8086/8088 Hardware Specifications

CEN433 King Saud University Dr. Mohammed Amer Arafah

8088/8086 Microprocessors

- Fairly old microprocessors, but still considered a good way to introduce the Intel family
- Both microprocessors use 16-bit registers and 20-bit address bus (supporting 1 MB memory), but:
 - The 8086 (1978): 16-bit external data bus
 - The 8088 (1979): 8-bit external data bus
- Still used in embedded systems (cost is less than \$1)

Pin Layout of the 8088/8086 Microprocessors

Pin Layout of the 8088 Microprocessors

						MIN MODE	MAX
GND	Н	1	\sim	40		Vcc	
A14		2		39	F.	A15	
A13		3		38	F.	A16/S3	
A12		4		37	F.	A17/S4	
A11		5		36	F.	A18/S5	
A10				35	Ľ.	A10/56	
A 10				33	Ľ.	A ISIOO	(HICH)
A9		<i>'</i>		34	Ľ.	220	(nign)
88		8		33	Ľ		
AD7	Ч	9	8088	32	μ	RD	
AD6		10	CPU	31		HOLD	(RQ/GTO)
AD5		11		30		HLDA	(RO/GT1)
AD4		12		29		WR	(LOCK)
AD3		13		28		10/M	(<u>\$2</u>)
AD2	Г	14		27	h	DT/R	(S1)
AD1		15		26	F	DEN	(80)
AD0		16		25	F	ALE	(QS0)
NMI		17		24	F.	INTA	(051)
				24	Ľ		(031)
INTR	Ц	18		23		TEST	
ÇLK		19		22	\square	READY	
GND		20		21		RESET	

D8088-2 L4280432 OINTEL '78 '83

Pin budget: 8088, Min mode:

- 20 Address
- 8 Data
- 20 Control & Status
- **3** Power

51 Total > 40 pins available

→ Use multiplexing

The Modes of Operation

- The microprocessors 8086 and 8088 can be configured to work in two modes: The Minimum mode and the Maximum mode.
 - The Minimum mode is used for single processor system, where 8086/8088 directly generates all the necessary control signals.
 - The Maximum mode is designed for multiprocessor systems, where an additional "Bus-controller" IC is required to generate the control signals. The processors control the Bus-controller using statuscodes.

The Modes of Operation

DC Pin Characteristics: Voltages

Standard TTL Output and Inputs Voltage Levels

DC Pin Characteristics: Currents

Fan out for a standard TTL output How many inputs can an output support?

For the 0 logic Level: (output "sinks" current)

0-level Fanout = Maximum number of inputs that the output can support = 16 mA/1.6 mA = 10

For the 1 logic Level: (output "sources" current)

CEN433 - King Saud University

8088/86 Pin Characteristics: DC

0 level noise margin = 0.8 - 0.45 = 0.35 V (8086/88 µP) = 0.8 - 0.40 = 0.40 V (for standard 74 TTL O/P)

8088/86 Pin Characteristics: DC

- Input pins are TTL compatible and require only ±10µA of current (actually better than TTL)
- Output pins are nearly TTL compatible, but have problems at logic 0:
 - \square A higher maximum logic 0 voltage of 0.45 V (instead of the TTL standard of 0.4 V)
 - □ This reduces logic 0 noise margin from 400 mV to 350 mV...
 - \rightarrow be careful with **long wiring** from output pins
- A lower logic 0 sink current of 2.0 mA (instead 16 mA for the standard 74 TTL)
 - This reduces fan out capability...
 - \rightarrow better **use 74LS**, or **AL**, for interfacing, or
 - → use buffers

CEN433 - King Saud University

Multiplexing

Some functions are multiplexed on the same pins to reduce chip pin count

ALE: Latch address

- For both microprocessors, Address bus signals are A0-A19 (20 lines) for 1M byte of addressing space
- Data bus signals are
 - D0-D7 for the 8088
 - D0-D15 for the 8086
- The address & data pins are multiplexed as:
 - □ AD0-AD7 (8088)
 - □ or AD0-AD15 (8086)
- Address/Status pins are MUXed
 - A/S for A16-19
- The ALE O/P signal is used to demultiplex the address/data (AD) bus and also the address/status (A/S) bus.

GND		1	\sim		40	Ь	VCC	
AD14		2			39	Ь	AD15	
AD13		3		ĺ	38	Þ	A16/S3	
AD12		4			37	Ь	A17/S4	
AD11		5			36	Ь	A18/S5	
AD10		6			35	þ	A19/S6	
AD9		7			34	Ь	BHE/S7	
AD6		8	8086		33	þ	MN/MX	[MIN]
AD7		9	CPU		32	Ь	RD	(MODE)
AD6		10			31		RQ/GTO	(HOLD)
AD5		11			30	Þ	RO/GT1	(HLDA)
AD4		12			29	Þ	LOCK	(WR)
AD3	С	13			28	Þ	S2	(M/IO)
AD2		14			27	þ	S1	(DT/Ã)
AD1		15			26	Þ	S0	(DEN)
AD0		16			25		QS0	(ALE)
NMI		17			24	Þ	QS1	(INTA)
INTR	С	18			23	Þ	TEST	
CLK	q	19			22	Þ	READY	
GND		20			21		RESET	

The Status (S) Bus

8086: Address bits A16-A19 & BHE/ are muxed with the status bits S3-S7.

