Determination of the Equivalence Point \& NaOH Concentration

1- Prepare 100 ml of $[0.1 \mathrm{M}]$ of (HCl) from Lab stock with these information $[($ Density $=1.17 \mathrm{~g} / \mathrm{ml}) \&($ Purity $=37 \% \mathrm{w} / \mathrm{w})]$.

2- Take (7.5 ml) of solution in $[7]$ in 50 ml V.flask and fill with dis.water.
3- Pour [2] in suitable beaker.
4- Fill the burette with $(25 \mathrm{ml})$ of given (NaOH) solution.
5- Construct the system as shown in the photo below:

6- Merge the operated pH electrode in the (HCl) beaker and record the pH Value.
7- Drop (1 ml) of (NaOH) from the burette and record the pH V alue.
8- Repeat step [7] till you reach the Equivalence Point (iml each time)..
9- Find the Equivalence Point and calculate the (NaOH) concentration.

Results:

No	NaOH Added Volume(ml)	pH Value
1	0	$\mathrm{pH}_{1}<7$
2	1	pH_{2}
3	2	pH_{3}
4	3	pH_{4}
5	4	pH_{5}
6	5	pH_{6}
7	6	pH_{7}
8	7	pH_{8}
9	8	pH9
\ldots	\ldots	pH
\ldots	\ldots	pH
..n	n	$\mathrm{pH}_{\mathrm{n}}>7$

Titration Graph:

