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Abstract Systems of high-dimensional nonlinear ordinary differential equations play a significant

role in Physics and applied sciences including big-data optimization, financial models, epidemic dis-

ease models. In this paper, we are concerned with numerical solutions of Bao’s system that is a 4-

dimensional hyperchaotic system introduced by Bo-Cheng and Zhong (2008). We solve the Bao’s

system with both the Crank-Nicolson and power series methods. Crank-Nicolson method is even-

tually evolved into a new system whose solution is presented in a quite neat algorithmic manner. By

adding standard Brownian motion to each term in the model, we express the Bao’s system as a sys-

tem of stochastic differential equations. We solve the stochastic system with an Euler-type approx-

imate solution method. By adding noise and expressing time derivatives with Caputo-type fractional

derivative, we study on synchronization and parameter estimation of the models. To the best of our

knowledge, Bao’s system has not been numerically solved with the methods employed in this paper

previously, and this paper considers fractional and stochastic Bao’s system for the first time in the

history of research. Techniques employed by us in this paper may serve as a framework for solu-

tions of many other systems of ordinary differential equations including Lorenz types and epidemic

models.
� 2020 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

High-dimensional and generalized systems of ordinary differ-
ential equations (stochastic, fractional and deterministic ones)

appear and employed in modeling of many different phenom-
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ena in physics, engineering and applied sciences. Finding exact
solutions of these nonlinear system of equations are impossible
to obtain most of the time. Hence, approximate or numerical

solutions of these systems are significantly important and use-
ful tools in computational modern science. In the theory of
high-dimensional systems of differential equations, studying

solutions of problems such as chaos analysis, parameter esti-
mation and identification, synchronization, optimal control
problems associated with system of differential equations are

quite active and significant research areas. Exact solutions of
nonlinear system of ordinary differential equations having
constant and variable coefficients is still challenging and signif-
icant area of research. For the numerical solutions of these

types of systems of equations, a few methods like Taylor,
Euler, Runge-Kutta have been developed in related scientific
literature. There are many books and articles studying numer-

ical solutions of systems of ODEs and PDEs, for instance, one
can take a look at [10,12] among many other related good
research works. The book [13] by Coddington and Levinson

study theory of ODEs and systems of ODEs in a detailed
and consistent manner.

Hyper-chaotic systems plays a significant role and have a

broad range of applications, for instance, one can see the
research works in [4–8,33–36] for other related studies in con-
junction with present paper. In this paper, our major concerns
are numerical solutions, parameter estimation, synchroniza-

tion analysis of a 4-dimensional hyperchaotic system, namely,
Bao’s system, in determinstic, stochastic, fractional settings.
Solution techniques employed in this paper may be applied

to some nonlinear systems of differential equations appearing
in energy control problems, financial mathematics including
pension funds, insurance mathematics and cell signalling, sys-

tem biology and epidemic models.
Lorenz-like systems (e.g., [5,7,8]) consist of nonlinear sys-

tems of ordinary differential equations having applications in

the modeling of many different phenomena in meteorology,
reactions in chemistry and biology, DC motors and so on.
Analysis of chaotic behaviors of these systems of equations
have been studied extensively. Hyperchaotic Bao system is a

4-dimensional Lorenz like system consisting of nonlinear ordi-
nary differential equations introduced in [1]. The authors stud-
ied this model as a hyperchaotic attractor from the Lü’s model.

Some research works regarding solutions and analysis of Lü’s
model may be seen, for example, in [6]. Vaidyanathan and
Rasappan studied [2] chaos synchronization of Bao’s system

with an active nonlinear control. The 4-dimensional determin-
istic ODE system known as Bao’s system is described as:

_x1 tð Þ ¼ ax2 tð Þ � ax1 tð Þ þ x4 tð Þ;
_x2 tð Þ ¼ cx2 tð Þ � x1 tð Þx3 tð Þ; ð1Þ
_x3 tð Þ ¼ x1 tð Þx2 tð Þ � bx3 tð Þ;
_x4 tð Þ ¼ kx1 tð Þ þ dx2 tð Þx3 tð Þ;
where a; b; c; d; k are parameters and xi tð Þ terms are time
dependent state variables. In the next section, we consider
fractional-order Bao’s system in which we investigate chaotic

behavior of this system.

