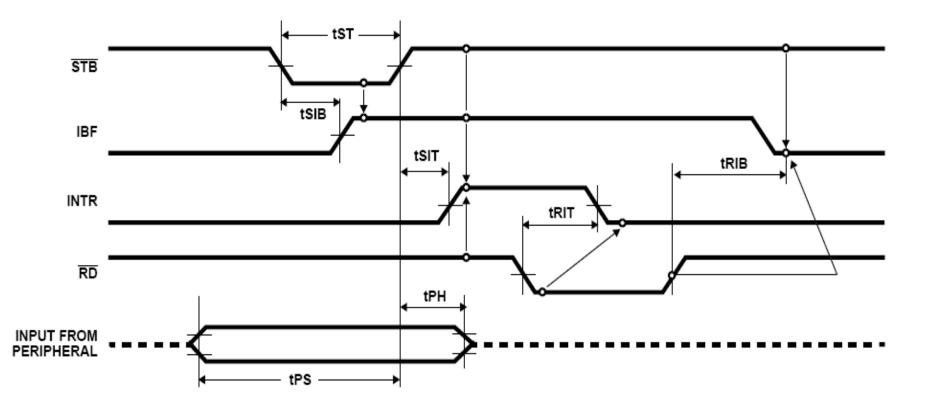
- This functional configuration provides a means for transferring I/O data to or from a specified port in conjunction with strobes or "hand shaking" signals. In mode 1, port A and port B use the lines on port C to generate or accept these "hand shaking" signals.
- Mode 1 Basic Function Definitions:
 - Two Groups (Group A and Group B).
 - Each group contains one 8-bit port and one 5-bit (Group A) or 3-bit (Group B) control/data port.
 - The 8-bit data port can be either input or output. Both inputs and outputs are latched.

Mode 1 (Strobed Input)

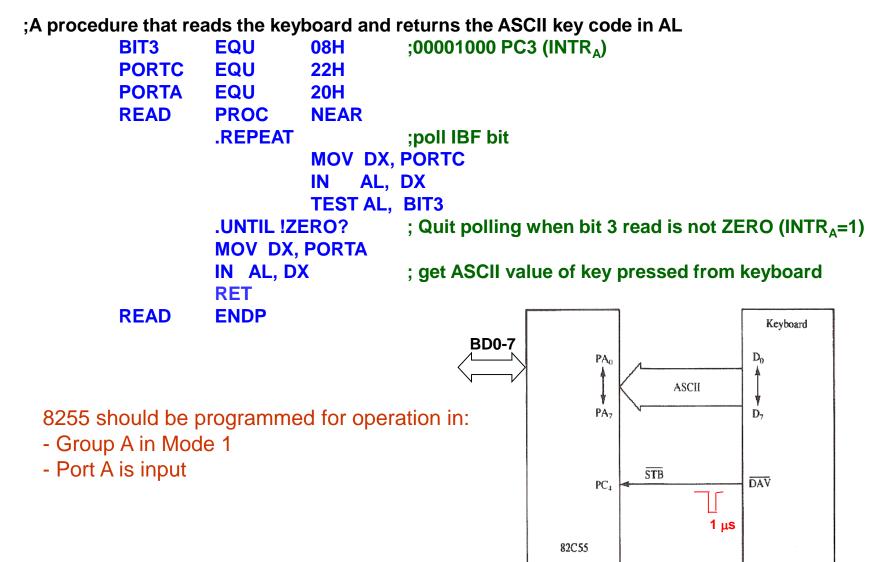
Input Control Signal Definition

STB (Strobe Input)

A "low" on this input loads data into the input latch.

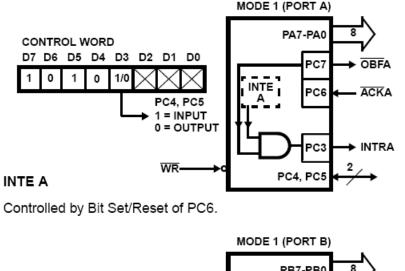

IBF (Input Buffer Full F/F)

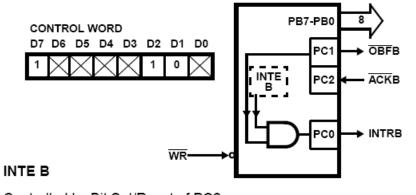
A "high" on this output indicates that the data has been loaded into the input latch: in essence, and acknowledgment. IBF is set by STB input being low and is reset by the rising edge of the RD input.


INTR (Interrupt Request)

A "high" on this output can be used to interrupt the CPU when and input device is requesting service. INTR is set by the condition: STB is a "one", IBF is a "one" and INTE is a "one". It is reset by the falling edge of RD. This procedure allows an input device to request service from the CPU by simply strobing its data into the port.

Mode 1 (Strobed Input)


Interfacing a Keyboard to μP using Port A in Mode 1



CEN433 - King Saud University

40

Mode 1 (Strobed Output)



Controlled by Bit Set/Reset of PC2.