S3 & S4 indicate which segment register is used with the current instruction:

S ₄	S ₃	Characteristics
0 (LOW)	0	Alternate Data (extra segment)
0	1	Stack
1 (HIGH)	0	Code or None
1	1	Data

- S5 = IF (Interrupt flag)
 - S6 = 0
- S7 = 1 Spare

- S0/, S1/, S2/ are not MUXed. They encode bus status (current bus cycle)
- Available only in the MAX mode for use by a bus controller chip
- SS0: Not Muxed, Min mode CEN433 - King Saud University

			~ ~	-	1		
GND		1	\lor	40	þ	VCC	
AD14		2		39	þ	AD15	
AD13		3		38	Þ	A16/SS	3
AD12		4		37	þ	A17/S4	1
AD11	Г	5		36	白	A18/S5	÷
AD10		6		35	Þ	A19/56	;
AD9		7	0000	34	Þ	BHE/S	7
AD8		8	9086	33		MN/MX	[MIN]
AD7		9	CPU	32	Þ	RD	[MODE]
AD6		10		31		RQ/GT	0 (HOLD)
AD5		11		30	Þ	RQ/GT	1 (HLDA)
AD4		12		29	þ_	LOCK	(WR)
AD3		13		28	Þ	S2	(M/IO)
AD2		14		27	Ы	ST	(DT/Ã)
AD1		15		26	日	SO	(DEN)
AD0		16		25	Ъ	QS0	(ALE)
NMI		17		24	Þ	QS1	(INTA)
INTR		18		23	þ	TEST	
CLK		19		22	Þ	READY	r
GND	Г	20		21		RESET	

Main Control Signals

Common Signals for both MIN and MAX modes:

- S0/, The read output (RD/): indicates a read operation
- The write output (WR/) : indicates a write
- The READY input: when low (not ready), forces the processor to enter a wait state. Facilitates interfacing the processor with slow memory chips

GND		1	\sim	40] VCC		GND		1	\bigcirc	40		20	
AD14		2		39	_ AD15		A14		2		39] A1	5	
AD13		3		38	A16/S3		A13		3		38] A1	6/53	
AD12		4		37	A17/S4		A12	Ц	4		37	A1	7/S4	
AD11		5		36	A18/S5		A11		5		36	A1	8/S 5	MAX]
AD10		6		35	A19/56		A10		6		35	_ A1	9/56	[MODE]
AD9		7		34	BHE/ST		A9		7	0000	34	59	0	(HIGH)
AD8		8	8086	33	MN/MX	∫ MIN)	AB	q	8	CDLL	33	I MI	₩₩Х	
AD7		9	CPU	32	RD	(MODE)	AD7	Ц	9	uru	32	RD	5	
AD6		10		31	RQ/GT	(HOLD)	AD6	Ц	10		31] HC	0.0	(RQ/GT0)
AD5	d	11		30 E	RQ/GT	i (HLDA)	AD5	Ц	11		30	HL	.DA	(RQ/GT1)
AD4		12		29	LOCK	(WR)	AD4	Ц	12		29	Ŵ	R	(LOCK)
AD3	d	13		28	<u>52</u>	(M/IO)	AD3	Ц	13		28	10/	М	(\$2)
AD2	d	14		27	S1	(DT/Ã)	AD2		14		27	DT	7 R	(Ŝ1)
AD1	d	15		26	<u>50</u>	(DEN)	AD1		15		26	DE	N	(S0)
AD0	d	16		25	QS0	(ALE)	ADO	Ц	16		25	AL	E	(QS0)
NMI		17		24	QS1	(INTA)	NMI		17		24	IN'	ΓĀ	(QS1)
INTR	d	18		23	TEST		INTR	q	18		23] TE	ST	
CLK	d	19		22	READY		CLK	q	19		22	RE	ADY	
GND	q	20		21	RESET		GND	q	20		21	RE	SET	

Two hardware interrupt inputs:

- INTR input: Hardware interrupt request. Honored only if the IF flag is set. The microprocessor enters an interrupt ACK cycle by lowering the INTA/ output
- NMI input: Hardware non-maskable interrupt request. Honored regardless of the status of the IF flag. Uses interrupt vector 2
- TEST/ input: Example: interfacing the microprocessor with the 8087 math coprocessor. Checked by the WAIT instruction that precedes each floating point instruction. If high, the instruction waits till input signal goes low and then gives FP instruction to the math processor

- CLK input: Basic timing clock for the processor (Duty cycle= 1/3)
- MN/#MX input: Selects either Minimum (+ 5V directly) or Maximum mode (GND)
- #BHE/S7 output (MUXed):
 - BHE/: (Bus High Enable) Enables writing to the high byte of the 16-bit data bus on the 8086
 - Not on 8088 (has an 8-bit data busno high byte!)

