12.1 Functions of several variables

Definitionl

A function of two variables is a rule that assigns a real number f (x,y) to each
ordered pair of real numbers (X Y ) in the domain of the function.

For a function f defined on the domain D < R?, we sometimes write f :D c R> > R
to indicate that f maps points in two dimensions to real numbers.

Likewise, a function of three variables is a rule that assigns a real number f (x,y,z)
to each ordered triple of real numbers (x Y,z ) in the domain D = R? of the function.

We sometimes write f : D < R®* - R to indicate that f maps points in three dimensions
to real numbers.

cos(X +2)

For instance, f (x,y,z)= and g(x,y,z)=x%y —e* are both functions of

the three variables x,y and z .

Example 1 (Finding the Domain of a Function of Two Variables)

Find and sketch the domain for
@ f (x,y)=xIny.

2
(b) g(x,y)=—2— .
y—X

Solution:
(@ For f (x,y)=xIny ,recallthat Iny is defined only for y >0 . The domain of f is

then the set D = {(x Y)eR? |y > O} , that is, the half-plane lying above the x -axis
(see Figure 1).

Figurel: the domain of f (x,y)=xIny
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(b) g(x,y)= 2 >, note that g is defined unless there is a division by zero, which
y —X
occurs when y —x > =0. The domain of g is then D :{(x,y) eR?|y #x 2} , which is

the entire xy -plane with the parabola y =X *removed (see Figure 2).
y
F

2X

2

Figure2: the domain of g(x,y) =

Example 2(Finding the Domain of a Function of Three Variables)

Find and describe in graphical terms the domains of

(a) f (X1y,z):M.

(b) g(x,y,z)=\/1—x2—y2—z2 :
Solution

cos(X +2)

(@) For f (x,y,z)= , there is a division by zero ifxy =0 , which occurs if

X =0 or y =0 . The domain is then D :{(x,y,z)eR3|x #0&y ¢O},Which is all

of three-dimensional space, excluding the yz -plane (X =0) and the xz -plane (y =0).

(b) Notice that for g(x,y,z) = \/l—x Z_y %72 to be defined, you'll need to

have 1-x?—-y?-2z%>0, 0or x*+Yy®+2?<1. The domain of g is then the unit sphere
of radius 1 centered at the origin and its interior (see Figure 3).
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Figure3: the domain of g (x ,y,z)=J1—x Zoy?-z°?

Definition 2
The graph of the function f (x, y) is the graph of the equation z = f (X, y).

Example 3 (Graphing Functions of Two Variables)

Graph (@) f (x,y)=x?+y?and (b) g(x,y)=+/4-x2+y? .

Solution

(a) For f (x,y)=x%+Yy?, you may recognize the surface z =x°+y’asa

circular paraboloid. Notice that the traces in the planes z =k >0 0 are circles, while the
traces in the planes x =k and y =k are parabolas. A graph is shown in Figure 4 .

"“‘7#—-_/_

(S

Figure 4: Graph of z =x2+y?
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(b) Forg(x,y)=+4—-x2+y?, note that the surface z =\/4—x2+y? is the top half of

the surface z°=4—-x*+y? or x> —y?+z% =4. Here, observe that the traces in the
planes X =k and z =k are hyperbolas, while the traces in the planes y =k are
circles. This gives us a hyperboloid of one sheet, wrapped around the y -axis. The
graph of z =g (x,y) is the top half of the hyperboloid, as shown in Figure 5.

A

5

T —/._’ v
4 -

Figure 5: Graph of z =/4—x?+y?

Definition 3

A level curve of the function f (x,y) is the (two-dimensional) graph of the equation

f (x,y)=c, for some constant C . (So, the level curve f (x,y)=c is a two-dimensional
graph of the trace of the surface z =f (x,y) in the plane z =c.)

A contour plot of f (x,Yy)is a graph of numerous level curves f (x,y)=c, for
representative values of C .

Example 4 (Sketching Contour Plots)

Sketch contour plots for (@) f (x,y)=—x2+y and (b) g(X,y)=x>+y?.

Solution

(a) First, note that the level curves of f (x,y) are defined by —x>+Yy =c ,where C is a
constant. Solving for y , you can identify the level curves as the parabolas y =X “tC.
A contour plot with ¢ =—4,-2,0,2 and 4 is shown in Figure 6.
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Figure 6: Contour plot f (X,y)=-Xx’+y

(b) The level curves for g(x,y) are the circles x> +Yy? =c . In this case, note that
there are level curves only for ¢ >0 . A contour plot with ¢ =1,4,7 and 10 is shown in

Figure7.

Figure 7: Contour plot g(X,y)=x>+y?

12.2 Limits of Functions in Several Variables

Definition 1 (Formal Definition of Limit)
Let f be defined on the interior of a circle centered at the point (a,b), except possibly

at (a,b) itself. We say that ( I)lrrg b)f (x,y)=L if for every £ >0 there existsa ¢ >0
X,y )—a,

such that| f (x,y)—L|<e& whenever O<\/’(x —a)’+(y -b)* <o .
We illustrate the definition in Figure 1.
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Figure 1: Limit of a Function of Two Variables
Remark 1
The definition of the limit of a function of three variables is completely analogous to the
definition for a function of two variables. We say that  lim )f (x,y,z)=L,ifwe

(x,y.z)>(ab.c
can make f (x,y,z) as close as desired to L by making the point (x,y,z) sufficiently
close to (a,b,c).

Example 1 (Finding a Simple Limit)

2
Evaluate lim zxyzﬂ :
(xy)=>(21) 5xy “ +3y
Solution
First, note that this is the limit of a rational function (i.e., the quotient of two polynomials).
Since the limit in the denominator is

2
lim 5xy?+3y =13#0, we have lim nyzﬂzE
(y)>(2) (xy)>21) 5xy “+3y 13

Remark 2

- We can show that the limit of any polynomial always exists and is found simply by
substitution.

- We can show that the limit of any rational function at a point in its domain always exists
and is found simply by substitution.

Theorem 1

Iff (x,y) approaches L, as (X,y ) approaches (a,b) along a path P, and f (x,y)
approaches L, =L, as (x,y ) approaches (a,b) along a path P, , then
lim f(x,y)d t exist.
o™ ) (x,y) does not exis
Remark 3

Unlike the case for functions of a single variable where we must consider left- and
right-hand limits in two dimensions, instead of just two paths approaching a given point,
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there are infinitely many (and you obviously can’t check each one individually).
In practice, when you suspect that a limit does not exist, you should check the limit along
the simplest paths first (Figure 2).

(3 (1) (3)/

p A Y
(2) - (2)

@/ @)

(1)

Figure 2: Various paths to (a,b)

Example 2 (A Limit That Does Not Exist)

Evaluate lim L.
oy X +y =1
Solution
First, we consider the vertical line path along the line x =1 and compute
the limit as y approaches 0 0. If (x,y)— (1,0) along the line x =1, we have

lim—Y =1,
y-0l+y -1
We next consider the path along the horizontal line y =0 and compute the limit as
X approaches 1 . Here, we have IimL =0
x-1x +0-1

Since the function approaches two different values along two different paths to the point
(1, 0), the limit does not exist.