	1 0 1 0 1/0 1 0 PC4, PC5 1 = INPUT 0 = OUTPUT	
MOV	DX, PCW	P
MOV OUT	AL, 10101100B DX, AL	
MOV OUT	AL, 00001101B DX, AL	ĽС
MOV OUT	AL, 00000101B DX, AL	

CONTROL WORD

D7 D6 D5 D4 D3 D2 D1 D0

PA7-PA0

PC7

PC6

PC3

PC4. PC5

PB7-PB0

PC1

PC2

PC0

8

OBFA

- ACKA

INTRA

8

► OBFB

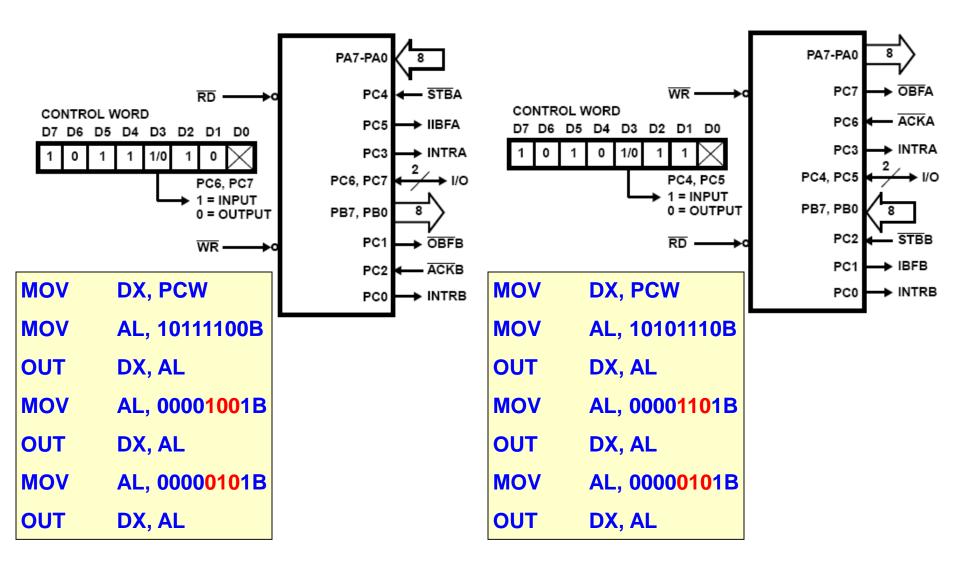
- ACKB

INTRB

Output Control Signal Definition

- OBF (Output Buffer Full F/F). The OBF output will go "low" to indicate that the CPU has written data out to be specified port. This does not mean valid data is sent out of the part at this time since OBF can go true before data is available. Data is guaranteed valid at the rising edge of OBF. The OBF F/F will be set by the rising edge of the WR input and reset by ACK input being low.
- ACK (Acknowledge Input). A "low" on this input informs the 82C55A that the data from Port A or Port B is ready to be accepted. In essence, a response from the peripheral device indicating that it is ready to accept data.
- INTR (Interrupt Request). A "high" on this output can be used to interrupt the CPU when an output device has accepted data transmitted by the CPU. INTR is set when ACK is a "one", OBF is a "one" and INTE is a "one". It is reset by the falling edge of WR.

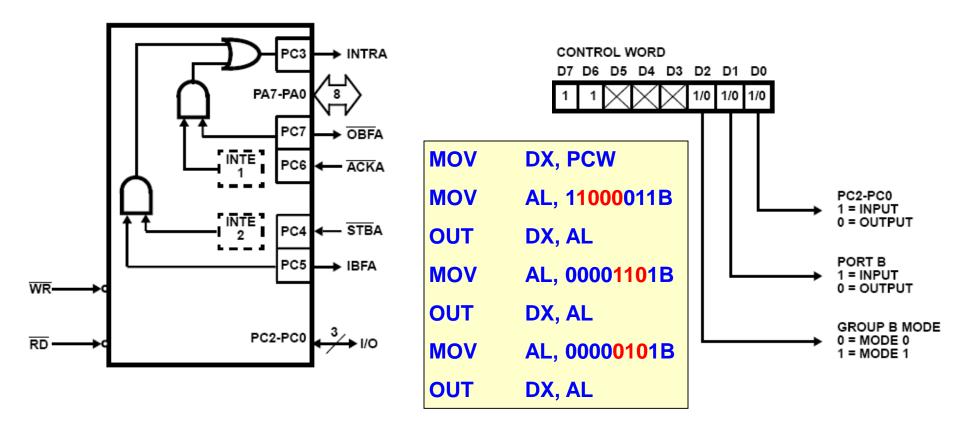
Mode 1 (Strobed Output)


Interfacing a Printer to μP using Port B in Mode 1

; A procedure that transfers an ASCII character from AH to the printer connected to port B **BITO** EQU ; Bit PC0 = $INTR_{B}$ 1 PORTC EQU 62H PORTB EQU **61H** CMD EQU **63H** PRINT PROC **NEAR** .REPEAT ;Wait for printer ready to receive a new char- Poll INTR_B till high **MOV DX. PORTC** AL, DX IN **TEST AL, BIT0** .UNTIL !ZERO? ; $INTR_{B} = 1$ No data in output buffer, so can write into it! **MOV DX, PORTB** MOV AL, AH **OUT DX, AL**; Write ASCII char data into port latch MOV AL, 8 ;Generate data strobe pulse on PC4 **OUT CMD, AL** MOV AL, 9 82C55 Printer **OUT CMD, AL** PB_0 D_0 RET ASCII **ENDP** PRINT 5 3 2 7 6 4 1 0 PB7 D7 **Reset PC4** 0 0 XX 0 X ACK 0 Set PC4 PC, ACK ١ſ Bit set/reset Command byte B 1 = setPC₁ DS 0 = resetStrobe data Selects a bit **Into Printer**