RESET input: resets the microprocessor (reboots the computer). Causes the processor to start executing at address FFFF0H (Start of last 16 bytes of ROM at the top of the 1MB memory) after disabling the INTR input interrupts (CLR IF flag). Input must be kept high for at least 50 ms. Sampled by the processor at the + ive clock edge

Symbol	Pin No.	Туре	Nar	ne and	Function			
AD7-AD0	9–16	1/0	ADDRESS DATA BUS: Thes memory/IO address (T1) and active HIGH and float to 3-sta local bus "hold acknowledge"	e lines o data (T ate OFF ''.	constitute the time multiplexed 2, T3, Tw, T4) bus. These lines are during interrupt acknowledge and			
A15-A8	2–8, 39	0	ADDRESS BUS: These lines entire bus cycle (T1–T4). The to remain valid. A15–A8 are a during interrupt acknowledge	provide ese lines active H and loc	address bits 8 through 15 for the s do not have to be latched by ALE IGH and float to 3-state OFF al bus "hold acknowledge".			
A19/S6, A18/S5, A17/S4, A16/S3	35–38	0	ADDRESS/STATUS: During 11, these are the four most significant address lines for memory operations. During I/O operations, these lines are LOW. During memory and I/O operations, status information is available on these lines during T2, T3, Tw, and T4. S6 is always low. The status of the interrupt enable flag bit (S5) is updated at the beginning of each clock cycle. S4 and S3 are encoded as shown. This information indicates which segment register is presently being used for data accessing. These lines float to 3-state OFF during local bus "hold acknowledge". S4 S3 O (LOW) 0 Alternate Data 0 1 Stack 1 (HIGH) 0 D Code or None					
RD	32	0	READ: Read strobe indicates that the processor is performing a memory or I/O read cycle, depending on the state of the IO/M pin or S2. This signal is used to read devices which reside on the 8088 local bus. RD is active LOW during T2, T3 and Tw of any read cycle, and is guaranteed to remain HIGH in T2 until the 8088 local bus has floated. This signal floats to 3-state OFF in "hold acknowledge".					
READY	22	I	READY: is the acknowledgen device that it will complete the memory or I/O is synchronize READY. This signal is active I synchronized. Correct operati times are not met.	nent fro e data tr ed by the HIGH. T ion is no	m the addressed memory or I/O ransfer. The RDY signal from e 8284 clock generator to form The 8088 READY input is not ot guaranteed if the set up and hold			

Symbol	Pin No.	Туре	Name and Function
INTR	18	Ι	INTERRUPT REQUEST: is a level triggered input which is sampled during the last clock cycle of each instruction to determine if the processor should enter into an interrupt acknowledge operation. A subroutine is vectored to via an interrupt vector lookup table located in system memory. It can be internally masked by software resetting the interrupt enable bit. INTR is internally synchronized. This signal is active HIGH.
TEST	23	I	TEST: input is examined by the "wait for test" instruction. If the TEST input is LOW, execution continues, otherwise the processor waits in an "idle" state. This input is synchronized internally during each clock cycle on the leading edge of CLK.
NMI	17	I	NON-MASKABLE INTERRUPT: is an edge triggered input which causes a type 2 interrupt. A subroutine is vectored to via an interrupt vector lookup table located in system memory. NMI is not maskable internally by software. A transition from a LOW to HIGH initiates the interrupt at the end of the current instruction. This input is internally synchronized.
RESET	21	Ι	RESET: causes the processor to immediately terminate its present activity. The signal must be active HIGH for at least four clock cycles. It restarts execution, as described in the instruction set description, when RESET returns LOW. RESET is internally synchronized.
CLK	19	Ι	CLOCK: provides the basic timing for the processor and bus controller. It is asymmetric with a 33% duty cycle to provide optimized internal timing.
V _{CC}	40		V _{CC} : is the $+5V \pm 10\%$ power supply pin.
GND	1, 20		GND: are the ground pins.
MN/MX	33	Ι	MINIMUM/MAXIMUM: indicates what mode the processor is to operate in. The two modes are discussed in the following sections.

Minimum Mode Control Signals

- For the processor to operate in the minimum mode, connect MN/#MX input to +5V.
- M/#IO or IO/#M output: indicates whether the address on the address bus is a memory address (IO/#M = 0) or an I/O address (IO/#M = 1)
- WR/ output: indicates a write operation.
- INTA/ output: interrupt acknowledgement. Goes low in response to a hardware interrupt request applied to the INTR input. Interrupting device uses it to put the interrupt vector number on the data bus. The microprocessor read the number and identifies the Interrupt Service Routine (ISR)
- ALE (address latch enable) output: Indicates that the muxed AD bus now carries address (memory or I/O). Use to latch that address to an external circuit before the processor removes it!.

									_			
GND [1	\sim	40	VCC		GN		1	\bigcirc	40	VCC	
AD14	2		39	AD15		A	14 🗆	2		39	A15	
AD13	3		38 6	A16/S3		A	13 E	3		38	A16/S3	
AD12	4		37 6	A17/S4		A	12 E	4		37 占	A17/S4	
AD11	5		36 F	A18/S5		A	11	5		36	A18/\$5	MAX]
AD10	6		35 F	A19/56		A	10	6		35 🗄	A19/S6	[MODE]
AD9	7		34 F	BHE/S7			49 🗆	7		34 🗄	SS0	(HIGH)
AD6	8	8086	33 F	MN/MX	(MIN)	,	AB [8	8088	33 🗄	MN/MX	
AD7	19	CPU	32 5	RD	MODE	A	D7 🗖	9	CPU	32	RD	
AD6 E	10	[31 7	RQ/GT0	(HOLD)	AL	D6 🗖	10		31	HOLD	(RQ/GT0)
AD5	11		30 E	RQ/GT1	(HLDA)	A)5 E	11		30 🗄	HLDA	(RO/GT1)
	12		29	LOCK	(WR)	A	24 D	12		29	WR	(LOCK)
	13		28	52	(MIO)	AD	3	13		28	10/M	(\$2)
	14		27 6	SI	(DT/B)	A	D2 🗆	14		27 1	DT/R	(\$1)
AD1	15		26	50	(DEN)	A)1 E	15		26 🗄	DEN	(\$0)
	16		25	050	(ALE)	AE	юΓ	16		25	ALE	(QS0)
	17		24	051	(INTA)	N		17		24	INTA	(QS1)
	18	L	23	TEST	(in they	INT	R	18		23	TEST	,,
OK E	10		<u>"</u> F	READY		CL	кГ	19		22 6	READY	
GND E	20		216	RESET		GN		20		216	RESET	

