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Abstract

A least-squares minimization approach to determine the shape of a buried polarized body from a self-potential (SP) anomaly

profile has been developed. By defining the anomaly value at three points on the profile, one at the origin and the others at any

two symmetrical points around the origin, the problem of the shape-factor determination is transformed into the problem of

finding a solution of a nonlinear equation. Procedures are also formulated to complete the quantitative interpretation by finding

the depth, polarization angle, and the electric dipole moment. The validity of the new proposed method has been tested on

synthetic data with and without random noise. The obtained parameters are in congruence with the model parameters when

using noise free synthetic data. After adding F 5% random error in the synthetic data, the maximum error in model parameters

is less than F 5%. Moreover, when error in profile origin position determination is studied, the method is approved to be not

sensitive to it. Two oft cited field examples from Turkey have also been analyzed and interpreted by the proposed method,

where an acceptable agreement has been noticed between the obtained results and other published results. The present method

has the capability of avoiding noisy data points and enforcing the incorporation of points free from random errors to enhance the

interpretation results.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction ferences generated mainly by electrochemical, elec-
The self-potential (SP) method has a wide range of

applications in Engineering and Geotechnical inves-

tigations (Corwin, 1984; Markiewicz et al., 1984),

Geothermal exploration (Corwin and Hoover, 1979;

Fitterman and Corwin, 1982; Anderson, 1984), cavity

detection (Schiavone and Quarto, 1992), and in the

exploration for minerals, particularly metallic sulfides

(Yüngül, 1950). The self-potential method is based on

the measurement of naturally occurring potential dif-
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trokinetic, and thermoelectric sources. Sometimes an

individual SP anomaly is found that stands out so

clearly that it can be separated from the regional

background and the topographic interference, and is

so simple in appearance that it can be modeled by a

single polarized body. In this case, quantitative meth-

ods of interpretation can be used to determine the

parameters of the polarized body by assuming a

model with simple geometry. The model is considered

realistic if the form and magnitude of calculated SP

effects are close to the observed anomalies, and the

model is geologically reasonable.
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Several graphical, and numerical methods have

been developed to interpret SP anomalies including

curve matching, characteristic points, least-squares,

derivative and gradient analysis, nonlinear modeling,

and Fourier analysis techniques. Examples of such

techniques used for interpreting the self-potential

anomalies of horizontal and vertical cylinders,

spheres, sheets and geological contacts are classified

as follows.

(1) Methods using only a few points on the

anomaly curve. These were originally developed by

DeWitte (1948), Yüngül (1950), Paul (1965), Paul et

al. (1965), Bhattacharya and Roy (1981), Atchuta Rao

and Ram Babu (1983). The essential disadvantage of

these methods was related to the fact that only a few

points are used on the anomaly curve, and hence, the

interpreted results are not reliable.

(2) Curve matching techniques. According to

Meiser (1962), Satyanarayana Murty and Haricharen

(1985), the field curve is compared with sets of

theoretical curves either manually or using a comput-

er. This process is cumbersome and the complexity of

the method is very high especially when the variables

are numerous.

(3) Least-squares methods. Here, the model

parameters that give a best fit are derived using an

initial presumption, as well as characteristic points

and distances from the measured anomaly curve.

Examples of these methods are of Abdelrahman and

Sharafeldin (1997), Abdelrahman et al. (1997b,

2003).

The above-mentioned three categories have the

disadvantage of using characteristic points, distances,

curves, and nomograms for interpretation, which is

subject to human error in estimating these few points

and distances, especially if they are derived by inter-

polation procedure. This can consequently lead to

errors in derived parameters. Moreover, some of these

methods demand knowledge of the anomalous body

shape, and based on the interpreter’s choice, the

results could vary a lot.

(4) Methods using derivative analysis and gra-

dients. Namely those of Abdelrahman et al. (1997a,

1998a,b, 2003) belong to this category.

(5) Methods using Fourier analysis and the wave

number domain. Particularly those of Atchuta Rao et

al. (1982) and Roy and Mohan (1984) belong to this

group.
(6) Modeling and Inversion Methods such as those

given by Guptasarma (1983), Furness (1992), and Shi

and Morgan (1996).

