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12.1 Functions of several variables 

Definition1 

A function of two variables is a rule that assigns a real number ( , )f x y  to each 

ordered pair of real numbers  ,x y  in the domain of the function.  

For a function f defined on the domain 
2D  , we sometimes write 

2:f D     

to indicate that f maps points in two dimensions to real numbers. 
 

Likewise, a function of three variables is a rule that assigns a real number ( , , )f x y z  

to each ordered triple of real numbers  , ,x y z  in the domain 
3D   of the function. 

We sometimes write 
3:f D    to indicate that f maps points in three dimensions 

to real numbers.  
 

For instance, 
cos( )

( , , )
x z

f x y z
xy


  and 

2( , , ) xzg x y z x y e   are both functions of 

the three variables ,x y and z . 

 
Example 1 (Finding the Domain of a Function of Two Variables) 

Find and sketch the domain for  

(a) ( , ) ln .f x y x y    

(b) 
2

2
( , )

x
g x y

y x



 .  

Solution: 

(a) For ( , ) lnf x y x y , recall that ln y  is defined only for 0y   . The domain of f   is 

then the set  2( , ) | 0D x y y   , that is, the half-plane lying above the x -axis 

(see Figure 1). 
 

 
 
 

                                        Figure1: the domain of ( , ) lnf x y x y    
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(b) 
2

2
( , )

x
g x y

y x



, note that g  is defined unless there is a division by zero, which 

occurs when 
2 0y x  . The domain of g  is then  2 2( , ) |D x y y x    , which is 

the entire xy -plane with the parabola 
2y x removed (see Figure 2). 

 

Figure2: the domain of 
2

2
( , )

x
g x y

y x



 

Example 2(Finding the Domain of a Function of Three Variables) 

Find and describe in graphical terms the domains of 

(a) 
cos( )

( , , )
x z

f x y z
xy


 .  

 (b) 
2 2 2( , , ) 1g x y z x y z     . 

Solution 

(a) For 
cos( )

( , , )
x z

f x y z
xy


 , there is a division by zero if 0xy   , which occurs if 

0x   or 0y   . The domain is then  3( , , ) | 0 & 0D x y z x y    , which is all 

of three-dimensional space, excluding the yz -plane ( 0x  ) and the xz -plane ( 0y  ). 

(b) Notice that for 
2 2 2( , , ) 1g x y z x y z    to be defined, you’ll need to 

have 
2 2 21 0x y z    , or 

2 2 2 1x y z   . The domain of g  is then the unit sphere 

of radius 1 centered at the origin and its interior (see Figure 3). 
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Figure3: the domain of
2 2 2( , , ) 1g x y z x y z      

Definition 2 

The graph of the function f (x, y) is the graph of the equation z = f (x, y). 

Example 3 (Graphing Functions of Two Variables) 

Graph (a) 
2 2( , )f x y x y   and (b) 

2 2( , ) 4g x y x y    . 

Solution 

 (a) For 
2 2( , )f x y x y  , you may recognize the surface 

2 2z x y  as a 

circular paraboloid. Notice that the traces in the planes 0z k   0 are circles, while the 

traces in the planes x k  and y k  are parabolas. A graph is shown in Figure 4 . 

 

Figure 4: Graph of 
2 2z x y   
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(b) For
2 2( , ) 4g x y x y   , note that the surface 

2 24z x y   is the top half of 

the surface 
2 2 24z x y    or 

2 2 2 4x y z   . Here, observe that the traces in the 

planes x k  and z k   are hyperbolas, while the traces in the planes y k  are 

circles. This gives us a hyperboloid of one sheet, wrapped around the y -axis. The 

graph of ( , )z g x y  is the top half of the hyperboloid, as shown in Figure 5. 

 

Figure 5: Graph of 
2 24z x y    

Definition 3 

A level curve of the function ( , )f x y  is the (two-dimensional) graph of the equation 

( , )f x y c , for some constant c . (So, the level curve ( , )f x y c  is a two-dimensional 

graph of the trace of the surface ( , )z f x y  in the plane z c .)  

A contour plot of ( , )f x y is a graph of numerous level curves ( , )f x y c , for 

representative values of c . 

 
Example 4 (Sketching Contour Plots) 
 

Sketch contour plots for (a) 
2( , )f x y x y    and (b) 

2 2( , )g x y x y   . 

Solution 

(a) First, note that the level curves of  ( , )f x y  are defined by 
2x y c   ,where c  is a 

constant. Solving for y , you can identify the level curves as the parabolas 
2y x c  . 

A contour plot with 4, 2,0,2c     and 4  is shown in Figure 6. 
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Figure 6: Contour plot 
2( , )f x y x y    

 

(b) The level curves for ( , )g x y  are the circles 
2 2x y c   . In this case, note that 

there are level curves only for 0c   . A contour plot with 1,4,7c   and 10  is shown in 

Figure7. 

 

 

                          Figure 7: Contour plot 
2 2( , )g x y x y   

12.2 Limits of Functions in Several Variables 

Definition 1 (Formal Definition of Limit) 

Let f   be defined on the interior of a circle centered at the point ( , )a b , except possibly 

at ( , )a b  itself. We say that 
 ( , ) ,

lim ( , )
x y a b

f x y L


  if for every 0   there exists a 0    

such that ( , )f x y L    whenever 
2 20 ( ) ( )x a y b       . 

We illustrate the definition in Figure 1. 
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Figure 1: Limit of a Function of Two Variables 
Remark 1 
The definition of the limit of a function of three variables is completely analogous to the 

definition for a function of two variables. We say that
 ( , , ) , ,

lim ( , , )
x y z a b c

f x y z L


 , if we 

can make ( , , )f x y z  as close as desired to L  by making the point ( , , )x y z  sufficiently 

close to ( , , )a b c . 

 
Example 1 (Finding a Simple Limit) 
 

Evaluate 
   

2

2, 2,1

2 3
lim

5 3x y

x y xy

xy y




 . 

Solution 
First, note that this is the limit of a rational function (i.e., the quotient of two polynomials). 
Since the limit in the denominator is 

   

2

, 2,1
lim 5 3 13 0

x y
xy y


   , we have

   

2

2, 2,1

2 3 14
lim

5 3 13x y

x y xy

xy y





. 

 
Remark 2  
- We can show that the limit of any polynomial always exists and is found simply by 
substitution. 
- We can show that the limit of any rational function at a point in its domain always exists 
and is found simply by substitution. 
Theorem 1 

If ( , )f x y  approaches 1L   as  ,x y  approaches  ,a b  along a path 1P  and  ,f x y  

approaches 2 1L L  as  ,x y  approaches  ,a b  along a path 2P  , then

 ( , ) ,
lim ( , )

x y a b
f x y


 does not exist. 

Remark 3 
Unlike the case for functions of a single variable where we must consider left- and 
right-hand limits in two dimensions, instead of just two paths approaching a given point, 
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there are infinitely many (and you obviously can’t check each one individually). 
In practice, when you suspect that a limit does not exist, you should check the limit along 
the simplest paths first (Figure 2). 
 

 
 

Figure 2: Various paths to  ,a b   

 
Example 2 (A Limit That Does Not Exist) 
 

Evaluate 
 ( , ) 1,0

lim
1x y

y

x y  
. 

Solution 

First, we consider the vertical line path along the line 1x    and compute 

the limit as y  approaches 0  0. If ( , ) (1,0)x y   along the line 1x  , we have 

0
lim 1

1 1y

y

y


 
. 

We next consider the path along the horizontal line 0y    and compute the limit as  

x approaches 1 . Here, we have 
1

0
lim 0

0 1x x


 
 

Since the function approaches two different values along two different paths to the point 
(1, 0), the limit does not exist. 
 
Example 3 (A Limit that is the same along two paths but Does Not Exist) 

Evaluate 
  2 2( , ) 0,0

lim
x y

xy

x y 
. 

Solution 

First, we consider the limit along the path 0x   . We have 
2 20

0
lim 0

0y y



. 
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Similarly, for the path 0y   , we have 
2 20

0
lim 0

0x x



. 