Example 3 (A Limit that is the same along two paths but Does Not EXxist)

. X
Evaluate lim 5 y >
(xy)>(00) X “ +y

Solution

. . - : 0
First, we consider the limit along the path x =0 . We have ImgW =0.
y > +y
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Similarly, for the path y =0 , we have lim—; 0 =0.

x—=>0 X < 4
Be careful; just because the limits along the first two paths you try are the same does not
mean that the limit exists. For a limit to exist, the limit must be the same along all paths

through (0, 0) (not just along two). Here, we may simply need to look at more paths.
2

. . . . mx m
Notice that for the path y =m x with m € R" , we have lim > = >
20x?4+(mx )" 1+m

Since the limit along this path depends of m , the limit does not exist.

Example 4 (A Limit Problem Requiring a More Complicated Choice of Path)

2
. X
Evaluate lim %
(xy)>(00) X “ 4y

Solution
Notice that for the path x =m y ? with m e R (pass through the origin point (0,0) ), we

have

i my * m
ILT(]) 2\? 4= 241
Py oy

Since the limit along this path depends of m , the limit does not exist (see Figure 3).

<
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% for -5<x <5 and -5<y <5
X +y

Figure 3: the surface ofz =

Theorem 2
Suppose that |f (x,y)-L |S g(x,y) forall (X Y ) in the interior of some circle
centered at (a,b), except possibly at(a,b) .
If lim g(x,y)=0,then Ilim f(x,y)=L.
) (x.y)—>(ab)

(x.,y)—>(ab
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Example 5 (Proving That a Limit Exists)

X
Evaluate lim = y
(x,y)—(0,0) ¥ y
Solution
As we did in earlier examples, we start by looking at the limit along several

paths through (0,0).

2

Along the path X =0, we have |lim — y >=0.
(0,y)—(0,0) 0 +y

2
. x<.0
Similarly, along the path y =0 , we have |Iim ———=0
y 9 P y (x,0)—(0,0) X 2 + 02

Further, along the path y =m x (with m a real number), we have
X “mx . mX
lim ————=Iim 5
(cm)->(00) X © 4+ (Mx )= x-01+m
We know that if the limit exists, it must equal 0. After simplifying the expression, there
remained an extra power of X in the numerator forcing the limit to 0. To show that the

X2y
X2+y?

=0.

limit equals 0, consider |f (x,y)-0|=

Notice that without the y 2 term in the denominator, we could cancel the x ? terms.

. 2 2 2 X2y | X y|
Since x*+y?2x?, we have thatforx =0, |f (x,y)-0|=|— ‘_ ‘S|y|.
X2ty
xzy
Since I|m |y|_0 Theorem 2 gives us  lim >=0, also.

(x, (x,y)—(0,0) X +y

12.3 Continuity of functions in two or three variables

Definition 1
Suppose that f (x,Yy) is defined in the interior of a circle centered at the point(a,b) .

We say that f is continuous at (a,b) if( I)mg b)f x,y)=f (a,b).
X,y )—(a,

If f (x,y) is not continuous at(a,b), then we call (a,b) a discontinuity of f .

We say that a function f (x,y)is continuous on aregion R ifitis continuous at each
pointin R .

Remark 1

- The definition of the continuity of a function of three variables is completely analogous
to the definition for a function of two variables:
Suppose that f (x,y,z) is defined in the interior of a sphere centered at (a,b,c).We

say that f is continuous at (a,b,c) if ( I;m( . )f (x,y,z)=f (a,b,c)
X,y,z)—>@n,.c
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If f (x,y,z) is not continuous at (a,b,c) , then we call (a,b,c) a discontinuity of f .
- Notice that because we define continuity in terms of limits, we immediately have the

following results, which follow directly from the corresponding results for limits. Iff (x,y)
and g(x,y) are continuous at (a,b),thenf +g ,f —g and f -g are all continuous

f : - »
at (a,b) . Further, — is continuous at (a,b) , if, in addition, g(a,b) =0.
g
Example 1(Determining Where a Function of Two Variables Is Continuous)

Find all points where the given function is continuous:

(@) f (X,y)=—— .

X° -y

() g(x,y)=1x(x*+y?)
0, (x,y)=(0,0)

(x,y)#(0,0)

Solution

- For (a), notice that f (x , y) is a quotient of two polynomials (i.e., a rational function)
and so, it is continuous at any point where we don'’t divide by 0. Since division by zero
occurs only when y =x?, we have that f is continuous at all points (x , y) with

y #X2.

- For (b), the function g is also a quotient of polynomials, except at the origin. Notice
that there is a division by 0 whenever X =0. We must consider the point (0,0)

separately, however, since the function is not defined by the rational expression there.
We can verify that ( I;ngo ) g(x,y)=0=g(0,0) using the following string of
X,y )=,

inequalities. Notice that for (x,y ) #(0,0),

x4 X

|
x(x2+y2)‘ x(xz)‘

and |x [ >0 as (x,y)—>(0,0).Wededucethat( I)irrzoo)g(x,y)=0=g(0,0),sothat
X,y )=,

4

g (¢, y)[= . =[x]

g is continuous at (0,0). Putting this all together, we get that g is continuous at
the origin and also at all points (x,y) with x #0.

Theorem 1
Suppose that f (x,y) is continuous at (a,b) and g(x) is continuous at the point
f (@,b). Then h(x,y)=g-f (x,y)=9g(f (x,y)) is continuous at (a,b).

Example 2 (Determining Where a Composition of Functions Is Continuous)

2
Determine where f (x,y)=e* "’ is continuous?
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Solution

Notice that f (x,y)=g(h(x,y)), where g(t)=e' and h(x,y)=x?%y . Since

g is continuous for all values of t and h is a polynomial in x and y (and hence
continuous on R? ) , it follows from Theorem 1 that f is continuous on R? .

Example 3

Determine where h(x,y)=tan™ (lj is continuous ?
X

Solution

- The function f (x,y) == is a rational function and therefore continuous except on the

Yy
X
line x =0 .

- The function g (t) =tan™t is continuous everywhere.

It follows from Theorem 1 that h is continuous on R? \{x = O} (see Figurel).
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Figurel: the figure shows the break in the graph of h(x,y)=tan™ (lJ above the y-
X

axis

Example 4

2
T xy)#(00)
Determine wheref (X,y)=<X"+Yy is continuous?
0, (x,y)=(00)

Solution

We know f is continuous for(x,y ) #(0,0). Since it is equal to a rational function there.

2
Also we have lim 32)( y >=0=f(0,0). Thus f is continuous at (0,0).
(x.y)=>(0.0) X “ +y

So f is continuous on R? (see Figure 2).
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ﬂ(x y)=(0,0)
Figure2: Graphof z =f (x,y)=<x%+y? "’ Y

0, (x,y)=(0,0)

Example 5

Xy
(X,y)=(0,0
Determine wheref (x,y) = X2+y2 ( y) ( )

0. (x,y)=(0,0)

is continuous?

Solution
We know f is continuous for(x,y ) #(0,0). Since itis equal to a rational function

. X
there. Also we have lim 5 y
(x,y)—>(0,0) X < + y

> does not exist. Thus f is not continuous at (0,0).

So f is continuous on R*\{(0,0)} (see Figure3).
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Xy
X,y )=(0,0
Figure3: Graphof z =f (x,y) = X2+y2( y)#( )

0, (x.y)=(0.0)
Example 6 (Continuity for a Function of Three Variables)

Find all points where f (x,y,z)=1In (9—x Zoy?-z 2) is continuous.

Solution

Notice that f (x,y,z) is defined only for 9—x?—y? -z % >0. On this domain, f isa
composition of continuous functions, which is also continuous. So,f is continuous for
X?+y?+12?<9, which you should recognize as the interior of the sphere of radius 3
centered at (0, 0, 0).
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12.4 First-order partial derivatives

In this section, we generalize the notion of derivative to functions of more than one

variable.