CEN433 - King Saud University

Monammed Amer Aratan


Combinations of Mode 1

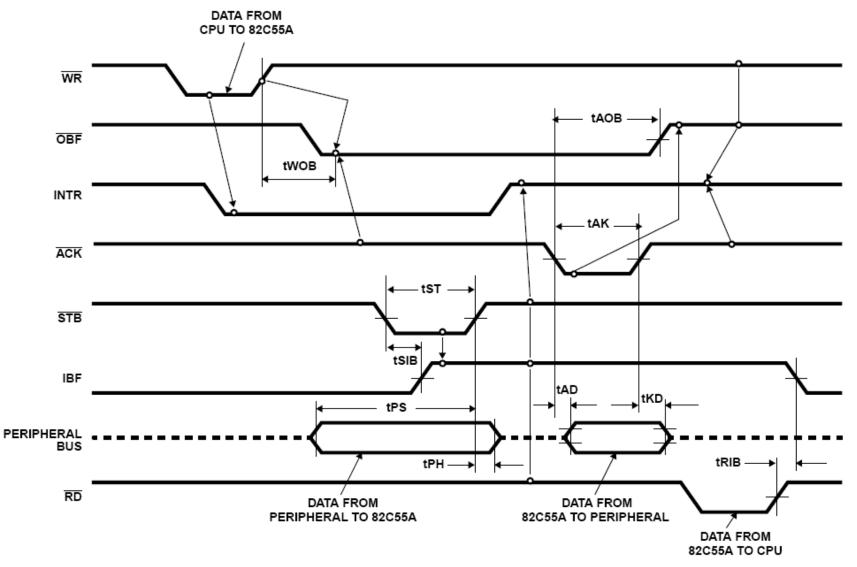
Mode 2 (Strobed Bi-Directional Bus I/O)

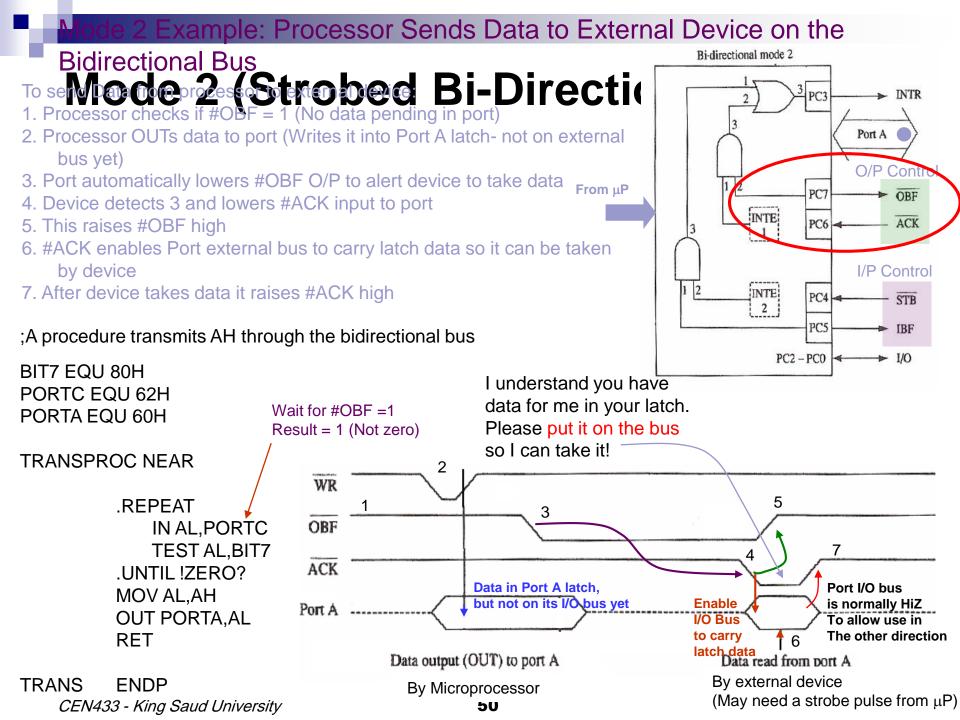
- The functional configuration provides a means for communicating with a peripheral device or structure on a single 8-bit bus for both transmitting and receiving data (bidirectional bus I/O). "Hand shaking" signals are provided to maintain proper bus flow discipline similar to Mode 1. Interrupt generation and enable/disable functions are also available.
- Used in Group A only.
- One 8-bit, bi-directional bus Port (Port A) and a 5-bit control Port (Port C).
- Both inputs and outputs are latched.
- The 5-bit control port (Port C) is used for control and status for the 8-bit, bi-directional bus port (Port A).

Mode 2 (Strobed Bi-Directional Bus I/O)

Bi-Directional Bus I/O Control Signal Definition

 INTR - (Interrupt Request). A high on this output can be used to interrupt the CPU for both input or output operations.

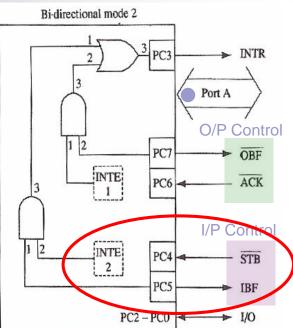

Output Operations:

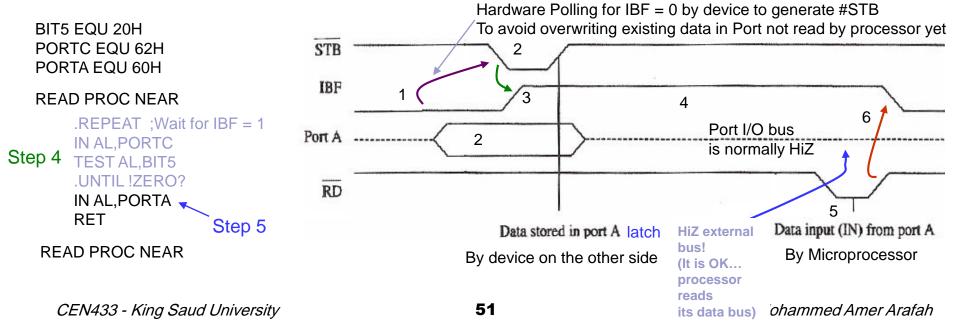

- OBF (Output Buffer Full). The OBF output will go "low" to indicate that the CPU has written data out to port A.
- ACK (Acknowledge). A "low" on this input enables the three-state output buffer of port A to send out the data. Otherwise, the output buffer will be in the high impedance state.
- INTE 1 (The INTE flip-flop associated with OBF). Controlled by bit set/reset of PC4.