2. Fractional-order Bao’s system

In recent two decades, research works regarding applications
of fractional-order calculus (e.g. [25,26]) became a significant
Please cite this article in press as: M. Inc et al., Solutions of fractional-stochastic Ba
research area for scientists and engineers (e.g. see, [28–31,37–
39]). It is because scientific events modeled by fractional-
order derivatives and integrals take into account historical

effects of events under consideration at each time step, and
evaluates local changes in the systems more correctly than
deterministic operators do. Fractional-order mathematics is

a branch of differential equations and calculus generated
by the fractional-order operators. Riemann-Liouville,
Caputo, Atangana-Baleanu, Grünwald-Letnikov are some

of the most popular fractional operators, see, [32]. In this
section, we consider derivatives on the left-hand-side of sys-
tem (1) as a Caputo-type time derivative which is described
as follows:

Definition 2.1. Let a; c; t be real numbers with a > 0; t > c. The
operator

Da
t f tð Þ ¼

1

C n� að Þ
Z t

c

fn yð Þ
t� yð Þa�nþ1 dy; n� 1 < a < n;

is called a fractional derivative of order a of the function f in
the Caputo sense, where n is an integer and C �ð Þ is the
Gamma function. One can comprise boundary and initial

supplementary conditions in a model via caputo-type deriva-
tive and Caputo-type derivative of a constant is 0 which
make the Caputo-type derivative more advantageous over

the other fractional derivative operators. [23] may be given
as a reference guide for fundamental properties of fractional
operators.

Letting a ¼ 2; b ¼ c ¼ k ¼ 1; d ¼ �1 in the system (1), we
express the fractional-order Bao’s system as

Da
t x1 tð Þ ¼ 2x2 tð Þ � 2x1 tð Þ þ x4 tð Þ;

Da
t x2 tð Þ ¼ x2 tð Þ � x1 tð Þx3 tð Þ; ð2Þ

Da
t x3 tð Þ ¼ x1 tð Þx2 tð Þ � x3 tð Þ;

Da
t x4 tð Þ ¼ x1 tð Þ � x2 tð Þx3 tð Þ:

The fixed points (steady-state points or equilibrium points) of

the fractional-order system (2) are obtained by letting the
right-hand-side of the system equal to 0. Hence, the fixed point

is determined as F�0 ¼ x�1; x
�
2; x

�
3; x

�
4

� � ¼ 1;�1;�1; 4ð Þ. Stability
criteria for the fractional-order system (2) is given either by the
following Theorem or Routh-Hurwitz stability criteria [24].

Theorem 1. For n-dimensional fractional-order dynamical

systems of order a, if all eigenvalues k1; . . . ; knð Þ of the Jaco-
bian matrix of an equilibrium point satisfy the condition:

jarg kið Þj > ap
2
; a ¼ max a1; . . . ; anf g; i ¼ 1; . . . ; n;

then, the fractional dynamical system is locally asymptotically
stable at that steady-state point.

The Jacobian matrix of fractional-order Bao’s system is

determined in F�0 as

J 1;�1;�1; 4ð Þ ¼

�2 2 0 1

1 1 �1 0

�1 1 �1 0

1 1 1 0

2
6664

3
7775: ð3Þ

From the characteristic equation
det J 1;�1;�1; 4ð Þ � kI4�4ð Þ ¼ 0, we obtain the eigenvalues as

k1 ¼ Aþ B; k2 ¼ A� B; k3 ¼ Aþ iC; k4 ¼ A� iC; where
o’s system, Alexandria Eng. J. (2020), https://doi.org/10.1016/j.aej.2020.09.018
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A ¼ � 1

2
; B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 8

ffiffiffi
2
pp

2
; C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�9þ 8

ffiffiffi
2
pp

2
:

Now, it is clear that

k1 ¼ � 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 8

ffiffiffi
2
pp

2

is a positive real number located on the positive real axis. This
implies that

0 ¼ jarg k1ð Þj < ap
2

for all 0 < a < 1:

Therefore, the fractional-order Bao’s system (2) is locally

asymptotically unstable in F�0 ¼ 1;�1;�1; 4ð Þ and demon-

strates chaotic behavior in this equilibrium point. It is possible
to study chaos analysis of the system for different parameter
values, hence, one can follow similar steps to analyses chaotic
behavior in some other steady-state points.