Be careful; just because the limits along the first two paths you try are the same does not 
mean that the limit exists. For a limit to exist, the limit must be the same along all paths 
through (0, 0) (not just along two). Here, we may simply need to look at more paths. 

Notice that for the path y m x  with m   , we have 
 

2

2 220
lim

1x

mx m

mx mx



. 

Since the limit along this path depends of m , the limit does not exist. 
 
Example 4 (A Limit Problem Requiring a More Complicated Choice of Path) 

Evaluate 
 

2

2 4( , ) 0,0
lim

x y

xy

x y 
. 

Solution 

Notice that for the path 
2x m y  with m   (pass through the origin point (0,0)  ), we 

have 

 

4

2 20 2 4
lim

1y

my m

mmy y





 

Since the limit along this path depends of m , the limit does not exist (see Figure 3). 

 
 

Figure 3: the surface of

2

2 4

xy
z

x y



 for 5 5x    and 5 5y    

Theorem 2 

Suppose that ( , ) ( , )f x y L g x y   for all  ,x y  in the interior of some circle 

centered at ( , )a b , except possibly at ( , )a b  . 

If 
 ( , ) ,

lim ( , ) 0
x y a b

g x y


 , then 
 ( , ) ,

lim ( , )
x y a b

f x y L


 . 
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Example 5 (Proving That a Limit Exists) 
 

Evaluate 
 

2

2 2( , ) 0,0
lim

x y

x y

x y 
. 

Solution 
 As we did in earlier examples, we start by looking at the limit along several 

paths through (0,0) .  

Along the path 0x  , we have
 

2

2 2(0, ) 0,0

0
lim 0

0y

y

y



. 

Similarly, along the path 0y   , we have
 

2

2 2( ,0) 0,0

.0
lim 0

0x

x

x



. 

Further, along the path y m x (with m  a real number), we have 

 

2

2 2 2( , ) 0,0 0
lim lim 0

( ) 1x mx x

x mx mx

x mx m 
 

 
. 

We know that if the limit exists, it must equal 0 . After simplifying the expression, there 

remained an extra power of x  in the numerator forcing the limit to 0. To show that the 

limit equals 0 , consider 

2

2 2
( , ) 0

x y
f x y

x y
 


. 

Notice that without the 
2y   term in the denominator, we could cancel the 

2x  terms. 

Since 
2 2 2x y x  ,  we have that for 0x  , 

2 2

2 2 2
( , ) 0

x y x y
f x y y

x y x
   


. 

Since
 ( , ) 0,0

lim | | 0
x y

y


 , Theorem 2 gives us
 

2

2 2( , ) 0,0
lim 0

x y

x y

x y



 , also. 

12.3 Continuity of functions in two or three variables 
 

Definition 1 

Suppose that ( , )f x y  is defined in the interior of a circle centered at the point ( , )a b . 

We say that f   is continuous at ( , )a b   if
( , ) ( , )

lim ( , ) ( , )
x y a b

f x y f a b


 .  

If ( , )f x y  is not continuous at ( , )a b , then we call ( , )a b  a discontinuity of f . 

We say that a function ( , )f x y is continuous on a region R   if it is continuous at each 

point in R . 

Remark 1 

- The definition of the continuity of a function of three variables is completely analogous 
to the definition for a function of two variables: 

Suppose that ( , , )f x y z  is defined in the interior of a sphere centered at ( , , )a b c . We 

say that f is continuous at ( , , )a b c  if 
( , , ) ( , , )

lim ( , , ) ( , , )
x y z a b c

f x y z f a b c


  
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If ( , , )f x y z  is not continuous at ( , , )a b c  , then we call ( , , )a b c  a discontinuity of f . 

-  Notice that because we define continuity in terms of limits, we immediately have the 

following results, which follow directly from the corresponding results for limits. If ( , )f x y  

and ( , )g x y  are continuous at ( , )a b , then f g  , f g   and f g   are all continuous 

at ( , )a b  . Further, 
f

g
 is continuous at ( , )a b  , if, in addition, ( , ) 0g a b  .  

Example 1(Determining Where a Function of Two Variables Is Continuous) 
 
Find all points where the given function is continuous: 

(a) 
2

( , )
x

f x y
x y




 . 

(b)     
 

 

4

2 2
, , (0,0)

, .

0 , , (0,0)

x
x y

x x yg x y

x y




 




  

 
Solution 

- For (a), notice that  ,f x y  is a quotient of two polynomials (i.e., a rational function) 

and so, it is continuous at any point where we don’t divide by 0 . Since division by zero 

occurs only when 
2y x , we have that f  is continuous at all points  ,x y  with 

2y x . 

- For (b), the function g  is also a quotient of polynomials, except at the origin. Notice 

that there is a division by 0   whenever 0x  . We must consider the point (0,0)   

separately, however, since the function is not defined by the rational expression there. 

We can verify that 
( , ) (0,0)

lim ( , ) 0 (0,0)
x y

g x y g


   using the following string of 

inequalities. Notice that for  ( , ) 0,0x y  , 

   

4 4

2 2 2
( , )

x x
g x y x

x x y x x
  


 

and | | 0x    as    , 0,0x y  . We deduce that
( , ) (0,0)

lim ( , ) 0 (0,0)
x y

g x y g


  , so that 

g  is continuous at (0,0) . Putting this all together, we get that g  is continuous at 

the origin and also at all points ( , )x y  with 0x  . 

Theorem 1 

Suppose that ( , )f x y  is continuous at ( , )a b  and ( )g x   is continuous at the point 

( , )f a b . Then ( , ) ( , ) ( ( , ))h x y g f x y g f x y   is continuous at ( , )a b . 

 
Example 2 (Determining Where a Composition of Functions Is Continuous) 

Determine where 
2

( , ) x yf x y e   is continuous?  
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Solution 

Notice that ( , ) ( ( , ))f x y g h x y , where ( ) tg t e  and 
2( , )h x y x y . Since 

g   is continuous for all values of t  and h  is a polynomial in x  and y  (and hence 

continuous on 
2
 ) , it follows from Theorem 1  that f  is continuous on 

2
 . 

 
Example 3 

Determine where 1( , ) tan
y

h x y
x

  
  

 
 is continuous ? 

Solution 

- The function ( , )
y

f x y
x

  is a rational function and therefore continuous except on the 

line 0x   . 

- The function 
1( ) tang t t  is continuous everywhere. 

It follows from Theorem 1 that h  is continuous on  2 \ 0x   (see Figure1). 
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Figure1: the figure shows the break in the graph of 1( , ) tan
y

h x y
x

  
  

 
  above the y-

axis 

Example 4 

Determine where
   

   

2

2 2

3
, , 0,0

( , )

0, , 0,0

x y
x y

x yf x y

x y




 
 

  is continuous? 

Solution 

We know f  is continuous for    , 0,0x y  . Since it is equal to a rational function there. 

Also we have 

2

2 2( , ) (0,0)

3
lim 0 (0,0)

x y

x y
f

x y
 


. Thus f  is continuous at (0,0) .  

So f  is continuous on 
2
  (see Figure 2).  
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Figure2: Graph of 
   

   

2

2 2

3
, , 0,0

( , ) .

0, , 0,0

x y
x y

x yz f x y

x y




  
 

 

Example 5 

Determine where
   

   

2 2
, , 0,0

( , )

0, , 0,0

xy
x y

x yf x y

x y




 
 

  is continuous? 

Solution 

We know f  is continuous for    , 0,0x y  .  Since it is equal to a rational function 

there. Also we have 
2 2( , ) (0,0)

lim
x y

xy

x y 
does not exist. Thus f  is not continuous at (0,0) . 

So f  is continuous on  2 \ (0,0)    (see Figure3). 
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Figure3: Graph of 
   

   

2 2
, , 0,0

( , ) .