Input Operations

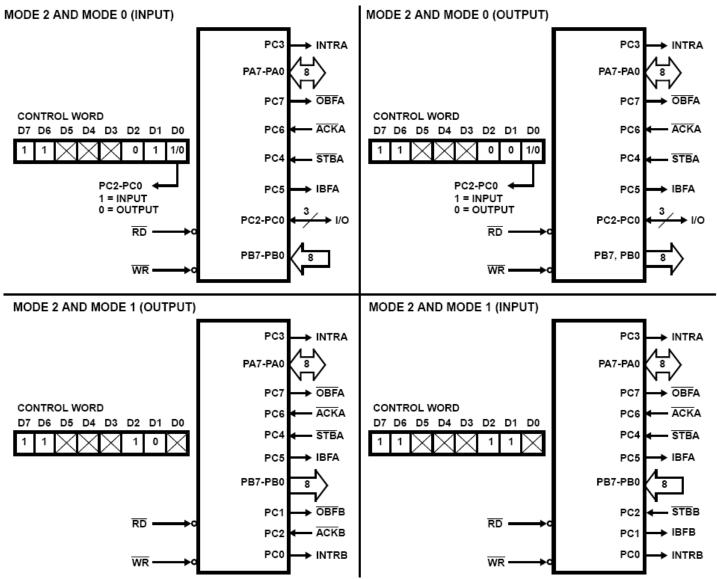
- **STB** (Strobe Input). A "low" on this input loads data into the input latch.
- IBF (Input Buffer Full F/F). A "high" on this output indicates that data has been loaded into the input latch.
- INTE 2 (The INTE flip-flop associated with IBF). Controlled by bit set/reset of PC4.

Mode 2 (Strobed Bi-Directional Bus I/O)



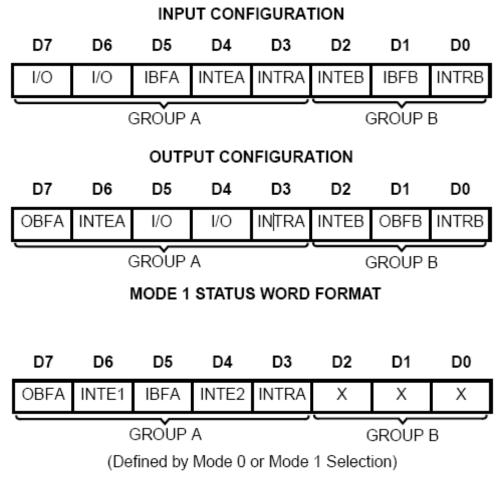

Mode 2 Example: Processor Receives Data from External Device on

the Bidirectional Bus Mode 2 (Strobed Bi-Directic To Receive Data:


- 1. External device sending data checks if #IBF = 0 (No pending data in port latch not read by processor) (Hardware Polling)
- Then it puts its data on external bus and strobes it into port latch using #STB
- 3. IBF automatically goes high until data is read by processor
- 4. Processor polls IBF for IBF = 1 to make sure data is in port latch (software polling)
- 5. Processor reads data from port
- 6. This automatically lowers IBF to enable further writes

;A procedure that reads data from the bidirectional bus into AL

Mode 2 Combinations

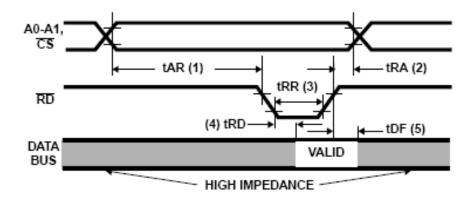


CEN433 - King Saud University

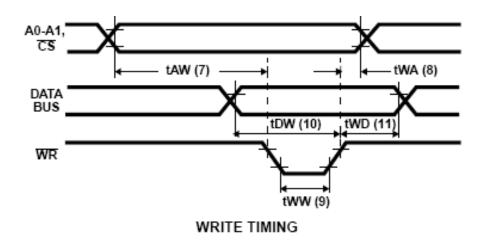
Mode Definition Summary

	МО	MODE 0 MODE 1 MODE		MODE 1]
	IN	OUT	IN	OUT	GROUP A ONLY	1
PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7	In In In In In In In	Out Out Out Out Out Out Out	In In In In In In	Out Out Out Out Out Out Out		
PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7	In In In In In In In	Out Out Out Out Out Out Out Out	In In In In In In In	Out Out Out Out Out Out Out Out		Mode 0 } or Mode 1 Only
PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7	In In In In In In In	Out Out Out Out Out Out Out	INTRB IBFB STBB INTRA STBA IBFA I/O I/O	INTRB OBFB ACKB INTRA I/O I/O ACKA OBFA	I/O I/O I/O INTRA STBA IBFA ACKA OBFA	