3. Power series solutions of Bao’s system

Power series solutions of systems of differential equations is an

efficient and a classical solution method in the modern science
and engineering applications of mathematics. In this section,
we solve the deterministic Bao’s model via a classical power

series method. Next, we describe and apply the power series
method.

Let us express state variables x1 tð Þ; x2 tð Þ; x3 tð Þ; x4 tð Þ of sys-
tem (1) in terms of power series as follows:

x1 tð Þ ¼
X1
n¼0

ant
n;

x2 tð Þ ¼
X1
n¼0

bnt
n;

ð4Þ

x3 tð Þ ¼
X1
n¼0

cnt
n;

x4 tð Þ ¼
X1
n¼0

dnt
n;

where an; bn; cn; dn are the coefficients to be determined. Writ-
ing the notations in (4) into system (1), we obtain new system
of equations:

X1
n¼0

nþ 1ð Þanþ1tn ¼
X1
n¼0

a bn � anð Þ þ dnð Þtn;

X1
n¼0

nþ 1ð Þbnþ1tn ¼
X1
n¼0

cbn �
Xn
k¼0

an�kck

 !
tn;

ð5Þ

X1
n¼0

nþ 1ð Þcnþ1tn ¼
X1
n¼0

Xn
k¼0

an�kbk � bcn

 !
tn;

X1
n¼0

nþ 1ð Þdnþ1tn ¼
X1
n¼0

kan þ d
Xn
k¼0

bn�kck

 !
tn;

from which we easily obtain the recursive system of equations
of coefficients as

anþ1 ¼ 1
nþ1 a bn � anð Þ þ dnð Þ;

bnþ1 ¼ 1
nþ1 cbn �

Xn
k¼0

an�kck

 !
;

ð6Þ
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cnþ1 ¼ 1
nþ1

Xn
k¼0

an�kbk � bcn

 !
;

dnþ1 ¼ 1
nþ1 kan þ d

Xn
k¼0

bn�kck

 !
;

for n ¼ 0; 1; 2; 3; . . . We assume that the parameters a; b; c; d,
and initial coefficients a0; b0; c0; d0 of an; bn; cn; dn, respectively,
are given or known. By having these constants, we obtain solu-
tions x1 tð Þ; x2 tð Þ; x3 tð Þ; x4 tð Þ. In the next section we solve the

deterministic Bao’s system via Crank-Nicolson method.

4. Solutions of Bao’s system by Crank-Nicolson method

Crank-Nicolson method is an efficient and powerful numerical
solution technique. This method has been applied to the com-
putational solutions of many different types of differential
equations like ordinary, partial, fractional and stochastic in

the literature. Interested reader may take a look at any well-
written numerical analysis book to be familiarized with the
algorithmic structure of Crank-Nicolson method, for instance,

to [9]. In this paper, we apply Crank-Nicolson method to Bao’s
4-dimensional system. By applying Crank-Nicolson method to
the Bao’s system (1), we obtain that:

xnþ1
1
�xn

1

Dt ¼ ax
nþ1

2
2 � ax

nþ1
2

1 þ x
nþ1

2
4 ;

xnþ1
2
�xn

2

Dt ¼ cx
nþ1

2
2 � x1x3ð Þnþ1

2;
ð7Þ

xnþ1
3
�xn

3

Dt ¼ x1x2ð Þnþ1
2 � bx

nþ1
2

3 ;

xnþ1
4
�xn

4

Dt ¼ kx
nþ1

2
1 þ d x2x3ð Þnþ1

2:

By using the following approximation to the right-hand of sys-

tem (7), we obtain a new system as

xnþ1
1
�xn

1

Dt ¼ 1
2
a xn

2 þ xnþ1
2

� �� a xn
1 þ xnþ1

1

� �þ xn
4 þ xnþ1

4

� �
;

xnþ1
2
�xn

2

Dt ¼ 1
2
c xn

2 þ xnþ1
2

� �� xn
1x

n
3 � xnþ1

1 xnþ1
3

� �
;

ð8Þ

xnþ1
3
�xn

3

Dt ¼ 1
2
xn
1x

n
2 þ xnþ1

1 xnþ1
2 � b xn

3 þ xnþ1
3

� �� �
;

xnþ1
4
�xn

4

Dt ¼ 1
2
k xn

1 þ xnþ1
1

� �þ d xn
2x

n
3 þ xnþ1

2 xnþ1
3

� �� �
:

�
Letting X1 :¼ xnþ1

1 ; X2 :¼ xnþ1
2 ; X3 :¼ xnþ1

3 ; X4 :¼ xnþ1
4 ;

X
1ð Þ
1 :¼ xn

1; X
1ð Þ
2 :¼ xn

2; X
1ð Þ
3 :¼ x

nð Þ
3 ; X

1ð Þ
4 :¼ x

nð Þ
4 , we write

system (8) as follows:

SX1
X1;X2;X3;X4ð Þ :¼ X1 � X

1ð Þ
1

� Dt
2

a X
1ð Þ
2 þ X2

� �
� a X

1ð Þ
1 þ X1

� �
þ X

1ð Þ
4 þ X4

h i
¼ 0;

SX2
X1;X2;X3;X4ð Þ :¼ X2 � X

1ð Þ
2

� Dt
2

c X
1ð Þ
2 þ X2

� �
� X

1ð Þ
1 X

1ð Þ
3 � X1X3

h i
¼ 0;

ð9Þ
SX3

X1;X2;X3;X4ð Þ :¼ X3 �X
1ð Þ
3 � Dt

2
X

1ð Þ
1 X

1ð Þ
2 þX1X2 � b X

1ð Þ
3 þX3

� �h i
¼ 0;

SX4
X1;X2;X3;X4ð Þ :¼ X4 �X

1ð Þ
4 � Dt

2
k X

1ð Þ
1 þX1

� �
þ d X

1ð Þ
2 X

1ð Þ
3 þX2X3

� �h i
¼ 0:

Assume that X�1 ;X
�
2 ;X

�
3 ;X

�
4 are approximations to

X1;X2;X3;X4, in order. Solving the system (9) with respect to
the unknowns X1;X2;X3;X4, we get a new system:

X1 tð Þ ¼ X
1ð Þ
1
þDt

2 a X
1ð Þ
2
þX�

2ð Þ�aX 1ð Þ
1
þX 1ð Þ

4
þX�

4½ �
1þaDt2

;

X2 tð Þ ¼ X
1ð Þ
2
þDt

2
cX

1ð Þ
2
�X 1ð Þ

1
X

1ð Þ
3
�X�

1
X�
3½ �

1�cDt2
;

ð10Þ
o’s system, Alexandria Eng. J. (2020), https://doi.org/10.1016/j.aej.2020.09.018
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X3 tð Þ ¼ X
1ð Þ
3
þDt

2 X
1ð Þ
1

X
1ð Þ
2
þX�

1
X�
2
þbX 1ð Þ

3½ �
1�bDt2

;

X4 tð Þ ¼ X
1ð Þ
4 þ Dt

2
k X

1ð Þ
1 þ X�1

� �
þ d X

1ð Þ
2 X

1ð Þ
3 þ X�2 X

�
3

� i
:

h
Let us notice that one must update the state variables as

X�1  X1; X
�
2  X2; X

�
3  X3; X

�
4  X4

before each recursion.

Next we express the system S :¼ S SX1
;SX2

;SX3
;SX4

ð Þ as
S wð Þ :¼ 0 with w ¼ X1;X2;X3;X4ð Þ. Hence, the Jacobian
matrix of Newton’s method,

J ¼

@
@X1

SX1

@
@X2

SX1

@
@X3

SX1

@
@X4

SX1

@
@X1

SX2

@
@X2

SX2

@
@X3

SX2

@
@X4

SX2

@
@X1

SX3

@
@X2

SX3

@
@X3

SX3

@
@X4

SX3

@
@X1

SX4

@
@X2

SX4

@
@X3

SX4

@
@X4

SX4

2
666664

3
777775;

is clearly represented by

J ¼

1þ Dt
2
a � Dt

2
a 0 � Dt

2
Dt
2
X3 1þ Dt

2
c Dt

2
X1 0

� Dt
2
X2 � Dt

2
X1 1þ Dt

2
b 0

� Dt
2
k � Dt

2
dX3 � Dt

2
dX2 1

2
6664

3
7775:

The Newtonian system of equations looks as follows:

J w�ð Þdw ¼ �S w�ð Þ;
which must be solved in each recursion, is hence expressed as

J X�1 ;X
�
2 ;X

�
3 ;X

�
4

� � dX1

dX2

dX3

dX4

2
6664

3
7775 ¼ �S X�1 ;X

�
2 ;X

�
3 ;X

�
4

� �
:

We can state Newton’s method of solution as an algorithm:
Fig. 1 Phase diagra

Please cite this article in press as: M. Inc et al., Solutions of fractional-stochastic Ba
Given that S wð Þ ¼ 0 and an initial guess point

w� ¼ X�1 ;X
�
2 ;X

�
3 ;X

�
4

� �
, iterate the algorithm until it

converges:

i. Solve J w�ð Þdw ¼ �S w�ð Þ with respect to dw,
ii. Update w as w :¼ w� þ �dw,
iii. w�  w,

where � is an arbitrarily small positive number. In the
Figs. 1–6, we illustrate behavior of the system discretized by
Crank-Nicolson method for different discretization values.

Fig. 7 demonstrates time series analysis of the system on differ-
ent coordinate planes.

5. Numerical solutions of stochastic Bao’s system

Stochastic differential equations and their systems, e.g.,
[16,17], are quite useful and significant types of differential

equations mostly used in the modeling of systems involving
noise, uncertainty, and randomness in coefficients, or in the
supplementary conditions of the equation. A popular and
introductory book written about stochastic differential equa-

tions is [14] by Oksendal. Higham’s paper [11] presents some
numerical methods for the solution of systems of stochastic
differential equations. In this section, firstly, let us write the

deterministic Bao’s system (1) as

dX tð Þ ¼ a X tð Þð Þdt;
where

X tð Þ ¼

X1 tð Þ
X2 tð Þ
X3 tð Þ
X4 tð Þ

2
6664

3
7775; ð11Þ
m in x1x2 plane.

o’s system, Alexandria Eng. J. (2020), https://doi.org/10.1016/j.aej.2020.09.018
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Fig. 2 Phase diagram in x1x3 plane.

Fig. 3 Phase diagram in x1x4 plane.

Solutions of fractional-stochastic Bao’s system 5
and a X tð Þð Þ is the right-hand side of the system (1), i.e.,

a X tð Þ; tð Þ ¼

aX2 tð Þ � aX1 tð Þ þ X4 tð Þ
cX2 tð Þ � X1 tð ÞX3 tð Þ
X1 tð ÞX2 tð Þ � bX3 tð Þ
kX1 tð Þ þ dX2 tð ÞX3 tð Þ

2
6666664

3
7777775
: ð12Þ
Please cite this article in press as: M. Inc et al., Solutions of fractional-stochastic Ba
We perturb the Bao’s system (1) from deterministic to a
stochastic system by adding white noise which is written as a

derivative of a standard Brownian motion under the assump-
tion that each term in Bao’s system includes some random
terms or state variables are random variables. The terms in
Bao’s system may involve some random terms bacause, for

example, Bao’s system may be subject to some uncertain
effects. In this case we add �iXi tð ÞdWi tð Þ to the right hand side
o’s system, Alexandria Eng. J. (2020), https://doi.org/10.1016/j.aej.2020.09.018
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Fig. 4 Phase diagram in x2x4 plane.

Fig. 5 Phase diagram in x3x4 plane.

6 M. Inc et al.
of each term in a X tð Þ; tð Þ. Therefore, we state stochastic Bao’s
system as

dX tð Þ ¼ a X tð Þ; tð Þdtþ b X tð Þ; tð ÞdW tð Þ with X t0ð Þ ¼ X0; t

2 t0; tf
� �

; ð13Þ

where X tð Þ is defined in (11), a X tð Þ; tð Þ is a function known as
drift coefficient (a is a deterministic and continuous vector val-
Please cite this article in press as: M. Inc et al., Solutions of fractional-stochastic Ba
ued function) defined in (12), b is a random or uncertain con-
tinuous vector function, and

b X tð Þð Þ ¼

�1X1 tð Þ
�2X2 tð Þ
�3X3 tð Þ
�4X4 tð Þ

2
66664

3
77775; ð14Þ
o’s system, Alexandria Eng. J. (2020), https://doi.org/10.1016/j.aej.2020.09.018
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Fig. 6 Phase diagram in x1x2x3 space.

Fig. 7 Time-series representation of the model on different planes.