0, , 0,0

xy
x y

x yz f x y

x y




  
 

 

Example 6 (Continuity for a Function of Three Variables) 
 

Find all points where  2 2 2( , , ) ln 9f x y z x y z     is continuous. 

 
Solution 

Notice that ( , , )f x y z  is defined only for 
2 2 29 0x y z    . On this domain, f   is a 

composition of continuous functions, which is also continuous. So, f  is continuous for 
2 2 2 9x y z   , which you should recognize as the interior of the sphere of radius 3 

centered at (0, 0, 0). 

 



 

Functions of several variables and differentiation-Math107 Page 1 
 

12.4 First-order partial derivatives 
In this section, we generalize the notion of derivative to functions of more than one 
variable. 

First, recall that for a function f  of a single variable, we define the derivative function as 

0

( ) ( )
'( ) lim

h

f x h f x
f x

h

 
 , for any values of x for which the limit exists.  

At any particular value x a ,  we interpret '( )f a  as the instantaneous rate of change of 

the function with respect to x  at that point. 
 
Definition 1 

The partial derivative of ( , )f x y  with respect to  x  , written 
f

x




 , is defined by 

 
0

( , ) ( , )
, lim

h

f f x h y f x y
x y

x h

  



, for any values of x   and y  for which the limit 

exists. 

The partial derivative of ( , )f x y  with respect to  y , written 
f

y




, is defined by, 

 
0

( , ) ( , )
, lim

h

f f x y h f x y
x y

y h

  



, for any values of x and y for which the limit 

exists. 
 

  
 
 
 
 
 
 
 
 
 
 
 



 

Functions of several variables and differentiation-Math107 Page 2 
 

 

 
Intersection of the surface ( , )z f x y  with 

the plane y b  . 

 
The curve ( , )z f x b  . 

 

 ( , )
f

a b
x




 gives the slope of the tangent line to the curve at .x a   

 

 
Intersection of the surface ( , )z f x y  with 

the plane x a  . 

 
 
 

The curve ( , )z f a y . 

 

 ( , )
f

a b
y




 gives the slope of the tangent line to the curve at .y b   

 
 
 
 
 
 
 



 

Functions of several variables and differentiation-Math107 Page 3 
 

 
 
 
 
Remark 1 
 

 To compute the partial derivative 
f

x




 , you simply take an ordinary derivative 

with respect to x  , while treating y  as a constant. Similarly, you compute 
f

y




by 

taking an ordinary derivative with respect to y  , while treating x  as a constant. 

 For ( , )z f x y  , we write  ( , ) ( , ) ( , ) ( , )x

f z
x y f x y x y f x y

x x x

  
  

  
. 

 The expression
x




 is a partial differential operator. It tells you to take the 

partial derivative (with respect to x ) of whatever expression follows it. Similarly, 
we have 

 ( , ) ( , ) ( , ) ( , )y

f z
x y f x y x y f x y

y y y

  
  

  
. 

Example 1 (Computing Partial Derivatives) 
 

For
2 3 2( , ) 3 4f x y x x y y    , compute ( , ), ( , ), (1,0)x

f f
x y x y f

x y

 

 
 and (2, 1).yf    

Solution 

Compute
f

x




by treating y  as a constant. We have 

2 3 2 2( , ) 3 4 6 3 .
f

x y x x y y x x y
x x

 
       

 

The partial derivative of 
24y  with respect to x  is 0  , since 

24y  is treated as if it were a 

constant when differentiating with respect to x  . Next, we compute
f

y




by treating x   as 

a constant. We have  

2 3 2 3( , ) 3 4 8 .
f

x y x x y y x y
y y

 
       

 

Substituting values for x  and y  , we get (1,0) (1,0) 6x

f
f

x


 


 and 

(2, 1) (2, 1) 0.y

f
f

y


   


 

Remark 2 
 
Since we are holding one of the variables fixed when we compute a partial derivative, 

we have the product rules: ( )
u v

uv v u
x x x

  
 

  
and ( )

u v
uv v u

y y y

  
 

  
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and the quotient rule: 
2

u v
v u

u x x

x v v

 


     
  

 , 

with a corresponding quotient rule holding for
2

u v
v u

u y y

y v v

 


   
 

  
. 

 
Example 2 (Computing Partial Derivatives) 

For ( , ) xy x
f x y e

y
   , compute 

f

x




 and .

f

y




 

Solution 

For 0y   , we have 
1

( , ) .xy xyf x
x y e y e

x x y y

  
    

   
 Also, 

2
( , ) .xy xyf x x
x y e x e

y y y y

  
    

   
 

Example 3 (Computing Partial Derivatives) 

For 
2 3( , , ) sin( ) lnf x y z x y z xy z  , compute 

f

x




 , 

f

y




 and .

f

z




 

Solution 

For 0z  , we have 

 2 3 3 2 3( , , ) sin ln 2 cos( ) ln .
f

x y z x y z xy z xy z x y z y z
x x

 
    
  

 

Also, 

 2 3 2 2 2 3( , , ) sin ln 3 cos( ) ln .
f

x y z x y z xy z x y z x y z x z
y y

 
    
  

 

And,  2 3 2 3 2 3( , , ) sin ln cos( ) .
f xy

x y z x y z xy z x y x y z
z z z

 
    
  

 

 

12.5 Higher-order partial derivatives 
 
Notice that the partial derivatives found in the preceding examples are themselves 
functions of two variables. We have seen that second- and higher-order derivatives of 
functions of a single variable provide much significant information. Not surprisingly, 
higher-order partial derivatives are also very important in applications. 
 
For functions of two variables, there are four different second-order partial derivatives. 

The partial derivative with respect to x  of 
f

x




 is 

f

x x

  
 

  
 , usually abbreviated as

2

2

f

x




 

or xxf  . Similarly, taking two successive partial derivatives with respect to y  gives us

2

2 yy

f f
f

y y y

   
  

   
. 
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 For mixed second-order partial derivatives, one derivative is taken with respect to 

each variable. If the first partial derivative is taken with respect to x  , we have
f

y x

  
 

  
, 

abbreviated as 

2f

y x



 
, or  x xyy

f f .  If the first partial derivative is taken with respect 

to y , we have 
f

x y

  
 

  
, abbreviated as 

2f

x y



 
, or  y yxx

f f  . 

Example 1 (Computing Second-Order Partial Derivatives) 
 

Find all second-order partial derivatives of 
2 3( , ) lnf x y x y y x   . 

 
Solution 

We start by computing the first-order partial derivatives: For 0x   , 

1
( , ) 2

f
x y xy

x x


 


 and 

2 2( , ) 3 .
f

x y x y
y


 


 We then have

2

2 2

1 1
( , ) 2 2

f f
x y xy y

x x x x x x

      
       

      
, 

2 1
( , ) 2 2

f f
x y xy x

y x y x y x

      
      

       
,

 
2

2 2( , ) 3 2
f f

x y x y x
x y x y x

    
    

     
, 

and finally,  
2

2 2

2
( , ) 3 6 .

f f
x y x y y

y y y y

    
     

    
 

Remark 1 

Notice in example 1 that 

2 2

( , ) ( , )
f f

x y x y
y x x y

 


   
. It turns out that this is true for 

most, but not all, of the functions that you will encounter. 
 
Theorem 1 

If ( , )xyf x y  and ( , )yxf x y  are continuous on an open set containing ( , )a b , then 

( , ) ( , )xy yxf a b f a b . 

 
Example 2 (Computing Higher-Order Partial Derivatives) 
 

For 
3 4( , ) cos( )f x y xy x y    , compute xyyf   and xyyyf  .  