Status Word

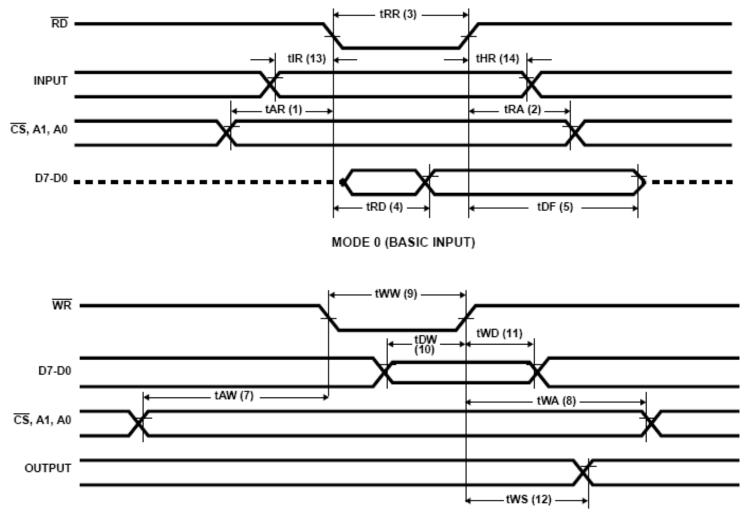

MODE 2 STATUS WORD FORMAT

CEN433 - King Saud University


SYMBOL PARAMETER MIN MAX MIN MAX UNITS CONDITI READ TIMING (1) LAR Address Stable Before RD 0 - 0 - ns (2) RA Address Stable After RD 0 - 0 - ns (2) RA Address Stable After RD 0 - 0 - ns (1) (2) RA Address Stable After RD 0 - 100 - 100 - 100 75 100 75 ns 22 (6) RV Time Between RDs and/or WRs 200 - 100 75 ns (2) (3) (3) (3) 0 - ns (1) (3) (3) (3) - ns (1) (3) (3) (3) (3) (3) - ns (1) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3			82C	82C55A-5		82C55A		тгет
(1) 1AR Address Stable Before RD 0 - 0 - ns (2) 1RA Address Stable After RD 0 - 0 - ns (3) 1RR RD Pulse Width 250 - 150 - ns (4) 1RD Data Valid From RD - 200 - 120 ns 1 (5) 1DF Data Float After RD 10 75 10 75 ns 2 (6) 1RV Time Between RDs and/or WRs 300 - 300 - ns (7) 1AW Address Stable Before WR 0 - 0 - ns (9) tWW WR Pulse Width 100 - 100 - ns (10) tDW Data Valid After WR High 100 - 100 - ns (11) tWD Data Valid After WR High 30 - 30 - ns (11) tWD Data Valid After RD 0 - 0 - ns <tr< th=""><th>SYMBOL</th><th>PARAMETER</th><th>MIN</th><th>MAX</th><th>MIN</th><th>MAX</th><th>UNITS</th><th>TEST CONDITIONS</th></tr<>	SYMBOL	PARAMETER	MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS
No. Address Stable After RD 0 - 0 - ns (2) tRA Address Stable After RD 0 - 150 - ns (3) tRR RD Pulse Width 250 - 150 - ns 1 (4) tRD Data Vaid From RD 10 75 10 75 ns 2 (6) tRV Time Between RDs and/or WRs 300 - 300 - ns 2 (6) tRV Time Between RDs and/or WRs 300 - 300 - ns 2 (7) tAW Address Stable Before WR 0 - 0 - ns 2 (7) tAW Address Stable After WR 0 - 100 - ns 2 (10) tWW WR Pulse Width 100 - 100 - ns 2 (11) tWD Data Vaild After WR High 30 - 30 - ns 1 (13) tIR Peripheral Data After RD<	READ TIMING							
No. No. No. No. No. (3) RR RD Pulse Width 250 - 150 - ns (4) RD Data Valid From RD - 200 - 120 ns 1 (5) RD Data Float After RD 10 75 10 75 ns 2 (6) RV Time Between RDs and/or WRs 300 - 300 - ns - (7) IAW Address Stable Before WR 0 - 0 - ns - (8) IWA Address Stable After WR 20 - 20 - ns - (10) IWW WR Pulse Width 100 - 100 - ns - (11) tWD Data Valid After WR High 100 - 300 - ns - (11) tWD Data Valid After WR High 100 - 0 - ns - (11) tWD Data Before RD 0 - 0	(1) tAR	Address Stable Before RD	0	-	0	-	ns	
Image: Constraint of the second sec	(2) tRA	Address Stable After RD	0	-	0	-	ns	
Image: constraint of the second sec	(3) tRR	RD Pulse Width	250	-	150	-	ns	
Image: constraint of the set of	(4) tRD	Data Valid From RD	-	200	-	120	ns	1
WRITE TIMING Address Stable Before WR 0 - 0 - ns (8) tWA Address Stable After WR 20 - 20 - ns (9) tWW WR Pulse Width 100 - 100 - ns (10) tDW Data Valid to WR High 100 - 100 - ns (11) tWD Data Valid After WR High 30 - 30 - ns (11) tWD Data Valid After WR High 30 - 30 - ns (12) tWB WR = 1 to Output - 350 - 350 ns 1 (13) tIR Peripheral Data After RD 0 - 0 - ns 1 (14) tHR Peripheral Data After RD 0 - 0 - ns 1 (15) tAK ACK Pulse Width 100 - 100 - ns 1 (16) tST STB Pulse Width 100 - 100 - <td>(5) tDF</td> <td>Data Float After RD</td> <td>10</td> <td>75</td> <td>10</td> <td>75</td> <td>ns</td> <td>2</td>	(5) tDF	Data Float After RD	10	75	10	75	ns	2
(7) tAW Address Stable Before WR 0 - 0 - ns (8) tWA Address Stable After WR 20 - 20 - ns (9) tWW WR Pulse Width 100 - 100 - ns (10) tDW Data Valid to WR High 100 - 100 - ns (11) tWD Data Valid After WR High 30 - 30 - ns (11) tWD Data Valid After WR High 30 - 350 ns 1 (13) tIR Peripheral Data Before RD 0 - 0 - ns 1 (14) tHR Peripheral Data After RD 0 - 0 - ns 1 (15) tAK ACK Pulse Width 100 - 100 - ns 1 (16) tST STB Pulse Width 100 - 100 - ns 1 (17) tPS Peripheral Data After STB High 20 - 20	(6) tRV	Time Between RDs and/or WRs	300	-	300	-	ns	