First, recall that for a function f of a single variable, we define the derivative function as

f'x)=l

h—0

'mf (x +hr?—f (x)

, for any values of x for which the limit exists.

At any particular value X =a, we interpret f '(@) as the instantaneous rate of change of
the function with respectto x at that point.

Definition 1

The partial derivative of f (x,y) with respectto x , written gi , Is defined by

f(x+h,y)-f (x,y)

& (xy)-!

h
exists.

The partial derivative of f (x,y) with respectto y , written % is defined by,

im
—0

X

, for any values ofx and y for which the limit

%(x Y ) = !]lng Fouy+h)-f (x.y) , for any values of x and y for which the limit
exists.
¥ ¥
F Y F Y
A : b+ hf @b+ h
a.b) |k ] )
b__ ...... M(a —+ "L E}) b.__... doal (ﬂ, b:] ___.'
i I X I X
a a-+h a
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Intersection of the surface z =f (x,y) with
the plane y =b .

The curve z =f (x,b) .

of . :
e —(a,b) gives the slope of the tangent line to the curve at X =a.

OX

- —
i |
I~y
E EEEP}H;* K =
N
NS
SO )
l-_-:: ..rr-;r’-’-r ,' =Y
el

Intersection of the surface z =f (x,y) with
the plane X =a .

The curve z =f (a,y).

. %(a,b) gives the slope of the tangent line to the curve at y =b.

Functions of several variables and differentiation-Math107

Page 2




Remark 1

e To compute the partial derivative gi , you simply take an ordinary derivative
X

, . : - of
with respect to X , while treating y as a constant. Similarly, you compute — by

taking an ordinary derivative with respectto y , while treating X as a constant.

_ e O _ _o _0
. Forz_f(x,y),wewrlteax(x,y)_fx(x,y)_ax(x,y) aX[f(x,y)].

.0 . N .
e The expressmna— is a partial differential operator. It tells you to take the
X

partial derivative (with respect to x ) of whatever expression follows it. Similarly,
we have

%(X,y)=fy(X,y)=gy—Z(X,y)=§[f (x.y)].

Example 1 (Computing Partial Derivatives)

Forf (x,y)=3x2+x°y +4y? , compute ?—(x,y),%(x,y),fx(l,O) and f(2,-1).
X
Solution

f .
Computeg— by treating y as a constant. We have
X

of 0 2 3 2 2

—X,y)=—|3&x“+x°y +4 =6X +3X ‘Y.

== y +4y?] y

The partial derivative of 4y ? with respectto x is 0 , since 4y’ is treated as if it were a
constant when differentiating with respect to x . Next, we compute% by treating x as

a constant. We have

of 0
—(x,y):—[3x2+x3y +4y2}:x3+8y.
oy oy

Substituting values for x and y ,weget f, (1,0)= gf—(l, 0)=6 and
X

of
f y 2,-1) = 5(2, -1) =0.
Remark 2

Since we are holding one of the variables fixed when we compute a partial derivative,
ou ov 0 ou ov

we have the product rules: i(uv) =—vV+Uu—and —(@UV)=—V +U—
OX OX OX oy oy oy
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ou ov

o(u) ax’ Yo
and the quotient rule: —(—j o S )

ox \v v 2

with a corresponding quotient rule holding for%(gJ =
Vv

Example 2 (Computing Partial Derivatives)

For f (x,y)=e" X , compute a and i
y OX

oy

Solution
For y #0 , we have i(x,y):i e” + X =yeY +£. Also,
OX OX y y

oy oy

Example 3 (Computing Partial Derivatives)

i(x,y)=i{exy +£}=x e -2
y y

For f (x,y,z)=sin(x*y>2)+xy Inz , compute a , N and i

ox oy 0z
Solution
For z >0, we have

af a H 2,3 3 2.,3
&(x,y,z)za[sm(x y°z)+xy Inz]=2xy z cos(x 2y °z)+y Inz.
Also,

of or..
—(x,y,z2)=—]|sin(x?y3z )+xy Inz |=3x°y?z cos(x’y’z)+x Inz.
And, Zf—z(x,y,z)=a%[sin(x2y3z)+xy Inz}=x2y3cos(x2ysz)+xz—y.

12.5 Higher-order partial derivatives

Notice that the partial derivatives found in the preceding examples are themselves
functions of two variables. We have seen that second- and higher-order derivatives of
functions of a single variable provide much significant information. Not surprisingly,
higher-order partial derivatives are also very important in applications.

For functions of two variables, there are four different second-order partial derivatives.

The partial derivative with respect to x of i is i(&f_) , usually abbreviated as
X

OX OX OX
or f . Similarly, taking two successive partial derivatives with respectto y gives us

XX

i(ijzazf _
ay ay ayz yy *
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For mixed second-order partial derivatives, one derivative is taken with respect to

each variable. If the first partial derivative is taken with respectto x , we havei(zf—),
X

2
abbreviated as

, or (1‘X )y =f . If the first partial derivative is taken with respect

Oy OX Y

toy , we have i i , abbreviated as , or (fy) =fyX )
ox \ oy ox oy X

Example 1 (Computing Second-Order Partial Derivatives)
Find all second-order partial derivatives of f (X,y)=x2y —y*+Inx .

Solution
We start by computing the first-order partial derivatives: For x >0 ,

i(x,y):2xy +1 and af—(x,y)=x2—3y2. We then have
OX X oy

o%f o (of d 1 1
(x,y)z—(—jz—(ny +;)=2y — 7

ox 2 ox \ox ) ox
2
of (X,y)zi(ijzi(ZXy+lj=2X’
Oy OX oy \ox ) oy X
2
ot (X,Y)Zi a Zi(xz—3y2):2x,
OX oy ox\oy ) ox
o°f o ( of 0
and finally, —(x,y):—(—j:_ x?-3y?)=-6y.
oy * oy \ oy ay( )
Remark 1
o o°f o°’f .
Notice in example 1 that x,y)= (x,y). It turns out that this is true for
oy oX ox oy

most, but not all, of the functions that you will encounter.

Theorem 1
If f,,(x,y) and f , (x,y) are continuous on an open set containing (a,b), then

f,@b)=f,(@b).
Example 2 (Computing Higher-Order Partial Derivatives)

For f (x,y)=cos(xy)—x>+y*  compute f  andf, .

Solution

We have f :ai(cos(xy)—x3+y4):—y sin(xy ) —3x .
X
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Differentiating f, with respectto y gives us

f :g(—y sin(xy ) —3x *) = —sin(xy ) —xy cos(xy ) and

fry = %(—sin(xy ) —Xy cos(xy))

= —X COS(Xy ) —X cos(xy ) +X °y sin(xy )
= —2X Cos(Xy ) +X 2y sin(xy ).
Finally, we have

a -
Faw = E(_ZX cos(xy ) +x *y sin(xy ))

=2x2sin(xy ) +x 2sin(xy ) +x *y cos(xy )
=3x *sin(xy ) +x y cos(xy ).

Example 3 (Partial Derivatives of Functions of Three Variables)

3 2 :
Forf(x,y,z):«/xy Z +4x°y , defined for x,y,z >0, compute f, ,f, andf .