Minimum Mode Control Signals (Cont'd)

- DT/#R output: indicates if the data bus is transmitting (outputing) data (=1) or receiving (inputting) data (=0). Use to control external bidirectional buffers connected to the data bus.
- DEN/ output: (data bus enable). Active when AD bus carries data not address Use to activate external data buffers.
- HOLD input: Requests a direct memory access (DMA) from the microprocessor. In response, the microprocessor stops execution and places the data, address, and control buses at High Z state (floats them). Signals such as RD/ and WR/ are also floated.
- HLDA output: Acknowledges that the processor has entered a hold state in response to HOLD.
- SSO/ output: Equivalent to the S0 status output of the maximum mode. Use with IO/#M and DT/#R to decode the current bus cycle.
 CEN433 - King Saud University

Minimum Mode Control Signals (Cont'd)

Symbol	Pin No.	Туре		Name and Function						
10/ M	28	0	STATUS L memory ac bus cycle a LOW). IO/Ī	STATUS LINE: is an inverted maximum mode $\overline{S2}$. It is used to distinguish a memory access from an I/O access. IO/M becomes valid in the T4 preceding a bus cycle and remains valid until the final T4 of the cycle (I/O = HIGH, M = IOW). IO/M floats to 3-state OFF in local bus "hold acknowledge".						
WR	29	0	WRITE: str I/O cycle, o Tw of any w "hold ackn	WRITE: strobe indicates that the processor is performing a write memory or write $/O$ cycle, depending on the state of the IO/\overline{M} signal. WR is active for T2, T3, and Γ of any write cycle. It is active LOW, and floats to 3-state OFF in local bus 'bold acknowledge'						
INTA	24	0	INTA: is us during T2, T	ed as a read s F3, and Tw of	strobe for in each interr	nterrupt acknowledge cycles. It is active LOW upt acknowledge cycle.				
ALE	25	0	ADDRESS into an add cycle. Note	LATCH ENA ress latch. It i that ALE is n	BLE: is pro s a HIGH p ever floate	vided by the processor to latch the address ulse active during clock low of T1 of any bus d.				
DT/R	27	0	DATA TRA a data bus transceiver timing is the 3-state OFF	ATA TRANSMIT/RECEIVE: is needed in a minimum system that desires to use data bus transceiver. It is used to control the direction of data flow through the ansceiver. Logically, DT/\overline{R} is equivalent to $\overline{S1}$ in the maximum mode, and its ming is the same as for IO/\overline{M} (T = HIGH, R = LOW). This signal floats to state OFF in local "hold acknowledge".						
DEN	26	0	DATA ENA minimum sy memory an active from active from during local	DATA ENABLE: is provided as an output enable for the data bus transceiver in a minimum system which uses the transceiver. DEN is active LOW during each memory and I/O access, and for INTA cycles. For a read or INTA cycle, it is active from the middle of T2 until the middle of T4, while for a write cycle, it is active from the beginning of T2 until the middle of T4. DEN floats to 3-state OFF during local bus "hold acknowledge".						
HOLD, HLDA	31, 30	I, O	HOLD: indi acknowleds request will Ti clock cyc the local bu processor I will again d pull-up resi Hold is not the system	HOLD: indicates that another master is requesting a local bus "hold". To be acknowledged, HOLD must be active HIGH. The processor receiving the "hold" request will issue HLDA (HIGH) as an acknowledgement, in the middle of a T4 or Ti clock cycle. Simultaneous with the issuance of HLDA the processor will float the local bus and control lines. After HOLD is detected as being LOW, the processor lowers HLDA, and when the processor needs to run another cycle, it will again drive the local bus and control lines. HOLD and HLDA have internal pull-up resistors. Hold is not an asynchronous input. External synchronization should be provided if						
SSO	34	0	STATUS LINE: is logically equivalent to \overline{SO} in the maximum mode. The combination of \overline{SSO} , IO/M and DT/R allows the system to completely decode the current bus cycle status.							
			IO/M	DT/R	SSO	Characteristics				
			1(HIGH) 1 1 0(LOW) 0	0 0 1 1 0	0 1 0 1 0	Interrupt Acknowledge Read I/O Port Write I/O Port Halt Code Access Read Memory				
			0	1	0	Write Memory				
	1		0	1	1	Passive				

Minimum Mode 8088 System

Maximum Mode Control Signals (Cont'd)

- For the processor to operate in the maximum mode, connect MN/#MX input to ground.
- S0/, S1/, S2/ outputs: Status bits that encode the type of the current bus cycle, Used by the 8288 bus controller and the 8087 coprocessor.
- **#RQ/GT0, #RQ/GT1**: Bidirectional lines for requesting and granting DMA access (Request/Get). For use in multiprocessor systems. The RG/GT0 line has higher priority.
- **LOCK/** output: Activated for the duration of multiprocessor instructions having the LOCK prefix. Can be used to prevent other microprocessors from using the system buses and accessing shared memory or I/O for the duration of such instructions, e.g. LOCK:MOV AL,[SI]
- **QS0**, **QS1** (Queue Status) outputs: indicate the status of the internal instruction queue. For use by the 8087 coprocessor to keep in step