(8) tWA Address Stable After WR 20 - 20 - ns (9) tWW WR Pulse Width 100 - 100 - ns (10) tDW Data Valid to WR High 100 - 100 - ns (11) tWD Data Valid After WR High 30 - 30 - ns (11) tWD Data Valid After WR High 30 - 30 - ns (11) tWD Data Valid After WR High 30 - 30 - ns (11) tWD Data Valid After WR High 30 - 30 - ns (11) tWD Data Valid After WR High 30 - 30 - ns (13) tIR Peripheral Data Before RD 0 - 0 - ns (14) tHR Peripheral Data After RD 0 - 200 - ns (15) tAK ACK Pulse Width 100 - 100 - ns (16) tS	WRITE TIMING	3						
(9) tWW WR Pulse Width 100 - 100 - ns (10) tDW Data Valid to WR High 100 - 100 - ns (11) tWD Data Valid After WR High 30 - 30 - ns (11) tWD Data Valid After WR High 30 - 30 - ns OTHER TIMING Data Valid After WR High 30 - 350 ns 1 (13) tIR Peripheral Data Before RD 0 - 0 - ns 1 (14) tHR Peripheral Data After RD 0 - 0 - ns 1 (15) tAK ACK Pulse Width 200 - 200 - ns 1 (16) tST STB Pulse Width 100 - 100 - ns 1 (17) tPS Peripheral Data After STB High 20 - 20 - ns 1 (19) tAD ACK = 0 to Output - 175	(7) tAW	Address Stable Before WR	0	-	0	-	ns	
NN NN<	(8) tWA	Address Stable After WR	20	-	20	-	ns	
Image: Constraint of the second sec	(9) tWW	WR Pulse Width	100	-	100	-	ns	
OTHER TIMING WR = 1 to Output - 350 - 350 ns 1 (13) tIR Peripheral Data Before RD 0 - 0 - ns 1 (14) tHR Peripheral Data After RD 0 - 0 - ns 1 (14) tHR Peripheral Data After RD 0 - 0 - ns 1 (14) tHR Peripheral Data After RD 0 - 0 - ns 1 (15) tAK ACK Pulse Width 200 - 200 - ns 1 (16) tST STB Pulse Width 100 - 100 - ns 1 (17) tPS Peripheral Data After STB High 20 - 20 - ns 1 (18) tPH Peripheral Data After STB High 50 - 175 ns 1 (19) tAD ACK = 1 to Output Float 20 250 20 250 ns 2 (20) tKD<	(10) tDW	Data Valid to WR High	100	-	100	-	ns	
(12) tWB WR = 1 to Output - 350 - 350 ns 1 (13) tIR Peripheral Data Before RD 0 - 0 - ns 1 (14) tHR Peripheral Data After RD 0 - 0 - ns 1 (14) tHR Peripheral Data After RD 0 - 0 - ns 1 (15) tAK ACK Pulse Width 200 - 200 - ns 1 (16) tST STB Pulse Width 100 - 100 - ns 1 (17) tPS Peripheral Data After STB High 20 - 20 - ns 1 (18) tPH Peripheral Data After STB High 50 - 50 - ns 1 (20) tKD ACK = 0 to Output - 175 ns 1 1 (21) tWOB WR = 1 to OBF = 0 - 150 - 150 ns 1 (22) tAOB <td< td=""><td>(11) tWD</td><td>Data Valid After WR High</td><td>30</td><td>-</td><td>30</td><td>-</td><td>ns</td><td></td></td<>	(11) tWD	Data Valid After WR High	30	-	30	-	ns	
(13) tIR Peripheral Data Before RD 0 - 0 - ns (14) tHR Peripheral Data After RD 0 - 0 - ns (14) tHR Peripheral Data After RD 0 - 0 - ns (15) tAK ACK Pulse Width 200 - 200 - ns (16) tST STB Pulse Width 100 - 100 - ns (17) tPS Peripheral Data Before STB High 20 - 20 - ns (18) tPH Peripheral Data After STB High 50 - 50 - ns (19) tAD ACK = 0 to Output - 175 ns 1 (20) tKD ACK = 1 to Output Float 20 250 20 250 ns 1 (21) tWOB WR = 1 to OBF = 0 - 150 - 150 ns 1 (22) tAOB ACK = 0 to IBF = 1 - 150 - 150 ns 1 <td>OTHER TIMIN</td> <td>G</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	OTHER TIMIN	G						
(14) tHR Peripheral Data After RD 0 - 0 - ns (15) tAK ACK Pulse Width 200 - 200 - ns (16) tST (16) tST STB Pulse Width 100 - 100 - ns (17) tPS Peripheral Data Before STB High 20 - 200 - ns (17) tPS Peripheral Data After STB High 20 - 20 - ns (18) tPH Peripheral Data After STB High 50 - 50 - ns (19) tAD ACK = 0 to Output - 175 - 175 ns 1 (20) tKD ACK = 1 to Output Float 20 250 20 250 ns 1 (21) tWOB WR = 1 to OBF = 0 - 150 - 150 ns 1 (22) tAOB ACK = 0 to OBF = 1 - 150 - 150 ns 1 (23) tSIB STB = 0 to IBF = 0 - 150	(12) tWB	WR = 1 to Output	-	350	-	350	ns	1
(15) tAK ACK Pulse Width 200 - 200 - ns (16) tST STB Pulse Width 100 - 100 - ns (17) tPS (17) tPS Peripheral Data Before STB High 20 - 20 - ns (17) tPS (18) tPH Peripheral Data After STB High 50 - 50 - ns (19) tAD ACK = 0 to Output - 175 ns 1 (20) tKD ACK = 1 to Output Float 20 250 20 250 ns 2 (21) tWOB WR = 1 to OBF = 0 - 150 - 150 ns 1 (22) tAOB ACK = 0 to OBF = 1 - 150 - 150 ns 1 (23) tSIB STB = 0 to IBF = 0 - 150 - 150 ns 1 (24) tRIB RD = 0 to INTR = 0 - 200 - 200 ns 1	(13) tIR	Peripheral Data Before RD	0	-	0	-	ns	