X iy

Solution
Tokeep x ,y and z as separate as possible, we first rewrite f as

f(x,y,2)=x2y 22 /2 1ax?y .
To compute the partial derivative with respectto x , we treat y and z as constants
and obtain f, =ai[x %y%z %2 +4x %y } =(%x %jy%z %2 +8xy .
X
Next, treating X and z as constants, we get
fy _9 lx_%y%z%+8xy I EN Ey}/2 272 4 8x.
oy |2 2 2
Finally, treating x and y as constants, we get
Xz :i Exf%y%z%+8x — le% §y%j lz%}
oz | 4 2 2 2
_ gx oy Yoy .
Notice that this derivative is defined for x,z >0 andy >0 . Further, you can show that

all first-, second- and third-order partial derivatives are continuous for x,y,z >0, so
that the order in which we take the partial derivatives is irrelevant in this case.

12.6 Tangent planes and Linear approximations

Recall that the tangent line to the curve y =f (x) at X =a stays close to the curve near

the point of tangency. This enables us to use the tangent line to approximate values of
the function close to the point of tangency (see Figure 1).
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v = fila) + f'la)ix — a)

Figurel: Linear approximation.

The equation of the tangent line is given by: y =f (&) +f '(@)(x —a) . We called this the
linear approximationto f (x) at X =a.

In much the same way, we can approximate the value of a function of two variables
near a given point using the tangent plane to the surface at that point. For instance, the

graph of z =6—x?—y? and its tangent plane at the point (@,2,1) are shown in Figure 2.

Figure2: z =6—x°—y? and the tangent plane at (1,2,1).

Notice that near the point (1,2,1), the surface and the tangent plane are very close

together.
Theoreml
Suppose that f (x,y) has continuous first partial derivatives at (a,b). A normal

vector to the tangent planeto z =f (x,y)at (a,b) is then (fx(a,b),fy(a,b),—l) .

Further, an equation of the tangent plane is given by
z —f (a,b)=f, (@,b)(x —a)+f, (a,b)(y —b) or

z =f (@,b)+f, (@a,b)(x —a)+f, (a,b)(y —b).

Remark1l
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e Avector normal to the plane is then given by the cross product:
0, Lf,(@b)) x (0f,(ab)1)=(f, (ab)f,(@b)-1).
e The line orthogonal to the tangent plane and passing through the point
x =a+tf, (ab)
(a,b,f (a,b)) isgivenbyqy =b+t f (a,b) .
z =f (a,b)-t

This line is called the normal line to the surface at the point (a, b,f (a,b)).
Examplel (Finding Equations of the Tangent Plane and the Normal Line)

Find equations of the tangent plane and the normal line to z =6—-x*—y? at the point
(1, 2,1) .

Solution

For f (x,y)=6-x*—y?, wehave f, =-2x and f, =—2y . This gives us
f,(1,2)=-2 and f (1,2) =—4. So a normal vector is then (-2,—4,-1) .

An equation of the tangent plane is: z =1-2(x —-1)—4(y —2).

X =1+2t
Equations of the normal line are {y =2-4t, telR.
z =1-t

A sketch of the surface, the tangent plane and the normal line is shown in Figure 3.

Figure3: Surface, tangent plane and normal line at the point (1,2,1).

Example2 (Finding Equations of the Tangent Plane and the Normal Line)

2
. . . X .
Find equations of the tangent plane and the normal line to z =x°+y*+~— at the point

(2.1,13) .
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Solution
2

Here, f, :3x2+2—x and f, :3y2—X— sothat f,(2,1)=12+4=16 and
y y

2

fy (2,1) =3—-4=-1. So a normal vector is then (16, -1, —1) )
An equation of the tangent plane is: z =13+16(x —2)—(y —1).

X =2+16t
Equations of the normal lineare { y =1-t , teR.
z =13-t

A sketch of the surface, the tangent plane and the normal line is shown in Figure 4.

A

Figure4: Surface, tangent plane and normal line at the point(2,1, 13).
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12.7 Increments and Differentials

First, we remind you of the notation that we used for functions of a single variable. We
defined the increment Ay of the function f (x) at X =a tobe Ay =f (a+Ax)—f (a).

Referring to Figure 1, notice that for Ax small, Ay ~dy =f '(@)Ax , where we referred
to dy as the differential of y .

4 v = fla) + filajx — a)

a a+ Ax

AN

Figure 1: Increments and differentials for a function of one variable.

For z =f (x,y), we define the increment of f at (a,b) to be
Az =f (@+Ax,b+Ay)-f (a,b).

“

4

(a.b. f(a. b)) Tangent
® , plane

2=f(x,y) ~<a /
Zo Gy

\?\\c _ [fla.b)

@b.04 5 4~ L
5

dz

ThhE

@+ Ax, b + Ay, 0)

Figure 2: Linear approximation.
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Notice that as long as f is continuous in some open region containing (a,b) and f

has first partial derivatives on that region, we can write:
Az =f (a+Ax,b+Ay)-f (a,b)

=[f (@+Ax,b+Ay)—f (ab+Ay)]+[f @b+Ay)-f (a,b)]
Adding and subtracting f (a,b +Ay ) .
=f, (U.b+Ay)[(a+ax)-a]+f, (@v)[(b+Ay)-b |
Applying the Mean Value Theorem to both terms.
=f, (U,b+Ay)Ax +f (a,v)Ay,

by the Mean Value Theorem. Here, U is some value between a and a+AXx ,andV is
some value between b and b + Ay (see Figure 3). This gives us

Az =f, (u,b+Ay)Ax +f  (a,\v)Ay,

={f, @b)+[f, (b +Ay)-f, (ab)]}Ax +{fy(a,b)+[fy(a,v)—fy(a,b)]}Ay
which we rewrite as Az =f, (a,b)Ax +f (a,b)Ay +&Ax +¢&,Ay , where
&=[f,wb+Ay)-f, (ab)] and & =[f (av)-f, (@b)].

(u, b + Ay)
h £ ‘ﬁ}-__ ....... - L -._j_
[ #lda, r!} _'l.'l.'
[ — s oY
I | X
i U a+ Ax
f—— Ax——]

Figure 3: Intermediate points from the Mean Value Theorem.

We have now established the following result.
Theoreml
Suppose that z =f (x,y) is defined on the rectangular region

R ={(x,y)eR2|x0<x <X, &Y, <Y <y1} and f, and f, are defined on R and
are continuous at (a,b)eR . Then for(a+Ax,b+Ay)eR ,

Az =f, (@,b)Ax +f, (a,b)Ay +&AX +&,Ay where ¢, and ¢, are functions of Ax
and Ay that both tend to zero, as (Ax,Ay ) —(0,0).
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Example 1 (Computing the IncrementAz )
For z =f (x,y)=x?-5xy, find Az .
Solution

We have

Az =f (x +Ax,y +Ay )-f (x,y).
=(X +AX )2 —5(x +Ax )(y +Ay )—[x2—5xy].
=X % +2X AX +(Ax )2—5(xy +X AY +Yy AX +AX Ay )—X * +5xy
=(2x —5)Ax +(=5x ) Ay +(AX ) Ax +(-5AX )Ay.
=f, (X, y)Ax +f (X,y) Ay +5AX +&,Ay,
where & =Ax and &, =—5Ax both tend to zero, as (Ax,Ay ) —(0,0).
Example 2
Let z =f (X,y)=3x?—xy.
(@) If Ax and Ay are increments of X and y , find Az .
(b) Use Az to calculate the change in f (x,y) if (x,y ) changes from (1,2) to

(1.01,1.98) .