Solutions of fractional-stochastic Bao’s system 7
where the terms, �i, are arbitrarily small positive real numbers.
Before we present stochastic Bao’s system, let us give the def-

inition of standard Brownian motion. A Wiener process or
standard Brownian motion, eg. [18], is a stochastic process
Stð ÞtP0 defined on a probability space X;F;Pð Þ with assets:

i. S0 ¼ 0,
ii. the function t # St is a continuous function with proba-

bility 1,
Please cite this article in press as: M. Inc et al., Solutions of fractional-stochastic Ba
iii. the increments Stþn � St have a the normal N 0; nð Þ
distribution.

Independent increments mean St � Sl and Sk � Sm are inde-
pendent random variables for 0 6 l 6 t 6 m 6 k. Detailed

information regarding standard Brownian motion might be
obtained from [14]. We write stochastic Bao’s system explicitly
as follows:
o’s system, Alexandria Eng. J. (2020), https://doi.org/10.1016/j.aej.2020.09.018
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dX1 tð Þ ¼ aX2 tð Þ � aX1 tð Þ þ X4 tð Þð Þdtþ �1X1 tð ÞdW1 tð Þ;
dX2 tð Þ ¼ cX2 tð Þ � X1 tð ÞX3 tð Þð Þdtþ �2X2 tð ÞdW2 tð Þ;

ð15Þ
dX3 tð Þ ¼ X1 tð ÞX2 tð Þ � bX3 tð Þð Þdtþ �3X3 tð ÞdW3 tð Þ;
dX4 tð Þ ¼ kX1 tð Þ þ dX2 tð ÞX3 tð Þð Þdtþ �4X4 tð ÞdW4 tð Þ;
where t is a positive number and Wi tð Þ is a standard Brownian
motion.

We can write (13) in the integral form as

X tð Þ ¼ X0 þ
Z t

to

a X sð Þ; sð Þdsþ
Z t

t0

b X sð Þ; sð ÞdW sð Þ: ð16Þ

Notice that the integral
R t

to
a X sð Þ; sð Þds is a Riemann integral

(deterministic) and
R t

t0
b X sð Þ; sð ÞdW sð Þ is a stochastic integral

of Ito type. One can refer to [14] as a detailed study for solu-
tion and analysis of stochastic integrals, amongst many other

references. Regarding the existence and uniqueness of the
solutions of the system (13), we present the following
theorem.

Theorem 1. Assume a; b : t0; tf
� �� Rd # Rd are continuous

functions and satisfy the uniform Lipschitz condition:

ka X tð Þ; tð Þ � a Y tð Þ; tð ÞÞkL2
6 c1 kX tð Þ � Y tð ÞkL2

;

kb X tð Þ; tð Þ � b Y tð Þ; tð ÞÞkL2
6 c2 kX tð Þ � Y tð ÞkL2

;

for all t 2 t0; tf
� �

, and c1; c2 are constants and assume that

expectation E X0ð Þ is not infinite where k � kL2
is a vector norm.

Then, there exists a unique solution of the system of Eqs.
(13). Furthermore, the Linear Growth condition

ka X tð Þ; tð ÞkL2
þ kb X tð Þ; tð ÞkL2

6 M 1þ kx tð ÞkL2

�
ð17Þ

guarantees existence of solution on the interval t0; tf
� �

.

It is obvious that the drift coefficient, b X tð Þ; tð Þ of (13) is a
uniform Lipschitz globally continuous function and also satis-
fies the linear growth condition, 17. Therefore, the system of

the equation given in Eq. (13) has a solution. The research
work in the reference [12] might be considered as an interesting
study on existence-and-uniqueness of solutions of stochastic

differential equations and their systems.
Now, we obtain a numerical solution of (13) with an Euler

type method that is defined for the system (16) as follows: Con-

sider the time discretization of t0; tf
� �

for

t0 ¼ 0 < t1 < . . . < tnþ1 ¼ tf, being nþ 1 discrete time steps:

Zm
nþ1 ¼ Zm

n þ a Zm
n ; tn

� �
tnþ1 � tnð Þ þ b Zm

n ; tn
� �

� Wm tnþ1ð Þ �Wm tnð Þð Þ; ð18Þ
for n ¼ 0; 1; 2; . . . n. Here, Znð Þ is a sequence converging to X
as n approaches to infinity. Next we give a discretization of
each equation in (15). Let us consider the first equation,

dX1 tð Þ ¼ aX2 tð Þ � aX1 tð Þ þ X4 tð Þð Þdtþ �1X1 tð ÞdW1 tð Þ;
of system (15). Applying Euler’s method to this equation, we
get