 
Solution 

We have  3 4 2cos( ) sin( ) 3xf xy x y y xy x
x


     


 . 
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Differentiating xf   with respect to y  gives us 

 2sin( ) 3 sin( ) cos( )xyf y xy x xy xy xy
y


     


 and 

 

2

2

sin( ) cos( )

cos( ) cos( ) sin( )

2 cos( ) sin( ).

xyyf xy xy xy
y

x xy x xy x y xy

x xy x y xy


  


   

  

  

Finally, we have 

 

 2

2 2 3

2 3

2 cos( ) sin( )

2 sin( ) sin( ) cos( )

3 sin( ) cos( ).

xyyyf x xy x y xy
y

x xy x xy x y xy

x xy x y xy


  


  

 

  

 
Example 3 (Partial Derivatives of Functions of Three Variables) 
 

For 
3 2( , , ) 4f x y z xy z x y   , defined for , , 0x y z  , compute xf  ,

xyf   and 
xyzf  . 

 
Solution 

To keep x  , y  and z  as separate as possible, we first rewrite f   as 
31 1

22 2 2( , , ) 4f x y z x y z x y  . 

To compute the partial derivative with respect to x  , we treat y  and z  as constants 

and obtain   
3 31 1 1 1

22 2 2 2 2 2
1

4 8 .
2

xf x y z x y x y z xy
x

           
  

Next, treating x  and z  as constants, we get

31 1 1 1 1
2 2 2 2 2 2

1 1 3
8 8 .

2 2 2
xyf x y z xy x y z x

y

      
           

 

Finally, treating x  and y  as constants, we get

1 1 1 1 1 1
2 2 2 2 2 2

1 1 1
2 2 2

3 1 3 1
8

4 2 2 2

3
.

8

xyzf x y z x x y z
z

x y z

  

 

      
             



 

Notice that this derivative is defined for , 0x z    and 0y   . Further, you can show that 

all first-, second- and third-order partial derivatives are continuous for , , 0x y z  , so 

that the order in which we take the partial derivatives is irrelevant in this case. 

12.6 Tangent planes and Linear approximations 
 

Recall that the tangent line to the curve ( )y f x  at x a  stays close to the curve near 

the point of tangency. This enables us to use the tangent line to approximate values of 
the function close to the point of tangency (see Figure 1). 
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Figure1: Linear approximation. 

 

The equation of the tangent line is given by: ( ) '( )( )y f a f a x a    . We called this the 

linear approximation to ( )f x  at x a . 

In much the same way, we can approximate the value of a function of two variables 
near a given point using the tangent plane to the surface at that point. For instance, the 

graph of 
2 26z x y    and its tangent plane at the point (1,2,1)  are shown in Figure 2.  

 
 

Figure2: 
2 26z x y    and the tangent plane at (1,2,1) . 

 

Notice that near the point (1,2,1) , the surface and the tangent plane are very close 

together. 
Theorem1 

Suppose that ( , )f x y  has continuous first partial derivatives at ( , )a b . A normal 

vector to the tangent plane to ( , )z f x y at ( , )a b  is then   ( , ), ( , ), 1x yf a b f a b   . 

Further, an equation of the tangent plane is given by 

( , ) ( , )( ) ( , )( )x yz f a b f a b x a f a b y b       or 

( , ) ( , )( ) ( , )( )x yz f a b f a b x a f a b y b     . 

 
Remark1 
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 A vector normal to the plane is then given by the cross product: 

   (0, 1, ( , )) 0, ( , ),1 ( , ), ( , ), 1y x x yf a b f a b f a b f a b    . 

 The line orthogonal to the tangent plane and passing through the point

 , , ( , )a b f a b  is given by

( , )

( , )

( , )

x

y

x a t f a b

y b t f a b

z f a b t

 


 
  

 . 

This line is called the normal line to the surface at the point  , , ( , )a b f a b . 

 
Example1 (Finding Equations of the Tangent Plane and the Normal Line) 
 

Find equations of the tangent plane and the normal line to 
2 26z x y    at the point 

 1,2,1  . 

 
Solution 

For 
2 2( , ) 6f x y x y    , we have 2xf x  and 2yf y  .  This gives us 

(1,2) 2xf    and (1,2) 4yf   . So a normal vector is then  2, 4, 1    . 

An equation of the tangent plane is: 1 2( 1) 4( 2)z x y     . 

Equations of the normal line are 

1 2

2 4 , .

1

x t

y t t

z t

 


  
  

 

A sketch of the surface, the tangent plane and the normal line is shown in Figure 3. 

 
 

Figure3: Surface, tangent plane and normal line at the point  1,2,1 . 

 
 
 
Example2 (Finding Equations of the Tangent Plane and the Normal Line) 
 

Find equations of the tangent plane and the normal line to 

2
3 3 x

z x y
y

    at the point 

 2,1,13  . 
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Solution 

Here, 
2 2

3x

x
f x

y
   and 

2
2

2
3y

x
f y

y
  , so that (2,1) 12 4 16xf     and

(2,1) 3 4 1yf     . So a normal vector is then  16, 1, 1   . 

An equation of the tangent plane is: 13 16( 2) ( 1).z x y       

Equations of the normal line are 

2 16

1 , .

13

x t

y t t

z t

 


  
  

 

A sketch of the surface, the tangent plane and the normal line is shown in Figure 4. 
 

 
 

 

Figure4: Surface, tangent plane and normal line at the point  2,1,13 . 
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12.7 Increments and Differentials 

First, we remind you of the notation that we used for functions of a single variable. We 

defined the increment y  of the function ( )f x  at x a  to be ( ) ( )y f a x f a    . 

Referring to Figure 1, notice that for x  small, '( )y dy f a x     , where we referred 

to dy  as the differential of y . 

 
Figure 1: Increments and differentials for a function of one variable. 

 
 

For ( , )z f x y , we define the increment of f  at  ,a b  to be  

( , ) ( , )z f a x b y f a b     . 

 
 

Figure 2: Linear approximation. 
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Notice that as long as f  is continuous in some open region containing  ,a b   and f   

has first partial derivatives on that region, we can write: 

   

( , ) ( , )

( , ) ( , ) ( , ) ( , )

z f a x b y f a b

f a x b y f a b y f a b y f a b

    

       
  

Adding and subtracting  ,f a b y  . 

   ( , ) ( , )x yf u b y a x a f a v b y b               

Applying the Mean Value Theorem to both terms. 

( , ) ( , ) ,x yf u b y x f a v y       

by the Mean Value Theorem. Here, u   is some value between a   and a x  , and v  is 

some value between b  and b y  (see Figure 3). This gives us 

( , ) ( , ) ,x yz f u b y x f a v y       

    ( , ) ( , ) ( , ) ( , ) ( , ) ( , )x x x y y yf a b f u b y f a b x f a b f a v f a b y             

which we rewrite as 
1 2( , ) ( , )x yz f a b x f a b y x y          , where 

 1 ( , ) ( , )x xf u b y f a b     and 
2 ( , ) ( , )y yf a v f a b     . 

 

 
 

Figure 3: Intermediate points from the Mean Value Theorem. 

We have now established the following result. 
Theorem1 

Suppose that ( , )z f x y   is defined on the rectangular region 

  2

0 1 0 1, | &R x y x x x y y y       and xf  and yf  are defined on R  and 

are continuous at  ,a b R .  Then for  ,a x b y R    ,  

1 2( , ) ( , )x yz f a b x f a b y x y           where 1  and 2  are functions of x  

and y  that both tend to zero, as    , 0,0x y   . 
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Example 1 (Computing the Increment z ) 

 For 
2( , ) 5z f x y x xy   , find z . 

Solution 
We have  

   

    

   

       

2 2

22 2

1 2

, , .

5 5 .

2 5 5

2 5 5 5 .

( , ) ( , ) ,x y

z f x x y y f x y

x x x x y y x xy

x x x x xy x y y x x y x xy

x x x y x x x y

f x y x f x y y x y 

      

           

              

            

       

  

where 1 x    and 2 5 x     both tend to zero, as    , 0,0x y   . 

Example 2 

Let 
2( , ) 3 .z f x y x xy     

(a) If x  and y  are increments of x  and y , find z  . 

(b) Use z  to calculate the change in ( , )f x y  if  ,x y  changes from  1,2  to 

 1.01,1.98  . 

Solution 
(a) We have 

 

   

    

   

       

2 2

22 2

1 2

, , .