Solution
(a) We have

Az =f (x +Ax,y +Ay )-f (x,y).
=3(x +Ax )" —(x +Ax)(y +Ay)—[3x2—xy].

=3X*+6X AX +3(AX )2—(xy +X Ay +Y AX +AX Ay )—3x * +Xy
=(6x —y )AX +(—x ) Ay +(3AX )Ax +(-Ax )Ay.
=f, (X, y) Ax +f (X,y) Ay +£AX +&,Ay,
where g =3Ax and & =—Ax both tend to zero, as (Ax,Ay ) —(0,0).
(b) If (x,y ) changes from (1,2) to (1.01,1.98), substituting x =1,y =2, Ax =0.01,
and Ay =-0.02 into the formula for Az gives us
A7 = [6(1) - 2] (0.01) — (1)(- 0.02) +3(0.01)> — (0.01)(— 0.02) = 0.0605.

Remark1l
If we increment x by the amount dx = AX and increment y by dy = Ay , then we

define the total differential of z tobe dz =f, (x,y)dx +f (x,y)dy .
Definition1
Let z =f (x,y). We say that f is differentiable at (a,b) if we can write

Az =f, (@,b) Ax +f,(a,b) Ay +&£AX +&,Ay, where ¢ and ¢, are both functions of
Ax and Ay and &,&, —0 ,as (Ax,Ay )—(0,0). We say that f is differentiable on

aregion R = R? whenever f is differentiable at every pointin R .
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Definition2

The linear approximation tof (x,y,z) at the point (a,b,c) is given by

L(x,y,z)=f (a,b,c)+f, (a,b,c)(x —a)+f (a,b,c)(y —-b)+f,(ab,c)(z —c).
Example 3

The dimensions of a closed rectangular box are measured as 3 feet, 4 feet, and 5 feet,
with a possible error of i% inch in each measurement. Use differentials to approximate
the maximum error in the calculated value of

(a) The surface area.

(b) The volume.

Solution

(a) The surface areais S = 2(Xy +YZ +X2 ) So

dS =2(y +z)dx +2(X +z)dy +2(Xx +y)dz.

_+_
As dx =dy =dz :ii inch:ii feet, we get dS = (18+16+14) _—1j:il feet?.
16 192 192

(b) The volumeisV =xy z .So

dV =yz dx +xz dy +xy dz

+
_—1j = +ﬂ feet®.
192

:(20+15+12)( +
192

12.8 Chain Rule and Implicit Differentiation

The general form of the chain rule says that for differentiable functions f and g ,

;—X[f (9())]=f "(90(x))g'(x).

We now extend the chain rule to functions of several variables.

Theorem1 (Chain Rule)

If z=f (x(t),y(t)), where x(t) and y (t) are differentiable and f (x,y) is a

differentiable function of X and y , then

Functions of several variables and differentiation-Math107 Page 4



d d of d
éza[ (x@).y ®))]= (x(t)y(t))—+5( (t)y(t))%.
I=J{x,vy)
dz .I %
ox Jy
X v
dx dy
dt di
I I

d_adx ady
dt  ox dt oy dt

Examplel (Using the Chain Rule)

Forz =f (x,y)=x%",x(t)=t>-1 and y (t) =sint , find the derivative of
g)=f (x(t),y®)) .

Solution
. . . 62 y az 2 y 1 1
We first compute the derivatives a—=2xe : 5:x e’ ,x'(t)=2t and y '(t) =cost .
X
The chain rule (Theorem1l) then gives us
g'(t ()_a_Zd_X a_Zd_y_zxey(zt)+x2ey(cost)
ox dt oy dt .

= 4t (t2 ~1)e"™ +(cost ) (t2 ~1) e

Theorem2 (Chain Rule)
Suppose that z =f (x,y) ,where f is adifferentiable function of x and y and

where X =x (s,t) and y =(s,t) both have first-order partial derivatives. Then we
0z 07 oX 8_z@anda_z 0z OX. azay

have the chain rules: —=——+
oS OX 0s oy os ot ox ot 6yat
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9z L 9z
ox dy
X ¥
d9x Ldx  dy ay
ds at  ds \dt

]

Example 2 (Using the Chain Rule)

Suppose that f (x,y)=e", x (u,v)=3usinvand y (u,v)=4"u. For

gyv)=f (x@\v),y,y)), find the partial derivativesg—g and gv—g :
u

of =xe ,%:3sinv and

Solution
We first compute the partial derivatives — =ye* , — =
OX oy ou

5 4y ? . The chain rule (Theorem 2) gives us
u
ou oOX ou oy ou

Substituting for X and y , we get

0 ) 24 .
9 _12uv Zsinv e L 120y Zsiny e

u
12u% ?sinv

= 24uv %sinv e
For the partial derivative of g with respecttoV , we compute — =3u cosv and

oy

12u% 2sinv

8uv . Here, the chain rule gives us :

og ot ox ooy _ ye™ (3ucosv )+xe™ (8uv ).

N X OV Yy ov
Substituting for x and y , we have : a—g=(12u2v2cosv +24u siny Je! s

%y

Example 3 (Converting from Rectangular to Polar Coordinates)

Page 6
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For a differentiable function f (x,y) with X =rcos@ and y =rsind , show that
f,=f, cos@+f, sing and f =f, cos’6+2f  cos@sind+f  sin’6 .
Solution

First, notice that Z—X =Co0sd and% =sin@. From Theorem 2, we now have
r r
OX oy .
fr :fx g-f-fy Ezfx C059+fy Sln6’ .

Be very careful when computing the second partial derivative. Using the expression we
have already found for f_and Theorem2, we have

0 0 .
f :a_r(f’):a_r(fx cosf+f, sind)

0 0 .
:a_r(fx cosé?)+a—r(fy sing)

0 oXx 0 oy 0 ox O oy | .
L A N L AT A
{8x( X)ar +ay( x)ar}cose{ax( y)ar +ay( y)ar}sme
=[f, cos@+f, sind|cosd+[f,, coso+f, sind|sing

=f, cos’0+2f sinfcosd+f  sin’é.

Implicit Differentiation
e Suppose that the equation F(x,y) =0 defines y implicitly as a function of x ,

say y =f (x).Weletz=F(x,y), where x =t and y =f (t). From
dz dx dy

Theoreml, we have — =F, d_t+ Fy d_t But, since z =F(x,y) =0, we have
d_z =0. Further, since x =t , we haved—x =land d_y = dl This gives us
dt dt dt dx
dy . . dy . .
0=F + Fy d_ Notice that we can solve this ford— , provided Fy #0 . In this
X X
dy F,

case, we have ; — =——2
dx F

y
e Suppose that the equation F(x,y,z) =0 implicitly defines a function

z =f (x,y), where f is differentiable. Then, we can find the partial derivatives
f, and f  using the chain rule, as follows. We firstletw =F(x,y,z). From the

chain rule, we have w _ F, a—X+ F Q+ F, 8_2 Notice that since
OX ox 7 ox OX

w :F(x,y,z)zo,%:o . Also, a—le and ﬂ:O, since X and y are
OX OX OX

Functions of several variables and differentiation-Math107 Page 7



independent variables. This givesus 0=F, +F, 2—2 We can solve this for Z_Z ,
X X

aslongas F, =0, to obtain: a =—F—X.
OX F,
Likewise, differentiating W with respectto y leads us to: 8—Z: —F—y, F,#0 .

z

Example 4 (Finding Partial Derivatives Implicitly)