(16) tST STB Pulse Width 100 - 100 - ns (17) tPS Peripheral Data Before STB High 20 - 20 - ns (18) tPH Peripheral Data After STB High 50 - 50 - ns (19) tAD ACK = 0 to Output - 175 - 175 ns 1 (20) tKD ACK = 1 to Output Float 20 250 20 250 ns 2 (21) tWOB WR = 1 to OBF = 0 - 150 - 150 ns 1 (22) tAOB ACK = 0 to OBF = 1 - 150 - 150 ns 1 (23) tSIB STB = 0 to IBF = 1 - 150 - 150 ns 1 (24) tRIB RD = 1 to IBF = 0 - 150 - 150 ns 1 (25) tRIT RD = 0 to INTR = 0 - 200 - 200 ns 1	(14) tHR	Peripheral Data After RD	0	-	0	-	ns	
(17) H2 Peripheral Data Before STB High 20 - 20 - ns (18) tPH Peripheral Data After STB High 50 - 50 - ns (19) tAD ACK = 0 to Output 50 - 50 - ns 1 (19) tAD ACK = 0 to Output - 175 - 175 ns 1 (20) tKD ACK = 1 to Output Float 20 250 20 250 ns 2 (21) tWOB WR = 1 to OBF = 0 - 150 - 150 ns 1 (22) tAOB ACK = 0 to OBF = 1 - 150 - 150 ns 1 (23) tSIB STB = 0 to IBF = 1 - 150 - 150 ns 1 (24) tRIB RD = 1 to IBF = 0 - 150 - 150 ns 1 (25) tRIT RD = 0 to INTR = 0 - 200 - 200 ns 1	(15) tAK	ACK Pulse Width	200	-	200	-	ns	
(18) tPH Peripheral Data After STB High 50 - 50 - ns (19) tAD ACK = 0 to Output - 175 - 175 ns 1 (20) tKD ACK = 1 to Output Float 20 250 20 250 ns 2 (21) tWOB WR = 1 to OBF = 0 - 150 - 150 ns 1 (22) tAOB ACK = 0 to OBF = 1 - 150 - 150 ns 1 (23) tSIB STB = 0 to IBF = 1 - 150 - 150 ns 1 (24) tRIB RD = 1 to IBF = 0 - 150 - 150 ns 1 (25) tRIT RD = 0 to INTR = 0 - 200 - 200 ns 1	(16) tST	STB Pulse Width	100	-	100	-	ns	
(19) tAD ACK = 0 to Output - 175 - 175 ns 1 (20) tKD ACK = 1 to Output Float 20 250 20 250 ns 2 (21) tWOB WR = 1 to OBF = 0 - 150 - 150 ns 1 (22) tAOB ACK = 0 to OBF = 1 - 150 - 150 ns 1 (23) tSIB STB = 0 to IBF = 1 - 150 - 150 ns 1 (24) tRIB RD = 1 to IBF = 0 - 150 - 150 ns 1 (25) tRIT RD = 0 to INTR = 0 - 200 - 200 ns 1	(17) tPS	Peripheral Data Before STB High	20	-	20	-	ns	
(20) tKD ACK = 1 to Output Float 20 250 20 250 ns 2 (21) tWOB WR = 1 to OBF = 0 - 150 - 150 ns 1 (22) tAOB ACK = 0 to OBF = 1 - 150 - 150 ns 1 (23) tSIB STB = 0 to IBF = 1 - 150 - 150 ns 1 (24) tRIB RD = 1 to IBF = 0 - 150 - 150 ns 1 (25) tRIT RD = 0 to INTR = 0 - 200 - 200 ns 1	(18) tPH	Peripheral Data After STB High	50	-	50	-	ns	
(21) tWOB WR = 1 to OBF = 0 - 150 - 150 ns 1 (22) tAOB ACK = 0 to OBF = 1 - 150 - 150 ns 1 (23) tSIB STB = 0 to IBF = 1 - 150 - 150 ns 1 (24) tRIB RD = 1 to IBF = 0 - 150 - 150 ns 1 (25) tRIT RD = 0 to INTR = 0 - 200 - 200 ns 1	(19) tAD	ACK = 0 to Output	-	175	-	175	ns	1
Image: Normal State ACK = 0 to OBF = 1 - 150 - 150 ns 1 (23) tSIB STB = 0 to IBF = 1 - 150 - 150 ns 1 (24) tRIB RD = 1 to IBF = 0 - 150 - 150 ns 1 (25) tRIT RD = 0 to INTR = 0 - 200 - 200 ns 1	(20) tKD	ACK = 1 to Output Float	20	250	20	250	ns	2
(23) tSIB STB = 0 to IBF = 1 - 150 - 150 ns 1 (24) tRIB RD = 1 to IBF = 0 - 150 - 150 ns 1 (25) tRIT RD = 0 to INTR = 0 - 200 - 200 ns 1	(21) tWOB	WR = 1 to OBF = 0	-	150	-	150	ns	1
(24) tRIB RD = 1 to IBF = 0 - 150 - 150 ns 1 (25) tRIT RD = 0 to INTR = 0 - 200 - 200 ns 1	(22) tAOB	ACK = 0 to OBF = 1	-	150	-	150	ns	1
(25) tRIT RD = 0 to INTR = 0 - 200 - 200 ns 1	(23) tSIB	STB = 0 to IBF = 1	-	150	-	150	ns	1
	(24) tRIB	RD = 1 to IBF = 0	-	150	-	150	ns	1
(26) tSIT STB = 1 to INTR = 1 - 150 - 150 ns 1	(25) tRIT	RD = 0 to INTR = 0	-	200	-	200	ns	1
	(26) tSIT	STB = 1 to INTR = 1	-	150	-	150	ns	1
(27) tAIT ACK = 1 to INTR = 1 - 150 - 150 ns 1	(27) tAIT	ACK = 1 to INTR = 1	-	150	-	150	ns	1
(28) tWIT WR = 0 to INTR = 0 - 200 - 200 ns 1	(28) tWIT	WR = 0 to INTR = 0	-	200	-	200	ns	1
(29) tRES Reset Pulse Width 500 - 500 - ns 1, (Not	(29) tRES	Reset Pulse Width	500	-	500	-	ns	1, (Note)