3 3 .

3 6 3 3

6 3 .

( , ) ( , ) ,x y

z f x x y y f x y

x x x x y y x xy

x x x x xy x y y x x y x xy

x y x x y x x x y

f x y x f x y y x y 

      

           

              

           

       

 

where 1 3 x    and 2 x     both tend to zero, as    , 0,0x y   . 

(b) If  ,x y  changes from  1,2  to  1.01,1.98 , substituting 1, 2, 0.01,x y x     

and 0.02y    into the formula for z gives us

  26(1) 2 (0.01) (1)( 0.02) 3(0.01) (0.01)( 0.02) 0.0605.z           

Remark1 

If we increment x  by the amount dx x   and increment y  by dy y  , then we 

define the total differential of z  to be ( , ) ( , )x ydz f x y dx f x y dy  .  

Definition1  

Let ( , )z f x y . We say that f  is differentiable at  ,a b  if we can write 

1 2( , ) ( , ) ,x yz f a b x f a b y x y           where 1  and 2  are both functions of 

x  and y  and 1 2, 0    , as    , 0,0x y   . We say that f  is differentiable on 

a region 
2R   whenever f   is differentiable at every point in R . 
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Definition2 

The linear approximation to ( , , )f x y z  at the point  , ,a b c   is given by 

( , , ) ( , , ) ( , , )( ) ( , , )( ) ( , , )( ).x y zL x y z f a b c f a b c x a f a b c y b f a b c z c         

Example 3 

The dimensions of a closed rectangular box are measured as 3 feet, 4 feet, and 5 feet, 

with a possible error of 
1

16
  inch in each measurement. Use differentials to approximate 

the maximum error in the calculated value of  

(a) The surface area.          

(b) The volume. 

Solution 

(a) The surface area is  2S xy yz xz   . So  

2( ) 2( ) 2( ) .dS y z dx x z dy x y dz       

As 
1

16
dx dy dz     inch

1

192
   feet, we get 

1 1
(18 16 14)

192 4
dS

 
     

 
 feet

2.   

(b) The volume is V x y z  . So  

  31 47
20 15 12 feet .

192 192

dV yz dx xz dy xy dz  

 
     

 

  

12.8 Chain Rule and Implicit Differentiation 
 

The general form of the chain rule says that for differentiable functions f  and g  , 

   ( ) ' ( ) ( )
d

f g x f g x g x
dx

   . 

We now extend the chain rule to functions of several variables. 

Theorem1 (Chain Rule) 

If  ( ), ( )z f x t y t , where ( )x t  and ( )y t  are differentiable and ( , )f x y  is a 

differentiable function of x  and y , then 
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     ( ), ( ) ( ), ( ) ( ), ( )
dz d f dx f dy

f x t y t x t y t x t y t
dt dt x dt y dt

 
      

 . 

 

 
dz z dx z dy

dt x dt y dt

 
 
 

 

 
Example1 (Using the Chain Rule) 
 

For 
2( , ) yz f x y x e  ,

2( ) 1x t t   and ( ) siny t t , find the derivative of 

 ( ) ( ), ( )g t f x t y t  . 

Solution 

We first compute the derivatives 2 yz
xe

x





 , 

2 yz
x e

y





 , '( ) 2x t t  and '( ) cosy t t  . 

The chain rule (Theorem1) then gives us 

   

    

2

2
2 sin 2 sin

'( ) 2 2 cos

4 1 cos 1

y y

t t

z dx z dy
g t xe t x e t

x dt y dt

t t e t t e

 
   
 

   

 . 

 
Theorem2 (Chain Rule) 

Suppose that ( , )z f x y  , where f  is a differentiable function of x  and y  and 

where  ,x x s t   and  ,y s t  both have first-order partial derivatives. Then we 

have the chain rules: 
z z x z y

s x s y s

    
 

    
 and 

z z x z y

t x t y t

    
 

    
. 
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Example 2 (Using the Chain Rule) 

Suppose that ( , ) xyf x y e ,  , 3 sinx u v u v and   2, 4y u v v u . For 

 ( , ) ( , ), ( , )g u v f x u v y u v  , find the partial derivatives
g

u




 and 

g

v




 . 

Solution 

We first compute the partial derivatives
xyf

ye
x





 , 

xyf
xe

y





, 3sin

x
v

u





and

24
y

v
u





. The chain rule (Theorem 2) gives us 

   23sin 4xy xyg f x f y
ye v xe v

u x u y u

    
   

    
. 

Substituting for x  and y , we get 

2 2 2 2

2 2

2 12 sin 2 12 sin

2 12 sin

12 sin 12 sin

24 sin .

u v v u v v

u v v

g
uv v e uv v e

u

uv v e


 





  

For the partial derivative of g   with respect to v , we compute 3 cos
x

u v
v





 and 

8
y

u v
v





 . Here, the chain rule gives us : 

   3 cos 8xy xyg f x f y
ye u v xe uv

v x v y v

    
   

    
. 

Substituting for x  and y ,  we have :  
2 22 2 2 12 sin12 cos 24 sin u v vg

u v v u v v e
v


 


 . 

 
Example 3 (Converting from Rectangular to Polar Coordinates) 
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For a differentiable function ( , )f x y  with cosx r    and siny r   , show that 

cos sinr x yf f f    and 
2 2cos 2 cos sin sinrr xx xy yyf f f f       . 

Solution 

First, notice that cos
x

r






 and sin

y

r






. From Theorem 2, we now have 

cos sinr x y x y

x y
f f f f f

r r
 

 
   

 
 . 

Be very careful when computing the second partial derivative. Using the expression we 

have already found for rf   and Theorem2, we have 

   

   

       

2 2

cos sin

cos sin

cos sin

cos sin cos cos sin sin

cos 2 sin cos sin .

rr r x y

x y

x x y y

xx xy yx yy

xx xy yy

f f f f
r r

f f
r r

x y x y
f f f f

x r y r x r y r

f f f f

f f f

 

 

 

     

   

 
  
 

 
 
 

          
      

          

         

  

  

  
Implicit Differentiation 

 Suppose that the equation ( , ) 0F x y   defines y  implicitly as a function of x , 

say ( )y f x . We let ( , )z F x y ,  where x t  and ( )y f t . From 

Theorem1, we have
x y

dz dx dy
F F

dt dt dt
  . But, since ( , ) 0z F x y  , we have

0
dz

dt
 . Further, since x t  , we have 1

dx

dt
 and 

dy dy

dt dx
 . This gives us

0 x y

dy
F F

dx
  . Notice that we can solve this for

dy

dx
 , provided 0yF   . In this 

case, we have : x

y

Fdy

dx F
   . 

 Suppose that the equation ( , , ) 0F x y z   implicitly defines a function

( , )z f x y , where f  is differentiable. Then, we can find the partial derivatives 

xf  and yf  using the chain rule, as follows. We first let ( , , )w F x y z . From the 

chain rule, we have 
x y z

w x y z
F F F

x x x x

   
  

   
. Notice that since 

( , , ) 0w F x y z  , 0
w

x





 . Also, 1

x

x





 and 0

y

x





, since x  and y  are 
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independent variables. This gives us 0 x z

z
F F

x


 


. We can solve this for 

z

x




 , 

as long as 0zF  ,  to obtain: x

z

Fz

x F


 


. 

            Likewise, differentiating w  with respect to y  leads us to: 
y

z

Fz

y F


 


, 0zF   . 

Example 4 (Finding Partial Derivatives Implicitly) 

Find 
z

x




 and 

z

y




 , given that  2 3( , , ) sin 0F x y z xy z xyz     . 

Solution 

First, note that using the usual chain rule, we have: 
2 cos( )xF y yz xyz  , 

2 cos( )yF xy xz xyz   and 
23 cos( )zF z xy xyz   .  

 If
23 cos( ) 0z xy xyz   then  

2

2

cos( )

3 cos( )

x

z

Fz y yz xyz

x F z xy xyz

 
   

 
 and 

2

2 cos( )

3 cos( )

y

z

Fz xy xz xyz

y F z xy xyz

 
   

 
. 