Find 2—2 and 2—2 ,given that F(x,y,z)=xy?+z°+sin(xyz )=0 .
X y

Solution
First, note that using the usual chain rule, we have: F, =y *+yz cos(xyz),

F, =2xy +xz cos(xyz) and F, =3z 24Xy cos(xyz) .
If3z 2 +xy cos(xyz ) #0 then
o _ F _ y % +yz cos(xyz) and 6_2__F_y_ 2Xy +Xz cos(xyz)

X

x F 3z % +xy cos(xyz) oy F, 322+ xy cos(xyz)

z

12.9 The gradient and Directional derivatives

In this section, we develop the notion of directional derivatives. Suppose that we want to
find the instantaneous rate of change of f (x,y) at the pointP (a,b) and in the direction

given by the unit vector u =<u,,u, >. Let Q(x,y) be any point on the line through
P (a,b) in the direction of u . Notice that the vector PQ is then parallel to U . Since two
vectors are parallel if and only if one is a scalar multiple of the other, we have that
PQ =h.u, for some scalar h , so that PQ = <x —a,y -b >=hu =h <u ,u, >=<hu,hu, >.
It then follows that X —a=hu, andy —b =hu,, so that x =a+hu, andy =b +hu, .
The point Q is then described by (a+hu1,b + hu2) , as indicated in Figure 1. Notice
that the average rate of change of z =f (x,y) along the line from P to Q is then
f (a+hu1,b +hu2)—f (a,b)

h
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O(a + huy, b + huy)

/

u="{u,u)  pa. b

Figurel: The vector PQ .

The instantaneous rate of change of f (x : y) at the point P (a,b) and in the direction of
the unit vector U is then found by taking the limitash — 0.

Definition1
The directional derivative of f (x,y) at the point (a,b) and in the direction of the

f hu,,b +hu,)—f (a,b
unit vector u =<u,,u, > is given by Duf(a,b)zling (a+ Uy +h u2) (@ )’

provided the limit exists.

Remark1:
We can extend the definition of the directional derivative of a function in 3 variables as:
The directional derivative of f (x,y,z) at the point (a,b,c) and in the direction of the

unit vector u =<u,,U,,u; > is given by
f (a+hu,b+hu,,c+hu,)-f (ab,c)
h

D, f (ab,c)= Llrrg , provided the limit exists.

Theoreml
- Suppose that f is differentiable at (a,b) and u =<u,,u, > is any unit vector.

Then, we can write D, f =f, (a,b)u, +f (a,b)u, .
- Suppose that f is differentiable at (a,b,c) and u =<u,,u,,u, > is any unit
vector. Then, we can write D, f =f, (a,b,c)u, +f (a,b,c)u,+f,(a,b,c)u, .

Example 1 (Computing Directional Derivatives)
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For f (x,y)=x?y —4y?®, compute D, f (2,1) for the directions

J3 1

AUu=<—,=>
(@) 52

(b) u in the direction from (2,1) to (4,0).

Solution
Regardless of the direction, we first need to compute the first partial derivatives

i:2xy and %:xz—ﬂyz. Then, f, (21)=4 and f,(2,1)=-8.

OX
31

e For (a), the unit vector is given as U =< >3 > and so, from Theorem 1 we

B3

haveD, f (2,1)=f (21)u,+f, (2)u, :47—8%:2J§—4<0. Notice that

this says that the function is decreasing in this direction.
o For (b), we must first find the unit vector U in the indicated direction. Observe

that the vector from (2,1) to (4,0) corresponds to the position vector < 2,—1>

and so, the unit vector in that direction is u :ﬂ 2 > . We then
ll<2,-1>| \/_ «/_
have from Theorem 1 that
2 -) 16

D, f (21)=f (2)u,+f, (2)u,=4 -8) >0. So, the function

EEE

is increasing rapidly in this direction.

For convenience, we define the gradient of a function to be the vector-valued function
whose components are the first-order partial derivatives of f . We denote the gradient
of afunction f bygrad f orVf .

Definition 2
The gradient of f (X, y) is the vector-valued function

Vi (x,y)= <—(x y) (x y)>——(x y)i +E(X ,¥)j , provided both partial

derivatives exist. Slmllarly, we define the gradient of f (x,y,z) as the vector-valued

function

of of of of of - of
Vf (X,y,Z)=<&(X,y,Z),@(X,y,Z),E(X,y,Z) X (X Y, Z) +5(X Yo Z)J (X Yy, Z)k

provided all the partial derivatives are defined.

Theorem 2
If f is adifferentiable function of x and y and U is any unit vector, then

D, f(x,y)=Vf (x,y).u
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Similarly, if f is a differentiable function of x ,y and z and U is any unit vector,
thenD, f (x,y,z)=Vf (x,y,z).u

Example 2 (Finding Directional Derivatives)
For f (x,y)=x?+y? find D, f (1,-1) for
(d) U in the direction of v =<-3,4> .
(b) U in the direction of v =<3,—4>.

Solution

First, note that Vf (x,y):<?—(x,y),%(x,y)>:<2x,2y >,
X

At the point (1,—1) , we have Vf (1 -1)=<2,-2>.

. . o . -3 4 o
For (a), a unit vector in the same directionas Vv isu =< 5 > . The directional

derivative of f in this direction at the point (1,—1) is then
Du f (1,_1):< 2,—2><_—3,ﬂ>:2><_—3+(_2)xﬂ:__14
55 5 5 5

For (b), the unit vectoris u = <§%4 > and so, the directional derivative of f in this

direction at (1,-1) is D, f (1,—1)=<2,—2>.<§,_—4>=2x§+(—2)><_—4=E.
55 5 5 5

Theorem 3
Suppose that f is a differentiable function of x and y at the point (a,b). Then

* the maximum rate of change of f at (a,b) is ||Vf (a,b)| , occurring in the

direction of the gradient;

e the minimum rate of change of f at (a,b) (a, b)is —||Vf (a,b)”, occurring

in the direction opposite the gradient;
e therate of change off at (a,b) is Oin the directions orthogonal to

vf (a,b).
« thegradientVf (a,b) is orthogonal to the level curve f (x,y)=c at the
point (a,b), where c =f (a,b).

Example 3 (Finding Maximum and Minimum Rates of Change)

Find the maximum and minimum rates of change of the function f (x,y)=x°+y? at
the point (1,3).

Solution
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We first compute the gradient Vf =< 2x,2y > and evaluate it at the point (1,3);

\%i (1, 3) =<2,6>. From Theorem 3, the maximum rate of change of f at (1,3) is
vf (13) _..1 38
[V @3] o Vi
Similarly, the minimum rate of change of f at (1,3) is—||Vf (13 || =40 =20,

3)

which occurs in the direction of U = va E 13 H \/1—0 @
y
&

HVf 13 H 2\/_0 and occurs in the direction of U =

...fJ.:— — u
z 2= 16
2__ /r Y
I_ I_ .. : — ]_D \ 1 I -_II
e — ¥
—di\ | -2 204
_2__
—4T

Figure2: Contour Plot of z =x*+Yy .