The last three categories are greatly influenced by

noise in measured data and can lead to serious errors.

In this paper, a new method is developed to

overcome almost all of the above-mentioned draw-

backs, especially the handling of random errors and

noisy data. So, a least-squares minimization approach

is formulated to determine the shape factor using all

data points on a self-potential anomaly profile, with-

out the need for any characteristic distances. The only

requirement of this method like the previous ones is

the placement of the data profile origin over the center

of the body. Practically, this is just to place xi = 0 of

the profile above the origin of the body to start data

digitization. This new method resembles the least-

squares methods but it does not need any measure of

characteristic distances to operate like them (e.g. no

need for x0 distance which is measured from the origin

of the profile to the point of the zero anomaly). The

problem of shape factor estimation is transformed into

the question of finding a solution of a nonlinear

equation of the form f( q) = 0. A procedure is derived

to parameterize the depth, polarization angle, and the

electric dipole moment in order to determine their

values. The method has been applied to synthetic data

with and without random errors, and has been tested

on two field examples from Turkey.
2. Formulation of the problem

The general self-potential (SP) anomaly expression

produced by most polarized structures along a princi-

pal profile over the body is given by the following

equation at a point P(xi,z) (Fig. 1) (Yüngül, 1950;

Bhattacharya and Roy, 1981; Satyanarayana Murty

and Haricharen, 1985; Abdelrahman et al., 1998a).

V ðxi; z; h; qÞ ¼ k
xicosh þ zsinh
ðx2i þ z2Þq ;

i ¼ �N ;: : :;�1; 0; 1;: : :N ð1Þ

where z is the depth, h is the polarization angle

between the axis of polarization n and the horizontal,

xi is a discrete point along x-axis where the observed

anomaly is located, q is the shape-factor which



Fig. 1. Cross-sectional view of the sphere, horizontal and vertical cylinder models.
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defines the geometry of the source body, and k is the

electric current dipole moment or the magnitude of

polarization which depends on the shape of the body

(e.g. for a sphere k =Er2, where E is the electromotive

force and r is the radius of the sphere). The units of k

change with the model shape to maintain the Volt

units of the potential in Eq. (1). The shape-factors for

a sphere (3-D), a horizontal cylinder (2-D) and a semi-

infinite vertical cylinder (3-D) are 1.5, 1.0 and 0.5,

respectively.

For all shapes (a function of q), Eq. (1) gives the

following relationship at the origin (xi = 0):

V ð0Þ ¼ k
sinh
z2q�1

ð2Þ

where V(0) is the anomaly value at the origin.

Consequently,

k ¼ V ð0Þ z
2q�1

sinh
; sinh p 0 ð3Þ

Replacing k in Eq. (1) with the above formula will

eliminate the unknown k by introducing the known

value of V(0) along the measured profile at the origin

and would give the following equation:

V ðxi; z; h; qÞ ¼ V ð0Þz2q�1 xicoth þ z

ðx2i þ z2Þq ð4Þ

Let us consider two observation points (xi =� s

and xi = s) along the anomaly profile, where s = 1,
2,. . .M spacing units. These two known measured

values V(s) and V(� s) will be used to reduce the

number of the three unknowns in Eq. (4) (z, h, q) to
one unknown which is q. Using Eq. (4), the self-

potential anomaly at these two points is given by:

V ðsÞ ¼ V ð0Þz2q�1 scoth þ z

ðs2 þ z2Þq ð5Þ

V ð�sÞ ¼ V ð0Þz2q�1 z� scoth
ðs2 þ z2Þq ð6Þ

From Eqs. (2), (5) and (6), we obtain the following

two relations:

F ¼ z2q

ðs2 þ z2Þq ð7Þ

where: F=[V(s) +V(� s)]/[2V(0)]

P ¼ sz2q�1

ðs2 þ z2Þq coth ð8Þ

where: P=[V(s)�V(� s)]/[2V(0)]

F and P are two known numerical quantities that

should be calculated using the measured self-potential

anomaly at three points on the profile where x = 0 and

x=F s in order to be incorporated in the solution for q

instead of the unknowns z and h.