 
12.9 The gradient and Directional derivatives 
 
In this section, we develop the notion of directional derivatives. Suppose that we want to 

find the instantaneous rate of change of ( , )f x y  at the point ( , )P a b  and in the direction 

given by the unit vector 1 2,u u u   . Let ( , )Q x y  be any point on the line through 

( , )P a b  in the direction of u . Notice that the vector PQ  is then parallel to u . Since two 

vectors are parallel if and only if one is a scalar multiple of the other, we have that 

.PQ h u , for some scalar h , so that 1 2 1 2, . , ,PQ x a y b h u h u u hu hu            . 

It then follows that 1x a hu   and 2y b hu  , so that 1x a hu   and 2y b hu  . 

The point Q  is then described by  1 2,a hu b hu   , as indicated in Figure 1. Notice 

that the average rate of change of ( , )z f x y  along the line from P  to Q  is then 

 1 2, ( , )f a hu b hu f a b

h

  
 . 
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Figure1: The vector PQ  . 

 

The instantaneous rate of change of  ,f x y  at the point ( , )P a b  and in the direction of 

the unit vector u  is then found by taking the limit as 0h  . 

 
Definition1 
 

The directional derivative of ( , )f x y  at the point ( , )a b  and in the direction of the 

unit vector 1 2,u u u    is given by 
 1 2

0

, ( , )
( , ) limu

h

f a hu b hu f a b
D f a b

h

  
 , 

provided the limit exists. 
 
 
 
Remark1: 
We can extend the definition of the directional derivative of a function in 3 variables as: 

The directional derivative of ( , , )f x y z  at the point ( , , )a b c  and in the direction of the 

unit vector 1 2 3, ,u u u u    is given by 

 1 2 3

0

, , ( , , )
( , , ) limu

h

f a hu b hu c hu f a b c
D f a b c

h

   
 , provided the limit exists. 

 
Theorem1 

- Suppose that f  is differentiable at ( , )a b  and 1 2,u u u    is any unit vector. 

Then, we can write 1 2( , ) ( , )u x yD f f a b u f a b u   . 

- Suppose that f  is differentiable at ( , , )a b c  and 1 2 3, ,u u u u    is any unit 

vector. Then, we can write 1 2 3( , , ) ( , , ) ( , , )u x y zD f f a b c u f a b c u f a b c u    . 

 
Example 1 (Computing Directional Derivatives) 
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For 
2 3( , ) 4f x y x y y  , compute (2,1)uD f  for the directions 

    (a) 
3 1

,
2 2

u     

    (b) u in the direction from  2,1  to  4,0 . 

 
Solution  
Regardless of the direction, we first need to compute the first partial derivatives 

2
f

xy
x





 and 

2 212
f

x y
y


 


. Then,  2,1 4xf   and  2,1 8yf   . 

 For (a), the unit vector is given as 
3 1

,
2 2

u     and so, from Theorem 1 we 

have   1 2

3 1
2,1 (2,1) (2,1) 4 8 2 3 4 0

2 2
u x yD f f u f u       . Notice that 

this says that the function is decreasing in this direction. 

 For (b), we must first find the unit vector u  in the indicated direction. Observe 

that the vector from  2,1  to  4,0  corresponds to the position vector 2, 1  

and so, the unit vector in that direction is 
2, 1 2 1

,
|| 2, 1 || 5 5

u
   

  
  

 . We then 

have from Theorem 1 that 

  1 2

2 ( 1) 16
2,1 (2,1) (2,1) 4 ( 8) 0

5 5 5
u x yD f f u f u


       . So, the function 

is increasing rapidly in this direction. 
 
For convenience, we define the gradient of a function to be the vector-valued function 

whose components are the first-order partial derivatives of f  . We denote the gradient 

of a function f  by grad f  or f . 

 
Definition 2 

The gradient of ( , )f x y  is the vector-valued function

( , ) ( , ), ( , ) ( , ) ( , )
f f f f

f x y x y x y x y i x y j
x y x y

   
     

   
, provided both partial 

derivatives exist. Similarly, we define the gradient of ( , , )f x y z  as the vector-valued 

function

( , , ) ( , , ), ( , , ), ( , , ) ( , , ) ( , , ) ( , , )
f f f f f f

f x y z x y z x y z x y z x y z i x y z j x y z k
x y z x y z

     
      

     
, 

provided all the partial derivatives are defined. 
 
Theorem 2 

If f  is a differentiable function of x  and y  and u  is any unit vector, then

( , ) ( , ) .uD f x y f x y u   
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Similarly, if f  is a differentiable function of x , y  and z  and u  is any unit vector, 

then ( , , ) ( , , ) .uD f x y z f x y z u  

 
Example 2 (Finding Directional Derivatives) 

For 
2 2( , )f x y x y  , find  1, 1uD f    for  

(a) u  in the direction of 3,4v      . 

(b) u  in the direction of 3, 4v     . 

 
Solution 

First, note that ( , ) ( , ), ( , ) 2 ,2
f f

f x y x y x y x y
x y

 
      

 
. 

At the point  1, 1  , we have (1, 1) 2, 2f      .  

 For (a), a unit vector in the same direction as v  is 
3 4

,
5 5

u


    . The directional 

derivative of f in this direction at the point  1, 1  is then

 
3 4 3 4 14

1, 1 2, 2 . , 2 ( 2)
5 5 5 5 5

uD f
  

             . 

 For (b), the unit vector is 
3 4

,
5 5

u


    and so, the directional derivative of f  in this 

direction at  1, 1   is  
3 4 3 4 14

1, 1 2, 2 . , 2 ( 2)
5 5 5 5 5

uD f
 

             . 

Theorem 3 

Suppose that f  is a differentiable function of x  and y at the point ( , )a b . Then 

 the maximum rate of change of f  at ( , )a b  is  ,f a b  , occurring in the 

direction of the gradient; 

 the minimum rate of change of f  at ( , )a b  (a, b) is  ,f a b  , occurring 

in the direction opposite the gradient; 

 the rate of change of f  at ( , )a b  is 0 in the directions orthogonal to 

 ,f a b . 

 the gradient  ,f a b  is orthogonal to the level curve  ,f x y c  at the 

point ( , )a b , where  ,c f a b . 

 
Example 3 (Finding Maximum and Minimum Rates of Change) 
 

Find the maximum and minimum rates of change of the function 
2 2( , )f x y x y   at 

the point (1,3) . 

 
Solution 
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We first compute the gradient 2 ,2f x y     and evaluate it at the point (1,3) ; 

 1,3 2,6f    . From Theorem 3, the maximum rate of change of f  at (1,3)  is 

 1,3 40 2 10f   and occurs in the direction of 
 

 

1,3 1 3
,

1,3 10 10

f
u

f


   


. 

Similarly, the minimum rate of change of f  at (1,3)  is  1,3 40 2 10f      , 

which occurs in the direction of 
 

 

1,3 1 3
,

1,3 10 10

f
u

f

  
    


. 

 

Figure2: Contour Plot of 
2 2.z x y   

 
 
Example 4 (Finding the Direction of Maximum Increase) 

If the temperature at point  , ,x y z  is given by  
 2 2

, , 85 1
100

x yz
T x y z e

  
   

 
,  

find the direction from the point  2,0,99  in which the temperature increases most 

rapidly. 
Solution  
We first compute the gradient 

     2 2 2 2 2 2

, ,

1
2 1 , 2 1 ,

100 100 100

x y x y x y

f f f
f

x y z

z z
x e y e e

     

  
   

  

   
         

   

  

and   4 41 1
2,0,99 , 0 ,

25 100
f e e  

    . To find a unit vector in this direction, you can 

simplify the algebra by canceling the common factor of 
4e 
 and multiplying by 100. A 



 

Functions of several variables and differentiation-Math107 Page 13 
 

unit vector in the direction of 4, 0 , 1     and also in the direction of  2,0 ,99f is 

then
4 1

, 0 ,
17 17

 
   . 