X1 tiþ1ð Þ ¼ X1 tið Þ þ aX2 tið Þ � aX1 tið Þ þ X4 tið Þð Þ tiþ1 � tið Þ
þ �1X1 tið Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tiþ1 � ti
p

q1 ið Þ;
Please cite this article in press as: M. Inc et al., Solutions of fractional-stochastic Ba
where q1 ið Þ is a normal standard independent random vari-

ables, i.e., q1 ið Þ �N 0; 1ð Þ. Next, let us consider the second
equation,

dX2 tð Þ ¼ cX2 tð Þ � X1 tð ÞX3 tð Þð Þdtþ �2X2 tð ÞdW2 tð Þ;
of system (15). In a similar way, we discretize this equation as

follows:

X2 tiþ1ð Þ ¼ X2 tið Þ þ cX2 tið Þ � X1 tið ÞX3 tið Þð Þ tiþ1 � tið Þ þ �2X2 tið Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tiþ1 � ti
p

q2 ið Þ;

where q2 ið Þ �N 0; 1ð Þ. Thirdly, our discretization of the

equation,

dX3 tð Þ ¼ X1 tð ÞX2 tð Þ � bX3 tð Þð Þdtþ �3X3 tð ÞdW3 tð Þ;
is given by

X3 tiþ1ð Þ ¼ X3 tið Þ þ X1 tið ÞX2 tið Þ � bX3 tið Þð Þ tiþ1 � tið Þ þ �3X3 tið Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tiþ1 � ti
p

q3 ið Þ;

where q3 ið Þ 2N 0; 1ð Þ. Finally, the discretization of the
equation

dX4 tð Þ ¼ kX1 tð Þ þ dX2 tð ÞX3 tð Þð Þdtþ �4X4 tð ÞdW4 tð Þ
is presented as

X4 tiþ1ð Þ ¼ X4 tið Þ þ kX1 tið Þ þ dX2 tið ÞX3 tið Þð Þ tiþ1 � tið Þ
þ �4X4 tið Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tiþ1 � ti
p

q4 ið Þ;
where q3 ið Þ �N 0; 1ð Þ.

6. Parameter estimation in stochastic Bao’s system

In this section, we are concerned with estimation or identifica-

tion of parameters, p :¼ a; b; c; d; �ið Þ; i ¼ 1; 2; 3; 4ð Þ, in the
stochastic Bao’s system in (15). Let us represent the system
(15) as

_X t; pð Þ ¼ F t;X t; pð Þ; pð Þ; for t0 pð Þ 6 t: ð19Þ

Suppose that we have a data set, X
�
tið Þ which is an approximate

value of X ti; p
�ð Þ obtained from some measurements or obser-

vations of the random variables Xi; i ¼ 1; 2; 3; 4. We aim to
estimate the optimal values, p�, of the set of parameters by
minimizing a cost functional such as

C pð Þ :¼
X
i

X
�
tið Þ � X ti; pð Þ

h i2
; ð20Þ

with the conditions that each parameter p P 0 inside of the
domain and p ¼ 0 on the boundaries of the domain. One
may solve this optimization problem with some well-achieved

optimization techniques including sequential quadratic pro-
gramming [20], Levenberg-Marquardt [21], and a gradient-
Hessian based method [22]. In case one needs to use an

gradient-Hessian based technique, the gradient and Hessian
of this cost functional are respectively given by

@C pð Þ
@pj

¼ �2
X
i

X
�
tið Þ � X ti; pð Þ

h i @X ti; pð Þ
@pj

;

@2C pð Þ
@pj@pn

¼ 2
X
i

@X ti; pð Þ
@pj

 !
@X ti; pð Þ

@pn

	 

� X

�
tið Þ � X ti; pð Þ

h i" #
@2X ti; pð Þ
@pj@pn

:

o’s system, Alexandria Eng. J. (2020), https://doi.org/10.1016/j.aej.2020.09.018
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One needs to employ a sensitivity equations approach [15] to

obtain the optimum values of the parameters.