Fig. 2. A typical self-potential anomaly profile over a horizontal cylinder. Identified on this profile are the maximum value (M) and the

minimum value (m) from which the origin of the profile and the anomaly value at the origin V(0) can be determined using Stanley’s (1977)

method.
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From Eqs. (7) and (8), we obtain separate formula

for z and h, respectively, as follows:

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2F1=q

1� F1=q

r
ð9Þ

coth ¼ P

sF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2F1=q

1� F1=q

r
ð10Þ

Substituting Eqs. (9) and (10) into Eq. (4), we

obtain the following nonlinear equation in q as shown

in Appendix A.

V ðxi; qÞ ¼ V ð0ÞW ðxi; qÞ ð11Þ

where

W ðxi; qÞ ¼ s2q�1 xiP þ sF

½x2i þ F1=qðs2 � x2i Þ�
q

The unknown shape-factor q in Eq. (11) can be

obtained by minimizing

/ðqÞ ¼
XN
i¼�N

½Y ðxiÞ � V ð0ÞW ðxi; qÞ�2 ð12Þ

with respect to q in a least-squares sense. Y(xi) denotes

the measured observed SP anomaly at xi.

Minimization of U( q) in the least-squares sense

involves setting the derivative of U( q) with respect to

q equal to zero and leads to the following equation

f ðqÞ ¼
XN
i¼�N

½Y ðxiÞ � V ð0ÞW ðxi; qÞ�WVðxi; qÞ ¼ 0

ð13Þ

where

WVðxi; qÞ ¼
d

dq
W ðxi; qÞ
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Eq. (13) can be solved for q using standard

methods for solving systems of nonlinear equations.

Here, the simple iteration method described by Demi-

dovich and Maron (1973) is used. First, Eq. (13) will

be transformed into the form of q= f( q) as shown in

Appendix B to give the following equation:

q¼

XN
i¼�N

V ð0ÞW 2ðxi; qÞ
ðs2 � x2i ÞF1=qlnF

x2i þ F1=qðs2 � x2i Þ

� �

XN
i¼�N

Y ðxiÞWVðxi; qÞ�
XN
i¼�N

V ð0ÞW 2ðxi; qÞln
s2

x2i þ F1=qðs2 � x2i Þ

� �

ð14Þ

then, it is transformed into the following iterative form

qc ¼ f ðqiÞ ð15Þ
where qi is the initial shape-factor and qc is the

calculated revised shape-factor. qc is used as qi for the

next iteration. The iteration stops when | qc� qi |V e,

where e is a small predetermined real number close to

zero. So the source shape-factor is determined by

solving one nonlinear equation in q. Any initial guess

for q works well because there is only one global

minimum.

Once q is known, the depth z can be determined

from Eq. (9), and the polarization angle h from Eq.

(10). Knowing z, h, and q, the electric dipole moment

k can be determined from Eq. (3).
Table 1

Synthetic examples

Using noise free data Using data with F 5% random error

Model shape

factor ( q)

Computed

( q)

q % of error

in q

z %

in

Case I: z = 2 units, h=30j
0.5 0.50 0.490 � 2.00 1.951 �
1.0 1.00 1.006 0.60 2.048

1.5 1.50 1.487 � 0.87 2.004

Case II: z = 2 units, h=60j
0.5 0.50 0.482 � 3.60 2.033

1.0 1.00 0.989 � 1.10 1.994 �
1.5 1.50 1.510 0.66 2.027

Case III: z = 4 units, h=30j
0.5 0.50 0.485 � 3.00 3.896 �
1.0 1.00 1.013 1.30 4.106

1.5 1.50 1.510 0.66 4.005

K=� 300, profile length = 30 units, sampling interval = 1 unit, and s = 5 u
3. Locating the origin of the profile

To this stage, we have assumed knowledge of the

axes of the SP profile so that V(0) can be determined.