GI	ND 🗆	1	40 VCC	
AD	14	2	39 AD15	A14 2 39 A15
AD	13 🗖	3	38 A16/S3	A13 🗖 3 38 🗖 A16/53
AD	12	4	37 A17/S4	A12 4 37 A17/S4
AD	11	5	36 🗖 A18/S5	A11 5 36 A18/S5 MAX
AD	10 🗖	6	35 🗖 A19/S6	A10 6 35 A19/S6 [MODE]
At	D9 🗆	7	34 BHE/S7	A9 7 34 SS0 (HIGH)
Al	D8 🗆	8 8086	33 🗖 MN/MX [MIN]	
A	D7 🗖	9 CPU	32 RD [MODE]	
A	D6 🗖	10	31 RQ/GT0 (HOLD)	AD6 🗖 10 31 HOLD (RQ/GT0)
A	D5 🗖	11	30 RQ/GT1 (HLDA)	AD5 🗖 11 30 🗖 HLDA (RQ/GT1)
A	D4 🗖	12	29 LOCK (WR)	AD4 🗖 12 29 🖬 🕅 🕅 (LOCK)
A	оз Ц	13	28 📕 52 (M/ĪO)	AD3 🗖 13 28 🗖 10/M (\$2)
A	D2 🗖	14	27 📕 SI (DT/R)	AD2 🗖 14 27 🧰 DT/Ā (ŠĪ)
A	D1 🗖	15	26 SO (DEN)	AD1 🗖 15 26 📕 DEN (\$0)
A	хd	16	25 QS0 (ALE)	ADO 🗖 16 25 🗖 ALE (QSO)
N	м 🗖	17	24 QS1 (INTA)	NMI 🗖 17 24 📕 INTA (QS1)
INT	TR 🗖	18	23 TEST	
CI	ик Ц	19	22 BEADY	CLK 19 22 READY
GN	vd 🛛	20	21 RESET	GND 20 21 RESET
<i>S2</i>	S1	S0	Function	QS1QS0 Function
0	0	0	Interrupt acknowledg	je 0. 0. Queue is idle
0	0	1	I/O read	
0	1	0	I/O write	0 1 First byte of opcode
0	1	1	Halt	1 0 Queue is empty
1	0	0	Opcode fetch	
1	0	1	Memory read	1 1 Subsequent byte of opcode
1	1	0	Memory write	
1	1	1	Passive	

CEN433 - King Saud University

Maximum Mode Control Signals (Cont'd)

8088/8086 CPU Functional Block Diagram

8088/8086 CPU Functional Block Diagram

Internal Architecture of 8088/8086

- The 8088/8086 microprocessor has two units: the Bus Interface Unit (BIU) and the Execution Unit (EU).
- Both units operate simultaneously. This parallelism makes the fetch and execution of instructions independent.
- The Bus Interface Unit (BIU) performs all external bus operations, such as instruction fetching, reading/writing operands from/to memory, and inputting/outputting data from/to Input/output peripherals.
- The BIU also performs address generation. To perform this function, the BIU contains segment registers, instruction pointers, address generation adder, bus control logic, and an instruction queue.

Internal Architecture of 8088/8086

- The Execution Unit (EU) performs decoding and execution of instructions.
- The EU consists of the arithmetic logic unit (ALU), the FLAG register, multipurpose registers, and temporary operand register.
- The EU accesses instructions from the instruction queue, decodes them, generates operand addresses if necessary, passes the operand addresses to the BIU, requests from the BIU to perform read/write bus cycle from/to memory or I/O peripherals, and performs the operation specified by the instruction on the operands.

Multipurpose and Special-Purpose Registers

CEN433 - King Saud University

Multipurpose and Special-Purpose Registers

- All general registers of the 8088 microprocessor can be used for arithmetic and logic operations. The general registers are:
 - Accumulator register consists of 2 8-bit registers AL and AH, which can be combined together and used as a 16-bit register AX. Accumulator can be used for I/O operations and string manipulation.
 - Base register consists of 2 8-bit registers BL and BH, which can be combined together and used as a 16-bit register BX. BX register usually contains a data pointer used for based, based indexed or register indirect addressing.
 - Count register consists of 2 8-bit registers CL and CH, which can be combined together and used as a 16-bit register CX. Count register can be used as a counter in string manipulation and shift/rotate instructions.
 - Data register consists of 2 8-bit registers DL and DH, which can be combined together and used as a 16-bit register DX. Data register can be used as a port number in I/O operations. In integer 32-bit multiply and divide instruction the DX register contains high-order word of the initial or resulting number.

The following registers are both general and index registers:

- Stack Pointer (SP) is a 16-bit register pointing to program stack.
- Base Pointer (BP) is a 16-bit register pointing to data in stack segment. BP register is usually used for based, based indexed or register indirect addressing.
- Source Index (SI) is a 16-bit register. SI is used for indexed, based indexed and register indirect addressing, as well as a source data address in string manipulation instructions.
- Destination Index (DI) is a 16-bit register. DI is used for indexed, based indexed and register indirect addressing, as well as a destination data address in string manipulation instructions.