7. Synchronization of fractional-stochastic system

Synchronization of differential equations (e.g. [3,4,27]) is an
important and useful technique to understand the chaotic
behavior of a system. Adaptive, Master-slave, sliding mode,

feedback are some of the well-known synchronization types.
[2] studied master-slave synchronization of deterministic
Bao’system. In this section, we employ a sliding-mode syn-
chronization technique to the fractional-order system (2).

Now, define

Da
t X tð Þ ¼ CX tð Þ þ g X tð Þð Þ þ E X tð Þð Þ _W tð Þ; ð21Þ

where

X tð Þ ¼ X1 tð Þ;X2 tð Þ;X3 tð Þ;X4 tð Þ½ �T; C 2 R4�4; g : R4 # R4 is a

nonlinear function, the smooth function E X tð Þð Þ represents
the intensity of noise and it is assume that jE X tð Þð Þj 6 K for

some K > 0; _W tð Þ ¼ _W1 tð Þ; _W2 tð Þ; _W3 tð Þ; _W4 tð Þ� �
is a noise

vector with mutually independent noises (i.e. _Wi tð Þ and _Wj tð Þ
are statistically independent for any i; j ¼ 1; 2; 3; 4, and
Da

t X tð Þ is Caputo type fractional time derivative of X tð Þ. In a

synchronization analysis, one must determine driving and
response systems. Now, suppose that the fractional-order
Bao’s system (2) is driving system and response system with

controller u tð Þ ¼ u1 tð Þ; u2 tð Þ; u3 tð Þ; u4 tð Þ½ �T is given by

Da
t Y tð Þ ¼ C2Y tð Þ þ g2 Y tð Þð Þ þ u tð Þ; ð22Þ

where

Y tð Þ ¼ Y1 tð Þ;Y2 tð Þ;Y3 tð Þ;Y4 tð Þ½ �T;C2 2 R4�4; g2 : R
4 # R4.

Now, define the error function

f tð Þ ¼ f1 tð Þ; f2 tð Þ; f3 tð Þ; f4 tð Þ½ �T ¼ Y tð Þ � X tð Þ. Under these set-

tings, the main purpose of the sliding-mode control is to min-
imize the error function
kY tð Þ � X tð Þk ¼ kf tð Þk# 0 as ktk#1.

Then, by the systems (21) and (22), we have

Da
t f tð Þ ¼ C2Y tð Þ þ g2 Y tð Þð Þ þ u tð Þ � CX tð Þ � g X tð Þð Þ � E X tð Þð Þ _W tð Þ

¼ C2f tð Þ þH X tð Þ;Y tð Þð Þ � E X tð Þð Þ _W tð Þ þ u tð Þ;

where

H X tð Þ;Y tð Þð Þ ¼ g2 Y tð Þð Þ � g X tð Þð Þ þ C2 � Cð ÞX tð Þ:
Under these settings, synchronization of fractional-stochastic
Bao’s system with Lü system ([6]) may be investigated. In fact,

this algorithm may be applied to some other fractional-
stochastic differential equations, eg. [19], as well.

8. Conclusions and outlook

Many problems arising in physics, cyber security, finance,
actuarial sciences, pension fund systems, game theory, neuro-

science, information sciences, marketing and internal market-
ing are modeled by means of nonlinear systems of ordinary
differential equations. In the theory of differential equations,

there is not a standard or general method which can be applied
to the solutions of systems of equations efficiently. The tech-
niques applied to approximate solutions of Bao’s system in this
paper may serve as a general framework to the solutions of the

systems appearing in many different disciplines. In this paper,
Please cite this article in press as: M. Inc et al., Solutions of fractional-stochastic Ba
we were interested in chaos analysis, parameter estimation and
numerical solutions of fractional-stochastic Bao’s systems. We
solved the Bao’s system with both Crank-Nicolson and Power

series methods in the deterministic case. By adding standard
Brownian motion to each term in the Bao’s system, we express
the Bao’s system as a system of stochastic differential equa-

tions. We solve the resulting stochastic system with an Euler
type numerical method. To the best of our knowledge, Bao’s
system has not been numerically solved with the methods

employed in this paper previously and this paper considers
the fractional-order and stochastic Bao’s systems first time in
the literature. Techniques applied to the solutions of determin-
istic and stochastic Bao’s systems might be applied to some

other nonlinear models appearing in engineering and science
as well. In a future extension of this work, we will investigate
the applicability of techniques employed in this paper to the

systems appearing in quantum theory, physics and all disci-
plines of the modern engineering.
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