In practice, the selected anomaly profile should al-

ways be the straight line between the negative and

positive centers of the anomaly. This is acceptable to

be in the direction of the polarization plane, which is

the vertical plane passing through the axis of polari-

zation. A field traverse along this line will have an

arbitrary origin, in which case the position of the

structure (xi = 0) must first be determined. The origin

of the profile may readily be located from positions of

turning points (Stanley, 1977; Satyanarayana Murty

and Haricharen, 1985; Abdelrahman et al., 1997b,

1999). It is notable that Eq. (1) is the same as the

vertical component magnetic anomaly expression due

to infinite inclined sheet model. Therefore, the avail-

able methods of magnetic interpretation can be adop-

ted here to solve certain SP parameters. For example,

M+m =V(0), thus, the origin can be located. Or draw

a straight line joining the maximum value (M) to the

minimum value (m) of the SP anomaly profile and

locate the vertical axis [xi = 0 and V(0)] by its inter-

section with the anomaly curve, irrespective of the

profile scale (Fig. 2). This determines the origin

accurately in case of a horizontal cylinder. However,

in other cases, Stanley’s method (1977) would give
of error

z

h % of error

in h
k % of error

in k

2.45 30.6j 2.00 � 306.40 2.13

2.41 29.8j � 0.66 � 308.13 2.71

0.21 30.5j 1.66 � 293.07 � 2.31

1.65 61.8j 3.00 � 305.70 1.90

0.30 60.2j 0.33 � 295.43 � 1.52

1.35 59.7j � 0.50 � 309.00 3.00

2.60 30.7j 2.33 � 293.2 � 2.26

2.65 29.5j � 1.66 � 308.9 2.97

0.13 29.7j � 1.00 � 307.6 2.53

nits.
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the approximate location of the origin. The effect of

the error in origin location on the proposed method

will be discussed in detail later in the theoretical

examples section. If there is no maximum defined,

then h reaches 90j and x = 0 at the minimum of the
Fig. 3. Error response in model parameters estimates as a function of

depth for the noisy data of the three bodies. The other parameters are

kept constant (No. of data points = 31, k =� 300, h= 30j, and

s = 14). (A) Error in calculated q and z, (B) error in calculated h and k.

Fig. 4. Error response in model parameters estimates as a function of

polarization angle for the noisy data of a sphere model. The other

parameters are kept constant (No. of data points = 31, k=� 300,

z = 4, and s = 14).

Fig. 5. Error response in model parameters estimates versus (s)

values for the noisy data of a horizontal cylinder model. The other

parameters are kept constant (No. of data points = 31, k=� 300,

z = 4, and h= 30j).



Fig. 6. Error response in calculated q and z parameters as a function

of adding different shift amounts in origin position determination

for the noisy data of a horizontal cylinder model. For three different

depths z = 3, 4, and 5, the other parameters are kept constant (No. of

data points = 31, k=� 300, h= 60j, and s = 4).

Fig. 7. Weiss SP anomaly, Ergan
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profile. If there is no minimum defined, then h reaches

270j and x = 0 at the maximum. The base line, which

represents the abscissa of the profile with origin

defined relative to the structure, is then constructed

a distance [M�V(0)] above the minimum of the

profile (Fig. 2).
4. Theoretical examples

Numerical results for various test cases including

a vertical cylinder ( q = 0.5), horizontal cylinder

( q = 1.0) and sphere ( q= 1.5) models are shown in

Table 1. These verify that the proposed method gives

exact values for q, z, h and k when using noise free

data. After adding different sets of random noise

within F 5%, the maximum error in all derived

parameters for small and moderate depths is within

F 3%, while for large depths, it may reach F 5%.

However, in studying the error response of the

proposed method for different depths and polariza-

tion angles, synthetic examples contaminated with

the same set of F 5% random errors were consid-
i, Turkey (Yüngül, 1950).