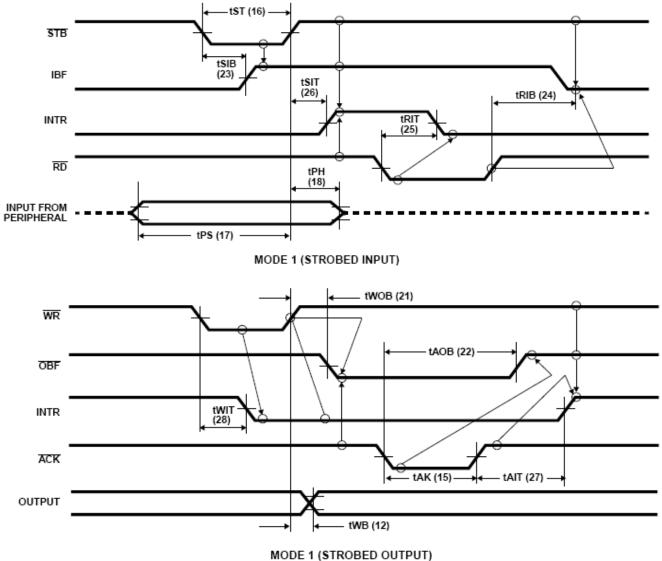
CEN433 - King Saud University

Timing Parameters



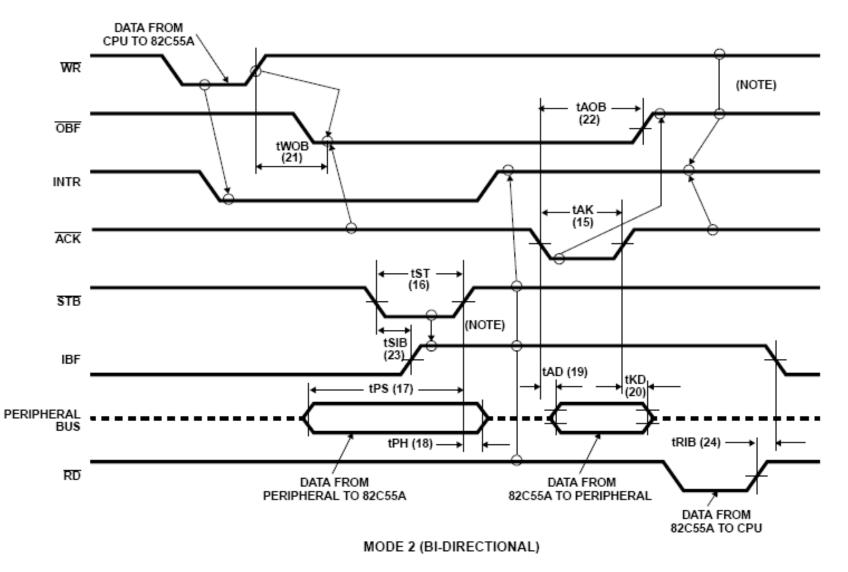
READ TIMING

CEN433 - King Saud University


Mode 0 Timing Parameters

MODE 0 (BASIC OUTPUT)

CEN433 - King Saud University


Mode 1 Timing Parameters

CEN433 - King Saud University

Mode 2 Timing Parameters

CEN433 - King Saud University