• Other registers:

- Instruction Pointer (IP) is a 16-bit register.
- □ Flag Register

CEN433 - King Saud University

The Flag Register

CEN433 - King Saud University

The Flag Register

- Overflow Flag (OF) set if the result is too large positive number, or is too small negative number to fit into destination operand.
- Direction Flag (DF) if set (STD) then string manipulation instructions will auto-decrement index registers. If cleared (CLD) then the index registers will be auto-incremented.
- Interrupt-enable Flag (IF) setting this bit (STI) enables maskable interrupts. Clearing this bit (CLI) disables maskable interrupts.
- Single-step Flag (TF) if set then single-step interrupt will occur after the next instruction.
- Sign Flag (SF) set if the most significant bit of the result is set.
- **Zero Flag (ZF)** set if the result is zero.
- Auxiliary carry Flag (AF) set if there was a carry from or borrow to bits 0-3 in the AL register.
- Parity Flag (PF) set if parity (the number of "1" bits) in the low-order byte of the result is even.
- Carry Flag (CF) set if there was a carry from or borrow to the most significant bit during last result calculation.

Segment Registers

CS	Code
SS	Stack
DS	Data
ES	Extra

- There are four different 64 KB segments for instructions, stack, data and extra data. To specify where in 1 MB of processor memory these 4 segments are located the processor uses four segment registers:
- Code segment (CS) is a 16-bit register containing address of 64 KB segment with processor instructions. The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register.
- Stack segment (SS) is a 16-bit register containing address of 64KB segment with program stack. By default, the processor assumes that all data referenced by the stack pointer (SP) and base pointer (BP) registers is located in the stack segment.
- Data segment (DS) is a 16-bit register containing address of 64KB segment with program data. By default, the processor assumes that all data referenced by general registers (AX, BX, CX, DX) and index register (SI, DI) is located in the data segment.
- Extra segment (ES) is a 16-bit register containing address of 64KB segment, usually with program data. By default, the processor assumes that the DI register references the ES segment in string manipulation instructions.

CEN433 - King Saud University

CS = 348A	Code
SS = 5000	Stack
DS = 2000	Data
ES = 7000	Extra

Segment	Offset	Special Purpose
CS	IP	Instruction Address
SS	SP or BP	Stack Address
DS	BX, DI, SI, an 8-bit number, a 16-bit number	Data Address
ES	DI for string Instructions	String Destination Address

CEN433 - King Saud University

CEN433 - King Saud University

CEN433 - King Saud University

CEN433 - King Saud University

Examp	le 9:				St	ack Segment (SS)
MOV	AX, 5000H	1	50000		◀	5000
MOV	SS, AX	Stack				BP - 0014H
MOV	BP, 14H	Segment	50014	11		
MOV	[BP], AL		5FFFF			
					1	1 AL

Structure of Assembly Programs

DATA VAR1 VAR2 DATA	NAMEPROJECTSEGMENTAT40HORG0HDB?DB?ENDS
; STACK	SEGMENT AT 50H DW 10 DUP(?)
STK_TOP STACK	LABEL WORD ENDS
; EPROM	SEGMENT AT OFEOOH ASSUME CS:EPROM, DS:DATA, SS:STACK ORG OH
BEGIN	LABEL FAR MOV AX, DATA MOV DS, AX
EPROM	ENDS
CODE	SEGMENT AT OFFFFH ASSUME CS:CODE, SS:STACK
START :	CLI MOV AX, STACK MOV SS, AX MOV SP, OFFSET STK_TOP JMP BEGIN
CODE	ENDS
END	STAKT

CEN433 - King Saud University

RAM Mapping

CEN433 - King Saud University

Stack Segment

Example

	NAME PROJECT
DATA	SEGMENT AT 40H
	ORG 0H
VAR1	DB 5H
VAR2	DB 6H
VAR3	DB ?
DATA	ENDS
; Stack	SECMENT AT 50H
DIACK	10 pm
SUR TOD	
STACK	FNDS
, EPROM	SEGMENT AT OFEOOH
	ASSUME CS:EPROM, DS:DATA, SS:STACK
	ORG 0H
BEGIN	LABEL FAR
	MOV AX, DATA
	MOV DS, AX
	MOV AL, VAR1
	ADD AL, VAR2
	MOV VAR3, AL
AGAIN:	JMP AGAIN
EPROM	ENDS
; CODE	SEGMENT AT OFFFFH
	ASSUME CS:CODE, SS:STACK
	ORG OH
START:	CLI
	MOV AX, STACK
	MOV SS,AX
	MOV SP, OFFSET STK TOP
	JMP BEGIN
CODE	ENDS
END	START

Example (Cont'd)

Description	Value
DS	40H
SS	50H
STK_TOP	514H
SP	14H
Absolute Address of VAR1	400H
Absolute Address of VAR3	402H
Value stored in VAR3 after executing the program	ВН
EPROM Size	8KB

CEN433 - King Saud University

Bus Timing

- A data transfer operation to/from the microprocessor occupies at least one bus cycle
- Each bus cycle consists of 4 clock cycles, T1, T2, T3, T4, each of period T
- With 5 MHz processor clock:
- T = 1/5 MHz = 0.2 ms
- Bus cycle = 4 T = 0.8 ms
- Max rate for memory and I/O transactions = 1/0.8 = 1.25 M operations per sec (Fetch speed).
- Processor executes 2.5 Million Instructions per sec (MIPS) (Execute speed)