Fig. 8. Measured and calculated SP anomaly along AAV over the

Weiss anomaly, Ergani, Turkey.
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ered. Following the interpretation procedure, values

of the model parameters( q, h, z, k) for the three

model shapes were computed and the percentages of

error in them were plotted against the model depth in

Fig. 3a and b. While in Fig. 4, the percentage of error

in model parameter determination is plotted against

the polarization angle for the sphere model. All

curves show good results indicated by the acceptable

percentage of error range in the calculated model

parameters.

Let us consider the possibility of using different

pairs of points (x = F s) in the interpretation proce-

dure, and carry out a similar investigation for the

percentage of error in model parameters determination

for the sphere model as an example using the same set

of F 5% random errors versus different s values. Fig.

5 shows that the method gives good results for a wide
Table 2

Interpretation of Weiss self-potential anomaly, Ergani copper district, Tur

s

(units)

Computed

shape factor

( q)

% of error in

computed

( q)

Computed

depth

(z) (m)

4 1.560 4.00 42.271

6 1.691 12.73 54.469

8 1.464 � 2.40 43.373
range of s values. It is recognizable that the percentage

of error for the four parameters ( q, z, h, k) are related to
each other; depending on the random error value

hidden in the used pair of points at x =F s, and varying

from one pair to another in the same manner. This

gives us the capability of reaching a good solution for

the four parameters together once we use the pair of

points that has the lowest value of random error.

The proposed method begins with selecting the

origin using Stanley’s method (1977) and may lead to

errors in the solution for q, z and other parameters

when real data is being interpreted. To explore the

error behavior of such inaccurate origin position

determination, errors of 0.1, 0.2,. . .0.6 units are intro-

duced to a sphere model coordinate (xi) in Eq. (1) for

z = 3, 4, and 5 and keeping other parameters constant.

Then the same interpretation procedure to evaluate the

percentage of error in the calculated q and z was

followed . The results in Fig. 6 are generally in good

agreement with the model parameters and the percent-

age of error in the calculated q and z are within the

minimum range of acceptable percentage of error

(cF 5%).

This illustrates that this new method is not very

sensitive to errors in the SP anomaly, and hence, it

should provide reliable model parameter estimates

when dealing with field data even when the origin is

determined approximately using Stanley’s (1977)

method.
5. Field examples

To examine the applicability of the present method,

the following two field examples from the Ergani

Copper District, 65 km Southeast of Elazing in

Eastern Turkey are presented. The SP measurements

were performed and described by Yüngül (1950) and
key

Computed

polarization

angle (u) (deg)

Computed

electrical dipole

moment (k)

Root mean

square error

(RMS) (mV)

36.08j � 21314.9 65.99

32.80j � 66206.0 327.93

35.89j � 16256.8 32.64



Table 3

Comparison of Weiss self-potential anomaly interpretation results derived by different methods

Parameter Method of

Yüngül

(1950)

Method of

Bhattachary

and Roy (1981)

Method of

Abdelrahman

and El-Araby

(1996–1997)

Method of

Abdelrahman

et al. (1997a)

Method of

Abdelrahman

et al. (1998a)

The present method

z 53.8 m 54 m 52.9 m 26 m 12.7 m 43.37 m

Depth calculated to the center of a sphere to the top of a vertical cylinder to the center of a sphere

h 40j 30j 35.3j – – 35.89j
k – – – – – � 16256.8

q – – – 0.75 0.37 1.464

considered as a sphere q= 1.5 estimated as a vertical cylinder estimated as a sphere

% of error in q – – – 50.0 � 26.0 � 2.4
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then used by many authors to test their proposed

methods in many journals.

5.1. Weiss anomaly

The Weiss anomaly is 1 km northwest of the

Maden copper mine, where open-cut mining was

being conducted. The field example was interpreted

by Yüngül (1950), Bhattacharya and Roy (1981),

Abdelrahman and El-Araby (1996–1997), Abdelrah-

man et al. (1997a, 1998a). Fig. 7 shows the Weiss

self-potential anomaly map, where the anomaly con-

tour lines are nearly circular in shape indicating a

spherical source. A self-potential profile of 192.5-m

length along line AAV of this map shown in Fig. 8 was

digitized at 25 points at an interval of 7.7 m. The

model parameters ( q, z and k) obtained by the
Fig. 9. Süleymanköy SP anomaly, E
proposed method, using three different values of s,

are given in Table 2. The comparison between the

three computed anomalies based on these derived

parameters is carried out through the study of the root

mean square error (RMS). This is a measure of how

close the calculated model response is to the measured

data. It has the same units as the SP anomaly. The

lowest relative value is chosen to indicate the most

reliable calculated parameters.