Example 4 (Finding the Direction of Maximum Increase)
{rer)

If the temperature at point (x,y,z ) isgiven by T (x,y,z ):85+[1_1é_0je ’

find the direction from the point (2,0,99) in which the temperature increases most

rapidly.
Solution
We first compute the gradient
Vi =< i&f_ , a >
OX oy oz
<2 [1_2_]e-<“+y2>,_zy (1_Z_je-<“+v2>,—_1e-<x2+y2> .
100 100 100
and Vf (2,0,99)=< ;—;e“‘, 0, %e4‘ >. To find a unit vector in this direction, you can

simplify the algebra by canceling the common factor of e ™ and multiplying by 100. A

Functions of several variables and differentiation-Math107 Page 12



unit vector in the direction of < —4, 0, —1> and also in the direction of Vf (2,0 ,99) is

then<_—4 0 _—1>
N AN T
Theorem 4

Suppose that f (x,y,z) has continuous partial derivatives at the point (a,b,c)
and Vf (a,b,c) #0. Then, Vf (a,b,c)is a normal vector to the tangent plane to the
surface f (x,y,c) =k , at the point (a,b,c). Further, the equation of the tangent

planeis f, (a,b,c)(x —a)+f, (ab,c)(y -b)+f, (ab,c)(z —c)=0.
Example 5 (Using a Gradient to Find a Tangent Plane and Normal Line to a Surface)

Find equations of the tangent plane and the normal line to x*y —y*+z% =7 atthe
point (1,2,3).

Solution
If we interpret the surface as a level surface of the function f (x,y,z)=x% —y?+z?,

a normal vector to the tangent plane at the point (1,2,3) is given by Vf (1,2,3). We
have Vf =<3x?y,x°-2y,2z > andVf (12,3)=<6,-3,6>. Given the normal
vector<6,—3,6> and point (1, 2,3) , an equation of the tangent plane is

6(x —1)-3(y —2)+6(z —3)=0 .

X =146t
The normal line has parametric equations<y =2-3t ,teR.
z =3+6t
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12.10 Extrema of functions of several variables

Definition1

We call f (a,b) alocal maximum of f if there is an open disk R centered at (a,b),
for which f (a,b) >f (x,y) forall (x,y)eR . Similarly, f (a,b) is called a local
minimum of f if there is an open disk R centered at (a,b) , for which

f (a,b) <f (x,y)for all (x,y)e R . In either case, f (a,b) is called a local extremum
of f .

Xy, ini _ - 2 3"
Local maximum at (L1) for f (¢,y)=xe 2 * Local minimum at (-1.1)forf (x,y)=xe

Definition2

The point (a,b) is a critical point of the function f (x,y)if (a,b) is in the domain of f

and either af—(a,b) =af—(a,b) =0 or one or both of a and a do not exist at (a,b) .
OX oy OX oy

Theoreml

If f (X,y) has alocal extremum at (a,b), then(a,b) must be a critical point of f .

Examplel
X2 y?
Find all critical points of f (x,y)=xe 2 3 ’

Solution
First, we compute the first partial derivatives:

3 3
vy

x2 oy X2
T xy)=a-x?e 2 5" and T (x,y)=x@-y?e ? 3
OX oy
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Since exponentials are always positive, we have Zf—(x ,y)=0ifandonlyif 1-x*=0,
X

that is, when x =+1 . We have %(X,y) =0 if and only if x (1—y 2) =0, that is, when

x =0 or y =+1. So the set of critical points is C; ={(-1,-1),(-11), (1L, -1),(L1)} .

l q
A ' \\\ \\\1
034y (RS
0.313‘L AN f
““ 7 (‘N‘
i e
NNt
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Definition3

The point P (a,b,f (a,b)) is a saddle point of z =f (x,y) if (a,b) is a critical
point of f and if every open disk centered at (a,b) contains points (x,y) in the
domain of f forwhich f (x,y)<f (a,b) and points (x,y) in the domain of f for
which f (x,y)>f (a,b).

Theorem?2 (Second Derivatives Test)
Suppose that f (x,y) has continuous second-order partial derivatives in some

open disk containing the point (a,b) and that f, (a,b) =f, (a,b) =0. Define the

discriminant D for the point (a,b) by D(a,b)=f,, (a,b)f (a,b)—[fXy (a,b)]2 .
e If D(@b)>0and f,(ab)>0,thenfhas alocal minimum at (a,b).
e IfD(a,b)>0and f,, (a,b) <0, then f has alocal maximum at (a,b).

e If D(a,b)<0,then f has a saddle point at (a,b).
e |If D(a,b)=0, then no conclusion can be drawn.
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Example2 (Using the Discriminant to Find Local Extrema)
Locate and classify all critical points for f (x,y)=2x?—-y*—2xy .

Solution
We first compute the first partial derivatives: f, =4x —2y and f, =-3y ?_2x . Since

both f, and fy are defined for all (X , y) , the critical points are solutions of the two
equations: f, =4x -2y =0and f, =-3y?—-2x =0. Solving the first equation for y ,

we get y = 2X . Substituting this into the second equation, we have

0=-3(4x?)—2x =—12x>—2x =—2x (6x +1) , sothat x =0 or x :%1 . The

corresponding y -valuesare y =0 and y =? . The only two critical points are then

(0,0) and [%1%1) . To classify these points, we first compute the second partial

derivatives: f,, =4,f =-6y and f, =-2, and then test the discriminant. We have
D(0,0)=4x0-(-2)’=—4<0 and D (%1’%1):4X(_6)x(%1j_(_2)2 =4>0.

From Theorem 2, we conclude that there is a saddle point of f at (0,0) , since

D (0,0) <0. Further, there is a local minimum at(%l,%lj since D (%%} >0and

f o (_—1,;1):4>0.
6 3
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Example3 (Classifying Critical Points)
Locate and classify all critical points for f (x,y)=x°-2y*-2y*+3x?%y .
Solution

Here, we have f, =3x*+6xy and f, =—4y —8y°+3x?*. Since both f, and f, exist
forall (x,y), the critical points are solutions of the two equations: f =3x2+6xy =0
and f, =—4y —8y°+3x*=0. From the first equation, we have

0=3x%+6xy =3x (X +2y), so that at a critical point, X =0 or x =-2y .

Substituting X =0 into the second equation, we have 0=—-4y —8y° =—4y (1+2y?).
The only (real) solution of this equation is y =0. This says that for X =0, we have only

one critical point: (0,0).

Substituting x =-2y into the second equation, we have

0=-4y —-8y>+3(-2y)* =—4y (1+2y *-3y) =—4y (2y —-1)(y —1). The solutions of this
equationare y =0,y =% and y =1, with corresponding critical points (0,0), (-1, %)

and (-2,1).
To classify the critical points, we compute the second partial derivatives,

f 0 (3x2+6xy)=6x +6y f, :5(—4y —8y3+?>x2):—4—24y2 ,and

XX aX

0 L " .
fXy = —(3x 24 6Xy ) =6X , and evaluate the discriminant at each critical point. We

have D(0,0)=0, D (—1,%) =—6<0 and D(-2,1)=24>0 . From Theorem 2, we

conclude that f has a saddle point at [—1,%) , since D (—1,%) =—6<0. Further, f has a

local maximum at (-2,1) since D(-2,1) =24 >0and f, (-2,1)=-3<0 . Unfortunately,
Theorem 2 gives us no information about the critical point (0,0), since D (0,0) =0.
However, notice that in the plane y =0 we have f (x,y)=x°. In two dimensions, the

curve z =X has an inflection point at X =0 . This shows that there is no local
extremum at (0,0) .
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1
The surface near (010) The surface near (—2,1) The surface near [_]ﬂzj

Definition4
We call f (a,b) the absolute maximum of f ontheregion R if f (a,b)>f (x,y) for

all (x,y)eR . Similarly, f (a,b) is called the absolute minimum of f on R if
f (@,b)<f (x,y)forall (x,y)eR.Ineithercase, f (a,b) is called an absolute
extremum of f .