Timing Waveforms (Read Bus Cycle)

CEN433 - King Saud University

Timing Waveforms (Write Bus Cycle)

CEN433 - King Saud University

BUS TIMING-MINIMUM MODE SYSTEM

CEN433 - King Saud University

BUS TIMING-MINIMUM MODE SYSTEM

CEN433 - King Saud University

BUS TIMING—MINIMUM MODE SYSTEM (Continued)

4. Signals at 8284 are shown for reference only.

5. All timing measurements are made at 1.5V unless otherwise noted.

CEN433 - King Saud University

BUS TIMING—MINIMUM MODE SYSTEM (Continued)

4. Signals at 8284 are shown for reference only.

5. All timing measurements are made at 1.5V unless otherwise noted.

CEN433 - King Saud University

The 8088 Timing Parameters

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS

Gumbal	Deveneter	8088		8088-2		Unite	Test	
Symbol	Parameter	Min	Max	Min	Max	Units	Conditions	
TCLCL	CLK Cycle Period	200	500	125	500	ns		
TCLCH	CLK Low Time	118		68		ns		
TCHCL	CLK High Time	69		44		ns		
TCH1CH2	CLK Rise Time		10		10	ns	From 1.0V to 3.5V	
TCL2CL2	CLK Fall Time		10		10	ns	From 3.5V to 1.0V	
TDVCL	Data in Setup Time	30		20		ns		
TCLDX	Data in Hold Time	10		10		ns		
TR1VCL	RDY Setup Time into 8284 (Notes 1, 2)	35		35		ns		
TCLR1X	RDY Hold Time into 8284 (Notes 1, 2)	0		0		ns		
TRYHCH	READY Setup Time into 8088	118		68		ns		
TCHRYX	READY Hold Time into 8088	30		20		ns		
TRYLCL	READY Inactive to CLK (Note 3)	-8		-8		ns		
THVCH	HOLD Setup Time	35		20		ns		
TINVCH	INTR, NMI, TEST Setup Time (Note 2)	30		15		ns		
тіцн	Input Rise Time (Except CLK)		20		20	ns	From 0.8V to 2.0V	
TIHIL	Input Fall Time (Except CLK)		12		12	ns	From 2.0V to 0.8V	

The 8088 Timing Parameters

TIMING RESPONSES

	-	8088		8088-2			Test	
Symbol	Parameter	Min	Max	Min	Max		Conditions	
TCLAV	Address Valid Delay	10	110	10	60	ns		
TCLAX	Address Hold Time	10		10		ns		
TCLAZ	Address Float Delay	TCLAX	80	TCLAX	50	ns		
TLHLL	ALE Width	ALE Width TCLCH-20 TCLCH-10			ns			
TCLLH	ALE Active Delay		80		50	ns		
TCHLL	ALE Inactive Delay		85		55	ns		
TLLAX	Address Hold Time to ALE Inactive	TCHCL-10		TCHCL-10		ns		
TCLDV	Data Valid Delay	10	110	10	60	ns		
TCHDX	Data Hold Time	10		10		ns		
TWHDX	Data Hold Time after \overline{WR}	TCLCH-30		TCLCH-30		ns		
TCVCTV	Control Active Delay 1	10	110	10	70	ns		
TCHCTV	Control Active Delay 2	10	110	10	60	ns		
TCVCTX	Control Inactive Delay	10	110	10	70	ns		
TAZRL	Address Float to READ Active	0		0		ns		
TCLRL	RD Active Delay	10	165	10	100	ns		
TCLRH	RD Inactive Delay	10	150	10	80	ns		
TRHAV	RD Inactive to Next Address Active	TCLCL-45		TCLCL-40		ns		
TCLHAV	HLDA Valid Delay	10	160	10	100	ns		
TRLRH	RD Width	2TCLCL-75		2TCLCL-50		ns		
TWLWH	WR Width	2TCLCL-60		2TCLCL-40		ns		
TAVAL	Address Valid to ALE Low	TCLCH-60		TCLCH-40		ns		
TOLOH	Output Rise Time		20		20	ns	From 0.8V to 2.0V	
TOHOL	Output Fall Time		12		12	ns	From 2.0V to 0.8V	

Minimum Mode 8088 System

The 8088-2 Timing Waveforms (Minimum Mode)

CEN433 - King Saud University

Interfacing EPROM to 8088-2

CEN433 - King Saud University

Demultiplexing the 8088 Microprocessor

CEN433 - King Saud University

Fully Buffered 8088 Microprocessor

CEN433 - King Saud University

Demultiplexing the 8086 Microprocessor

CEN433 - King Saud University

Fully Buffered 8086 Microprocessor

CEN433 - King Saud University

Buffering

- Since the microprocessor output pins provide minimum drive current at the 0 logic level, buffering is often needed if more TTL loads are connected to any bus signal: Consider 3 types of signals.
- For demuxed signals: Latches used for demuxing, e.g. '373, can also provide the buffering for the demuxed lines:
 - \Box 0-level output can sink up to 32 mA (20 x 1.6 mA loads)
 - \Box 1-Level output can source up to 5.2 mA (1 load = 40 mA)
- For non-demuxed unidirectional (always output) address and control signals (e.g. A8-15 on the 8088), buffering is required- often using the 74ALS244 (unidirectional) buffer.
- For non-demuxed bidirectional data signals (pin used for both in and out), buffering is often accomplished with the 74ALS245 <u>bidirectional</u> bus buffer.
- Caution: Buffering introduces a small delay in the buffered signals. This is acceptable unless memory or I/O devices operate close to the maximum bus speed