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼�N

½Y ðxiÞ � V ðxi; z; h; qÞ�2

2N þ 1

vuuuut
ð16Þ

Here, 2N + 1 is the number of observation points. Y(xi)

and V(xi, z, h, q) are the observed and computed SP
rgani, Turkey (Yüngül, 1950).



Fig. 10. Measured and calculated SP anomaly along BBVover the
Süleymanköy anomaly, Ergani, Turkey.
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respectively. This computed error function is equal

to 65.99, 327.93 and 32.64 for s = 4, s = 6 and s = 8,

respectively. This indicates that the model parameters

estimated using s = 8 produce an SP anomaly closest

to the observed one (Fig. 8). This finding also goes

well with the obtained results for the percentage of

error in estimated q (Table 2). Here the case of s = 8

has also the smallest percentage of error in calculated

q, assuming the true value of q is the nearest exact

value of q to the calculated one (in this case, exact

q = 1.5).

It is worth mentioning here that real bodies can

adopt any number in between the multiples of 0.5 for
Table 4

Comparison of Süleymanköy self-potential anomaly interpretation results

Parameter Method of

Yüngül (1950)

Method of

Bhattachary

and Roy (1981)

Method o

Abdelrah

and Shara

(1997)

z 38.80 m 40.00 m 42.00 m

h 11.00j 15.00j 13.00j
k – – � 2458.0

q – – –

Root mean

square error

(RMS)

– – 24.735
the exact q (shape factor). However, the closest exact

value of q to the calculated one gives us the indication

to the shape of the model that should be used in

further calculations of the rest of the unknown param-

eters. This helps a lot to reach a good model estimate

concentrating on one shape only and leading easily to

the smallest root mean square error between the

measured and calculated data. This does not mean

that the Weiss anomaly is due to a perfect sphere

model, but the choice of the sphere model is just an

approximation that gives the best fitting model with

the most reliable model parameters.

Some misfit between computed and field data is

expected due to geologic and measurement noise. The

great advantage of the proposed method, is the use of

all data points on the measured profile to estimate q

and at the same time it gives much weight for two

points (x =F s) to be incorporated into the calculation

of the derived parameters. By using the root mean

square error function as described above, we can

exclude those pairs of points for which the calculated

and measured anomalies disagree due to noise, and

select the pairs that give a close fit indicating that they

are almost free from noise.

The model parameters determined are: q = 1.464,

z = 43.373 m, h= 35.89j and k = � 16256.8. The

results agree well with those obtained by different

authors (see Table 3).

5.2. Süleymanköy anomaly

Fig. 9 shows the Süleymanköy SP anomaly map

which represent the anomaly due to a nearly spherical

polarized copper ore body. A self-potential profile of
derived by different methods

f

man

feldin

Method of

Abdelrahman

et al. (1997a)

Method of

Abdelrahman

et al. (1997b)

The present

method

49.00 m 38.78 m 47.63 m

– 14.67j 14.74j
mV – � 1549.3 mV � 2661.2 mV

1.5 1.356 1.468

– 40.998 23.672
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112.8-m length along the line BBVof this map, shown

in Fig. 10, was digitized at an interval of 18.8 m. The

best obtained root mean square error value is 23.672

for s = 2. The determined model parameters are

q = 1.468, z = 47.63 m, h = 14.74j and k =� 2661.

Table 4 shows the agreement of these model param-

eters with those obtained by other methods along with

an indication of the root mean square error function

(RMS) for those methods that were able to determine

all model parameters. It is clear that the proposed

method gives the best fit solution.