 
Theorem 4 

Suppose that ( , , )f x y z  has continuous partial derivatives at the point  , ,a b c  

and ( , , ) 0f a b c  . Then, ( , , )f a b c is a normal vector to the tangent plane to the 

surface ( , , )f x y c k , at the point  , ,a b c . Further, the equation of the tangent 

plane is            , , , , , , 0x y zf a b c x a f a b c y b f a b c z c       . 

 
Example 5 (Using a Gradient to Find a Tangent Plane and Normal Line to a Surface) 
 

Find equations of the tangent plane and the normal line to 
3 2 2 7x y y z    at the 

point  1,2,3 . 

 
Solution  

If we interpret the surface as a level surface of the function 
3 2 2( , , )f x y z x y y z   , 

a normal vector to the tangent plane at the point  1,2,3  is given by  1,2,3f . We 

have 
2 33 , 2 , 2f x y x y z      and  1,2,3 6 , 3 , 6f     . Given the normal 

vector 6 , 3 , 6    and point  1,2,3 , an equation of the tangent plane is  

     6 1 3 2 6 3 0x y z       . 

The normal line has parametric equations

1 6

2 3 , .

3 6

x t

y t t

z t

 


  
  
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12.10 Extrema of functions of several variables 

Definition1 

We call ( , )f a b  a local maximum of f  if there is an open disk R  centered at  ,a b ,  

for which ( , ) ( , )f a b f x y  for all  ,x y R . Similarly, ( , )f a b  is called a local 

minimum of f  if there is an open disk R  centered at ( , )a b  , for which 

( , ) ( , )f a b f x y for all  ,x y R . In either case, ( , )f a b  is called a local extremum 

of f . 
 

 
 

Local maximum at  1,1  for 

2 3

2 3( , )
x y

y

f x y x e
  

  

 

Local minimum at  1.1 for

2 3

2 3( , )
x y

y

f x y x e
  

  

 

Definition2 

The point ( , )a b  is a critical point of the function ( , )f x y if ( , )a b  is in the domain of f  

and either ( , ) ( , ) 0
f f

a b a b
x y

 
 

 
 or one or both of 

f

x




 and 

f

y




do not exist at ( , )a b . 

Theorem1 

If ( , )f x y  has a local extremum at ( , )a b , then ( , )a b must be a critical point of f . 

 
Example1  

Find all critical points of 

2 3

2 3( , )
x y

y

f x y x e
  

 . 

 
Solution  
First, we compute the first partial derivatives: 

 

2 3

2 2 3( , ) (1 )
x y

yf
x y x e

x

  
 


and 

2 3

2 2 3( , ) (1 )
x y

yf
x y x y e

y

  
 


. 
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Since exponentials are always positive, we have ( , ) 0
f

x y
x





 if and only if 

21 0x   , 

that is, when 1x    . We have ( , ) 0
f

x y
y





 if and only if   21 0x y   , that is, when 

0x   or 1y    . So the set of critical points is  ( 1, 1),( 1,1),(1, 1),(1,1)fC       . 

 

 
 

2 3

2 3( , )
x y

y

z f x y x e
  

 

 

 
 
 

Saddle point at  1, 1  . 

 
 
 

Saddle point at  1, 1   . 

 
 
Definition3 

The point  , , ( , )P a b f a b  is a saddle point of ( , )z f x y  if ( , )a b  is a critical 

point of f  and if every open disk centered at ( , )a b  contains points ( , )x y  in the 

domain of f  for which ( , ) ( , )f x y f a b  and points ( , )x y  in the domain of f  for 

which ( , ) ( , )f x y f a b . 

 
Theorem2 (Second Derivatives Test) 

Suppose that ( , )f x y  has continuous second-order partial derivatives in some 

open disk containing the point ( , )a b  and that ( , ) ( , ) 0x yf a b f a b  . Define the 

discriminant D  for the point ( , )a b  by 
2

( , ) ( , ) ( , ) ( , )xx yy xyD a b f a b f a b f a b      . 

 If ( , ) 0D a b   and ( , ) 0xxf a b  , then f has a local minimum at ( , )a b . 

 If ( , ) 0D a b   and ( , ) 0xxf a b  , then f has a local maximum at ( , )a b . 

 If ( , ) 0D a b  , then f has a saddle point at ( , )a b . 

 If ( , ) 0D a b  , then no conclusion can be drawn. 
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Example2 (Using the Discriminant to Find Local Extrema) 
 

Locate and classify all critical points for  
2 3( , ) 2 2f x y x y xy   . 

 
Solution  

We first compute the first partial derivatives: 4 2xf x y  and 
23 2yf y x   . Since 

both xf  and 
yf  are defined for all  ,x y  , the critical points are solutions of the two 

equations: 4 2 0xf x y   and 
23 2 0yf y x    . Solving the first equation for y , 

we get 2y x . Substituting this into the second equation, we have

2 20 3(4 ) 2 12 2 2 (6 1)x x x x x x          , so that 0x   or 
1

6
x


  . The 

corresponding y -values are 0y   and 
1

3
y


  . The only two critical points are then 

(0,0)  and 
1 1

,
6 3

  
 
 

 . To classify these points, we first compute the second partial 

derivatives: 4, 6xx yyf f y    and 2xyf    , and then test the discriminant. We have 

2(0,0) 4 0 ( 2) 4 0D         and 21 1 1
, 4 ( 6) ( 2) 4 0

6 3 3
D

     
          

   
 . 

From Theorem 2, we conclude that there is a saddle point of f  at (0,0)  , since 

(0,0) 0D  . Further, there is a local minimum at
1 1

,
6 3

  
 
 

 since 
1 1

, 0
6 3

D
  

 
 

and 

1 1
, 4 0

6 3
xxf

  
  

 
. 
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Example3 (Classifying Critical Points) 
 

Locate and classify all critical points for 
3 2 4 2( , ) 2 2 3f x y x y y x y    . 

 
Solution 
 

Here, we have 23 6xf x xy   and 
3 24 8 3yf y y x    . Since both xf  and 

yf  exist 

for all ( , )x y , the critical points are solutions of the two equations: 23 6 0xf x xy    

and 
3 24 8 3yf y y x    =0. From the first equation, we have

20 3 6 3 ( 2 )x xy x x y    , so that at a critical point, 0x   or 2x y  .  

Substituting 0x   into the second equation, we have 
3 20 4 8 4 (1 2 )y y y y      . 

The only (real) solution of this equation is 0y  . This says that for 0x  , we have only 

one critical point:  0,0 .  

Substituting 2x y  into the second equation, we have 
3 2 20 4 8 3( 2 ) 4 (1 2 3 ) 4 (2 1)( 1)y y y y y y y y y             . The solutions of this 

equation are 
1

0,
2

y y   and 1y   , with corresponding critical points 
1

(0,0), ( 1, )
2



and  2,1 .  

To classify the critical points, we compute the second partial derivatives, 

 23 6 6 6xxf x xy x y
x


   


   3 2 24 8 3 4 24yyf y y x y
y


      


 , and 

 23 6 6xyf x xy x
y


  


 , and evaluate the discriminant at each critical point. We 

have (0,0) 0D  , 
1

1, 6 0
2

D
 
    
 

  and ( 2,1) 24 0D     . From Theorem 2, we 

conclude that f has a saddle point at 
1

1,
2

 
 
 

 , since 
1

1, 6 0
2

D
 
    
 

. Further, f has a 

local maximum at  2,1  since ( 2,1) 24 0D    and  2,1 3 0xxf      . Unfortunately, 

Theorem 2 gives us no information about the critical point (0,0) , since (0,0) 0D  . 