SN54LS373, SN54LS374, SN54S373, SN54S373, SN54S374, SN74LS373, SN74LS374, SN74S373, SN74S374 OCTAL D-TYPE TRANSPARENT LATCHES AND EDGE-TRIGGERED FLIP-FLOPS

- Choice of Eight Latches or Eight D-Type Flip-Flops in a Single Package
- 3-State Bus-Driving Outputs
- Full Parallel Access for Loading
- Buffered Control Inputs
- Clock-Enable Input Has Hysteresis to Improve Noise Rejection ('\$373 and '\$374)
- P-N-P Inputs Reduce DC Loading on Data Lines ('S373 and 'S374)

L

Н

L

Х

Х

Х

Q0

Ζ

SN54LS373, SN54LS374, SN54S373, SN54S374, SN74LS373, SN74LS374, SN74S373, SN74S374 OCTAL D-TYPE TRANSPARENT LATCHES AND EDGE-TRIGGERED FLIP-FLOPS

SDLS165B - OCTOBER 1975 - REVISED AUGUST 2002

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see Figure 2)

	FROM	то	TEST CONDITIONS		'S373			'S374		
FARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
f _{max}			R _L = 280 Ω, C _L = 15 pF, See Note 3				75	100		MHz
tPLH	Data	Any O	RL = 280 Ω, CL = 15 pF,		7	12				ne
tPHL	Data	Any Q	See Note 3 7		12				115	
^t PLH	CorCLK	Any O	RL = 280 Ω, CL = 15 pF,		7	14		8	15	2
^t PHL	COLC	Any Q	See Note 3		12	18		11	17	115
^t PZH		Apy O	RL = 280 Ω, CL = 15 pF,		8	15		8	15	50
^t PZL	00	Any Q	See Note 3		11	18		11	18	115
^t PHZ	0	Amy O			6	9		5	9	50
^t PLZ	OC	Any Q	κ _L – 200 32, CL – 5 pr		8	12		7	12	115

NOTE 3. Maximum clock frequency is tested with all outputs loaded.

fmax = maximum clock frequency

tpl H = propagation delay time, low-to-high-level output

tpHI = propagation delay time, high-to-low-level output

CEN433 - King Saud University

tp7H = output enable time to high level

tp71 = output enable time to low level

tPH7 = output disable time from high level

tp1 7 = output disable time from low level

SN54LS240, SN54LS241, SN54LS244, SN54S240, SN54S241, SN54S244 SN74LS240, SN74LS241, SN74LS244, SN74S240, SN74S241, SN74S244 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS

SDLS144B - APRIL 1985 - REVISED FEBRUARY 2002

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- PNP Inputs Reduce DC Loading
- Hysteresis at Inputs Improves Noise Margins

SN54LS240, SN54LS241, SN54LS244, SN54S240, SN54S241, SN54S244 SN74LS240, SN74LS241, SN74LS244, SN74S240, SN74S241, SN74S244 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS

SDLS144B - APRIL 1985 - REVISED FEBRUARY 2002

switching characteristics, V_{CC} = 5 V, T_A = 25°C

PADAMETED	TEST CONDITIONS		'LS240			'LS241, 'LS244			LINIT
PARAMETER	TEST CONDITIONS			TYP	MAX	MIN	TYP	MAX	UNIT
t _{PLH}	Di = 667 O	0 IF F		9	14		12	18	
t _{PHL}	RL - 007 22,	CL = 45 pF		12	18		12	18	ns
t _{PZL}	Pt = 667 O	L = 667 Ω, CL = 45 pF		20	30		20	30	
^t PZH	NL - 007 32,			15	23		15	23	115
tPLZ	P 667 O	С _L = 5 рF		10	20		10	20	
^t PHZ	NL - 007 32,			15	25		15	25	115

SN54LS245, SN74LS245 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SDLS146A - OCTOBER 1976 - REVISED FEBRUARY 2002

- 3-State Outputs Drive Bus Lines Directly
- PNP Inputs Reduce dc Loading on Bus Lines
- Hysteresis at Bus Inputs Improves Noise Margins
- Typical Propagation Delay Times Port to Port, 8 ns

Mohammed Amer Arafah

SN54LS245, SN74LS245 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SDLS146A – OCTOBER 1976 – REVISED FEBRUARY 2002

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

switching characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER		TEST CO	MIN	TYP	MAX	UNIT	
^t PLH	Propagation delay time, low- to high-level output	0 45 pF	$D_{1} = 667.0$		8	12	
^t PHL	Propagation delay time, high- to low-level output	С <u>Г</u> – 45 рг,	RL - 007 22		8	12	ns
t _{PZL}	Output enable time to low level	Ci = 45 pE	$P_{1} = 667.0$		27	40	50
^t PZH	Output enable time to high level	С <u>Г</u> – 45 рг,	RL - 007 22		25	40	115
^t PLZ	Output disable time from low level	$C_{1} = 5 \text{ pE}$	R. = 667.0		15	25	DC
^t PHZ	Output disable time from high level	Ο _L – 5 pr,	NL - 007 52		15	28	115