It is evident from the field examples that the

present method yields good insight from SP data

concerning the nature of the source body. Finally,

these field examples emphasize one of the principal

advantages of the least-squares methods. A reliable

shape-factor can be obtained in spite of irregularities

in the anomaly curve that would more seriously affect

methods of shape-factor estimation, based on only a

few isolated points and distances taken from the

anomaly profile.
6. Discussion of the results

It was verified numerically that the proposed

method gives exact values for model parameters

when using synthetic noise free data. After adding

F 5% random error in the synthetic data, the percent-

age of error in the derived model parameters is within

F 3% for small and moderate depths, and it may

reach F 5% for large depths.

This new method uses all available data points on

the measured SP profile which is an advantage of the

present approach compared to the conventional meth-

ods that used only some points and distances from the

supplied data. However, the power of this method is

also apparent for short profile lengths as in the case of

Süleymanköy anomaly. The advantage of using all

data points is to provide the best fitting solution for all

measurement points. However, the use of a chosen

pair of points at x =F s in estimating the model

parameters, gives more weight to these two specific

points. The choice of these two points could be

changed until the solution reaches the best fit indicat-

ed by the root mean square error function. It is also

indicated by how close the calculated q value is to the

nearest exact value of q. This gives flexibility to judge
and exclude solutions produced from noisy data

points and approve others that are derived from points

free of noise. This is illustrated very clearly by close

examination of the Weiss anomaly case, where for

s= 6, the measured data points at x =F 6 is poorly

fitted by the best fitting model results, indicating that

it was not a good choice for model parameter calcu-

lation as indicated by the largest root mean square

error value. This means that the measured data points

at x =F 6 are contaminated with noise.

A comparison of the derived results by this method

with the previous works in the case of the field

examples shows that the results are in good agree-

ment. Moreover, the derived results are more accept-

able than those obtained by other methods in terms of

the behavior of the root mean squares error function

(Table 4).

Those methods which are able to obtain all model

parameters such as described by Abdelrahman and

Sharafeldin (1997), Abdelrahman et al. (1997b, 2003)

are influenced by the estimation of the zero anomaly

distance x0 from the origin. This is dependent on the

interpreter’s choice of the interpolation method to

locate this distance between the measured data points.

Even if it gives a good result as in the case of

Abdelrahman and Sharafeldin (1997) for the Süley-

manköy anomaly, this will not mean that it will be as

successful for other cases due to the expected error in

x0. The proposed method has no such drawback

because it does not need any distance measurements

along the SP profile. On the contrary, the interpreter is

able to orient the calculations by excluding bad noisy

data through the use of the root mean square error

function.

A clear example of the noise effect is recognizable

in the interpretation of the Weiss anomaly by Abdel-

rahman et al. (1997a, 1998a) in terms of a vertical

cylinder instead of a sphere. In the latter method, the

estimated shape-factor was in the range of 0.52>q>

0.32 and the estimated depth range was 17.2>z>8.2 m.

The solution was just a graphical central point for these

ranges without any measures for the misfits between

the observed and calculated anomaly. In the former

method, the range was also wide and the choice of the

solution was also arbitrary and graphically driven. The

interpretation results of these two methods were in

contrast with and against the derived results of all other

works. This is due to the magnification of the noise
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through their methods of gradient and derivative anal-

ysis. This also applies to the higher derivatives method

of Abdelrahman et al. (2003).

The presented new method is designed specially to

handle such problems concerning random errors and

noise in acquired self-potential data during the inter-

pretation process.
7. Conclusions

The present new method has succeeded in solving

the problem of determining the shape of a buried

structure (shape-factor) from self-potential data along

a short profile running between the maximum and

minimum of the anomaly. The formulation of the

problem was capable of transforming this issue into

the problem of finding a solution of a nonlinear

equation. A least-squares minimization approach is

formulated to use all data points, in addition to a pair

of measured data points (at x =F s) which grant

weight to these selected points that could be free of

noise. Repetition of the method for different such

pairs of measured points will lead to the best fitting

model. This happens when this pair of points contain

the least amount of noise in the whole set of measured

data. Procedures are also given to calculate the rest of

the model parameters including the depth, polarization

angle and electric dipole moment. The method pre-

sented here is very simple to execute. It does not

depend on the shape of the model and approved to be

stable for a wide range of depths and polarization

angles. The advantages of the proposed method over

previous techniques which use a few points, distances,

derivatives and gradient analysis, are (1) all observed

values can be used, (2) the method is automatic, (3)

the method is less sensitive to errors in the SP

anomaly and (4) it does not need any distance

measurements on the anomaly profile. It is also

emphasized that the present method can be used to

gain geologic insight into the subsurface, as illustrated

by the field examples.
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Appendix A. Derivation of Eq. (11)