However, notice that in the plane 0y   we have 
3( , )f x y x  .  In two dimensions, the 

curve 
3z x  has an inflection point at 0x   . This shows that there is no local 

extremum at  0,0  . 
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The surface near  0,0  

 
 

The surface near  2,1  

 

The surface near 
1

1,
2

 
 
 

 

 
 
 
Definition4 

We call ( , )f a b  the absolute maximum of f  on the region R  if ( , ) ( , )f a b f x y  for 

all ( , )x y R . Similarly, ( , )f a b  is called the absolute minimum of f  on R  if

( , ) ( , )f a b f x y for all ( , )x y R . In either case, ( , )f a b  is called an absolute 

extremum of f . 
 
Theorem 3 (Extreme Value Theorem) 

Suppose that ( , )f x y  is continuous on the closed and bounded region 
2R   . 

Then f  has both an absolute maximum and an absolute minimum on R .  Further, 

an absolute extremum may only occur at a critical point in R  or at a point on the 

boundary of R . 
 

12.11 Constrained Optimization and Lagrange Multipliers 
 

In this section, we develop a technique for finding the maximum or minimum of a 
function, given one or more constraints on the function’s domain. 
 
Theorem1 

Suppose that ( , , )f x y z  and ( , , )g x y z  are functions with continuous first partial 

derivatives and ( , , ) 0g x y z   on the surface ( , , ) 0g x y z  . Suppose that either 

the minimum (or the maximum ) value of ( , , )f x y z  subject to the constraint 

( , , ) 0g x y z   occurs at  0 0 0, ,x y z . Then    0 0 0 0 0 0, , , ,f x y z g x y z   , for 

some constant   (called a Lagrange multiplier). 
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Remark1 

 Note that Theorem 1 says that if ( , , )f x y z  has an extremum at a point

 0 0 0, ,x y z  on the surface ( , , ) 0g x y z  ,  we will have for 

   0 0 0, , , ,x y z x y z , 

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) 0

x x

y y

z z

f x y z g x y z

f x y z g x y z

f x y z g x y z

g x y z














 

 

 
            Finding such extrema then boils down to solving these four equations for the four  

            unknowns , ,x y z  and   . 

 

 Notice that the Lagrange multiplier method we have just developed can also be 
applied to functions of two variables, by ignoring the third variable in Theorem1. 

That is, if ( , )f x y  and ( , )g x y  have continuous first partial derivatives and 

 0 0,f x y  is an extremum of f , subject to the constraint ( , ) 0g x y  , then we 

must have 0 0 0 0( , ) ( , )f x y g x y   ,for some constant   .In this case, we end 

up with the three equations ( , ) ( , ), ( , ) ( , )x x y yf x y g x y f x y g x y    and 

( , ) 0g x y  , for the three unknowns ,x y and  . 

 
Example 1 (Finding a Minimum Distance) 
 

Use Lagrange multipliers to find the point on the line 3 2y x   that is closest to the 

origin. 
 
Solution 

 For
2 2( , )f x y x y  , we have ( , ) 2 ,2f x y x y    and for ( , ) 2 3g x y x y   , 

we have ( , ) 2 ,1g x y    . The vector equation ( , ) ( , )f x y g x y    becomes 

2 , 2 2 ,1x y       from which it follows that 2 2x   and 2y  . 

The second equation gives us 2y  . The first equation then gives us 2x y  .  

Substituting 2x y  into the constraint equation 3 2y x  , we have 5 3y  . 

The solution is 
3

5
y   , giving us 

6
2

5
x y  . The closest point is then

6 3
,

5 5

 
 
 

. 

 
Example 2 (Optimization with an Inequality Constraint) 
 

Suppose that the temperature of a metal plate is given by 
2 2( , ) 2T x y x x y   , for 

points  ,x y  on the elliptical plate defined by 
2 24 24x y  . Find the maximum and 

minimum temperatures on the plate. 
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Solution  

The plate corresponds to the shaded region R  shown in Figure 1.  

 
Figure 1: A metal plate. 

 

We first look for critical points of ( , )T x y  inside the region R .  We have 

( , ) 2 2 , 2 0,0T x y x y        if ( , ) ( 1,0)x y   , which is in R . At this point, 

( 1,0) 1T    . We next look for the extrema of ( , )T x y on the ellipse 
2 24 24x y  . 

We first rewrite the constraint equation as 
2 2( , ) 4 24 0g x y x y    . From 

Theorem 1, any extrema on the ellipse will satisfy the Lagrange multiplier equation: 

( , ) ( , )T x y g x y    or 2 2,2 2 ,8 2 ,8 .x y x y x y             

This occurs when 2 2 2x x   and 2 8y y .  

Notice that the second equation holds when 0y   or 
1

4
   .  

If 0y  , the constraint 
2 24 24x y  gives 24x    . 

If 
1

4
  , the first equation becomes 

1
2 2

2
x x  so that 

4

3
x    . The constraint 

2 24 24x y   now gives 
50

3
y    .  

Finally, we compare the function values at all of these points (the one interior critical 
point and the candidates for boundary extrema): 

and ( 1,0) 1, ( 24,0) 24 24 33.8, ( 24,0) 24 2 24 14.2T T T            

4 50 14 4 50 14
, 4.7, , 4.7

3 3 3 3 3 3
T T
   
            
   

 . 

From this list, it’s easy to identify the minimum value of 1  at the point  1,0   and the 

maximum value of 24 2 24  at the point  24,0  . 

 
We close this section by considering the case of finding the minimum or maximum 

value of a differentiable function ( , , )f x y z  subject to two constraints ( , , ) 0g x y z   and

( , , ) 0h x y z  , where g  and h  are also differentiable (see Figure 2 below). 
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Figure 2: Constraint surfaces and the plane determined  

by the normal vectors g  and h . 

 
The method of Lagrange multipliers for the case of two constraints then consists of 

finding the point ( , , )x y z  and the Lagrange multipliers   and   (for a total of five 

unknowns) satisfying the five equations defined by: 
 

( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , )

( , , ) 0 & ( , , ) 0

x x x

y y y

z z z

f x y z g x y z h x y z

f x y z g x y z h x y z

f x y z g x y z h x y z

g x y z h x y z

 

 

 

 


 


 
  

. 

 
 
Example 3 (Optimization with Two Constraints) 

The plane 12x y z    intersects the paraboloid 
2 2z x y   in an ellipse. Find the 

point on the ellipse that is closest to the origin. 
 
Solution  
We illustrate the intersection of the plane with the paraboloid in Figure 3.  
 

 
Figure 3: Intersection of a paraboloid and a plane. 
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Observe that minimizing the distance to the origin is equivalent to minimizing 

2 2 2( , , )f x y z x y z     [the square of the distance from the point ( , , )x y z  to the 

origin]. Further, the constraints may be written as ( , , ) 12 0g x y z x y z      and 
2 2( , , ) 0h x y z x y z     . At any extremum, we must have that 

( , , ) ( , , ) ( , , )f x y z g x y z h x y z       or 

2 ,2 ,2 1,1,1 2 ,2 , 1x y z x y           . 

Together with the constraint equations, we now have the system of equations: 

2 2

2 2 (1)

2 2 (2)

2 (3)

12 0 (4) & 0 (5)

x x

y y

z

x y z x y z

 

 

 

 


 


 
       

 

From (1), we have 2 (1 )x   , while from (2), we have  2 1y    . 

Setting these two expressions for   equal gives us    2 1 2 1x y     , 

from which it follows that either 1   (in which case 0  ) or x y .  However, if 

1   and 0  , we have from (3) that z = −12, which contradicts (5). 

Consequently, the only possibility is to have x y , from which it follows from (5) that  
22z x . Substituting this into (4) gives us:

  2 20 12 2 12 2 2 12 2 3 2x y z x x x x x x x               , so that 3x    

or 2x   . Since y x  and 
22z x  , we have that  2,2,8  and  3, 3,18   are the 

only candidates for extrema. Finally, since  2,2,8 72f   and  3, 3,18 342f    ,  

the closest point on the intersection of the two surfaces to the origin is  2,2,8  . By the 

same reasoning, observe that the farthest point on the intersection of the two surfaces 

from the origin is ( 3, 3,18)   . 

 

 