Theorem 3 (Extreme Value Theorem)
Suppose that f (x,y) is continuous on the closed and bounded region R c R” .

Then f has both an absolute maximum and an absolute minimum on R . Further,
an absolute extremum may only occur at a critical pointin R or at a point on the
boundary of R .

12.11 Constrained Optimization and Lagrange Multipliers

In this section, we develop a technique for finding the maximum or minimum of a
function, given one or more constraints on the function’s domain.

Theoreml
Supposethat f (x,y,z) and g(X,y,z) are functions with continuous first partial

derivatives and Vg(x,y,z) =0 on the surface g(x,y,z)=0. Suppose that either
the minimum (or the maximum ) value of f (x,y,z) subject to the constraint

g(x,y,z)=0 occurs at (X,,Y,,Z,). Then Vf (X,,Y0,20) =49 (X, Y.2Z,), for
some constant A (called a Lagrange multiplier).
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Remark1l
e Note that Theorem 1 says that if f (x,y,z) has an extremum at a point

(Xo,yo,zo) on the surface g(x,y,z)=0, we will have for

(X1Yaz):(xo’yo1zo),
f.(x,y,z2)=49,(x,y,z)
f,(x,y.z)=49,(x,y,z)
f,(x,y,z)=29,(x,y,z)
g(x,y,z)=0

Finding such extrema then boils down to solving these four equations for the four
unknowns X,y,z and A .

¢ Notice that the Lagrange multiplier method we have just developed can also be
applied to functions of two variables, by ignoring the third variable in Theorem1.
That is, if f (x,y) and g(x,y) have continuous first partial derivatives and

f (XO, yo) is an extremum of f , subject to the constraint g (x,y) =0, then we
must have Vf (X,,Y,)=4AVQ(X,,Y,).for some constant A .In this case, we end
up with the three equations f, (x,y)=4g, (x,y), f,(x,y)=4g,(x,y) and
g(x,y)=0, for the three unknowns x,y and 4.

Example 1 (Finding a Minimum Distance)

Use Lagrange multipliers to find the point on the line y =3—-2x that is closest to the
origin.

Solution

Forf (x,y)=x°+Yy?, we haveVf (x,y)= <2x,2y >andforg(x,y)=2x +y —3,
we have Vg(x,y)= <2,1>. The vector equation Vf (x,y)=AVg(Xx,y) becomes
<2X ,2y >=A4 <2,1> from which it follows that 2x =24 and 2y = 1.

The second equation gives us A =2y . The first equation then givesus X =41 =2y .
Substituting X =2y into the constraint equation y =3—-2x , we have 5y =3.

The solution is y =§ , giving us x =2y :g. The closest point is then (ggj

Example 2 (Optimization with an Inequality Constraint)

Suppose that the temperature of a metal plate is given by T (X,y)=x*+2x +y?, for
points (X, ) on the elliptical plate defined by x *+4y ? < 24. Find the maximum and
minimum temperatures on the plate.
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Solution

The plate corresponds to the shaded region R shown in Figure 1.
y
&

Figure 1: A metal plate.

We first look for critical points of T (x,y) inside the region R . We have
VT (X,y)=<2x+2,2y >=<0,0> if (x,y)=(-10), whichisin R . At this point,
T (-1,0) = —1. We next look for the extrema of T (x,y ) on the ellipse x*+4y? =24.

We first rewrite the constraint equation as g (X,y)=x*+4y?—24=0. From

Theorem 1, any extrema on the ellipse will satisfy the Lagrange multiplier equation:
VT (X,y)=AVg(x,y) or <2Xx +2,2y >=A<2X,8y >=<21X,81y >.
This occurs when 2x +2=24x and 2y =81y .

Notice that the second equation holds when y =0 or 4 :% .

If y =0, the constraint X > +4y * = 24 gives X =++/24 .

If 1= % the first equation becomes 2x +2 = %x sothat x = —% . The constraint

J50

X +4y? =24 now gives y :J_rT .

Finally, we compare the function values at all of these points (the one interior critical
point and the candidates for boundary extrema):

and T (-1,0)=—-1, T (\24,0)=24+24 ~33.8, T (—/24,0)=24-224~14.2
T [_f @J—Ez4.7, T (—ﬂ —@}Ezm |

33 ) 3 37 3 ) 3
From this list, it's easy to identify the minimum value of —1 at the point (—1,0) and the

maximum value of 24+2@ at the point (@,0) .

We close this section by considering the case of finding the minimum or maximum
value of a differentiable functionf (x,y,z) subject to two constraints g(x,y,z)=0 and

h(x,y,z)=0,where g and h are also differentiable (see Figure 2 below).
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h(x,y,2) =0

L~

Vg |
v

o __;\\m .
\

Vh
\\ ‘| \g(.\'. y»2)=0
C
Figure 2: Constraint surfaces and the plane determined
by the normal vectors Vg and Vh.

The method of Lagrange multipliers for the case of two constraints then consists of
finding the point (x,y,z) and the Lagrange multipliers A and u (for a total of five
unknowns) satisfying the five equations defined by:

f.(x,y,z2)=40,(x,y,z2)+uh (x,y,2)

f,(x,y,z2)=49,(x,y,z)+uh, (x,y,z2)

f,(x,y,2)=29,(x,y,2)+uh,(x,y,z)
g(x,y,z)=0 & h(x,y,z)=0

Example 3 (Optimization with Two Constraints)

The plane X +Y +z =12 intersects the paraboloid z =x*+Yy ? in an ellipse. Find the
point on the ellipse that is closest to the origin.

Solution
We illustrate the intersection of the plane with the paraboloid in Figure 3.

Figure 3: Intersection of a paraboloid and a plane.
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Observe that minimizing the distance to the origin is equivalent to minimizing
f(x,y,z)=x?+y?+z? [the square of the distance from the point (x,y,z) to the
origin]. Further, the constraints may be written as g(x,y,z)=x +y +z —12=0 and

h(x,y,z)=x*+y?—z =0 . At any extremum, we must have that
Vi (X,y,z)=AVg(x,y,z)+uVh(x,y,z) or
<2X,2yY,22 >=A<111>+ u<2x,2y,-1>.
Together with the constraint equations, we now have the system of equations:
2X =A+2ux (1
2y =A+2uy (2)
22 =1—pu 3)
X+y+z-12=0 (4) & x°+y*-z=0 (5)
From (1), we have A =2x (1— u), while from (2), we have A =2y (1—/1) .
Setting these two expressions for 4 equal gives us 2X (1—y) =2y (1—/1) :

from which it follows that either ¢ =1 (in which case A=0) or x =y . However, if
u=1and 4 =0, we have from (3) that z = =12, which contradicts (5).
Consequently, the only possibility is to have x =Yy , from which it follows from (5) that

Z = 2x 2. Substituting this into (4) gives us:

O0=X+y +2Z —12=X +X +2x*—12=2x *+2x —12=2(x +3)(x —2) , so that X =—3
or x =2 .Since y =x and z =2x* , we have that (2,2,8) and (-3,-3,18) are the
only candidates for extrema. Finally, since f (2,2,8)=72 and f (-3,-3,18)=342,

the closest point on the intersection of the two surfaces to the origin is (2,2,8) . By the

same reasoning, observe that the farthest point on the intersection of the two surfaces
from the origin is (—3,-3,18) .

Functions of several variables and differentiation-Math107 Page 9