Upon substituting cot h in Eq. (4) by its equivalent

in Eq. (10), we get:

V ðxi; z; qÞ ¼ V ð0Þz2q�1
xi
Pz

sF
þ z

ðx2i þ z2Þq ð17Þ

V ðxi; z; qÞ ¼ V ð0Þ z
2q

sF

xiP þ sF

ðx2i þ z2Þq ð18Þ

Using the equivalent form of F given in Eq. (7), we

get:

V ðxi; z; qÞ ¼ V ð0Þ ðs
2 þ z2Þq

s

xiP þ sF

ðx2i þ z2Þq
	 


ð19Þ

On replacing z by Eq. (10), the following equation is

obtained:

V ðxi; qÞ ¼ V ð0Þ
s2 þ s2F1=q

1� F1=q

� �q

s

xiP þ sF

x2i þ s2F1=q

1�F1=q

 �q

2
64

3
75

ð20Þ

V ðxi; qÞ ¼ V ð0Þ ½s
2ð1� F1=qÞ þ s2F1=q�q

s

� xiP þ sF

½x2i ð1� F1=qÞ þ s2F1=q�q
� �

ð21Þ

This leads directly to Eq. (11).
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Appendix B. Derivation of Eq. (14)

First the derivative of Eq. (11) W(xi, q) should be

derived.Let us assume that:

a ¼ ðxiP þ sFÞ;
b ¼ ðs2 � x2i Þ;

c ¼ x2i ;

a ¼ s;

b ¼ F

x ¼ q

�
ð22Þ

Now we reach the equivalent equation for W in terms

of a variable x instead of q:

W ðxÞ ¼ a � a2x�1

½c þ b � b1=x�x ð23Þ

To get WV= dW/dx, let’s first modify the above

equation as follows:

W ½c þ b � b1=x�x ¼ a � a2x�1 ð24Þ

Applying the logarithm on both sides, we obtain the

following:

lnðW Þ þ x� lnðc þ b � b1=xÞ

¼ lnðaÞ þ ð2x� 1ÞlnðaÞ ð25Þ

By differentiating both sides, we get:

1

W
WVþ x

1

ðc þ bb1=xÞ
�bb1=xlnðbÞ

x2

� �	 


þ lnðc þ bb1=xÞ ¼ 2lnðaÞ ð26Þ

WV ¼ W

�
2lnðaÞ � lnðc þ bb1=xÞ

� x
1

ðc þ bb1=xÞ
�bb1=xlnðbÞ

x2

� �	 
�
ð27Þ

WV ¼ a � a2x�1

½c þ b � b1=x�x ln
a2

c þ bb1=x

� �	

þ bb1=xlnðbÞ
xðc þ bb1=xÞ

� �

ð28Þ
Eq. (13) can be written in the following form:

RY ðxiÞWV ¼ RV ð0ÞWWV ð29Þ

RY ðxiÞWV� RV ð0ÞW aa2x�1

½c þ bb1=x�x ln
a2

c þ bb1=x

� �

¼ 1

x
RV ð0ÞW aa2x�1

½c þ bb1=x�x
bb1=xlnðbÞ
c þ bb1=x

� �
ð30Þ

x ¼
RV ð0ÞW 2 bb1=xlnðbÞ

c þ bb1=x

� �

RY ðxiÞWV� RV ð0ÞW 2ln
a2

c þ bb1=x

� � ð31Þ

Replacing all symbols with their definitions in Eq.

(22), we get Eq. (14).
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