Organic halides

Learning objectives

In this chapter will discusses the following topics and by the end of this chapter the students will:

- Recognize the structure and classes of alkyl halides.
- Know the common names and understand the IUPAC rules for nomenclature of halo compounds.
- Understand the physical properties of halo compounds (solubility and boiling points).
- Know the different methods used in preparation of halo compounds.
- Know the reactions of halo compounds; nucleophilic substitution, elimination, reduction reactions of Grignard reagents and know the previously disused methods of reducing alkyl halides.
 - SN1 and SN2 mechanisms
 - E1 and E2 mechanisms

Organic halogen compounds and their uses

- Organic halogen compounds are a large class of natural and synthetic chemicals that contain one or more halogens (fluorine, chlorine, bromine, or iodine) combined with carbon and other elements.
- Halogen compounds are very important for a number of reasons:
 - Simple alkyl and aryl halides (especially: Cl & Br) are versatile reagent in syntheses.
 - Halogen can be converted to unsaturated compounds through dehydrogenation (*Elimination reactions*).
 - Halogen can be replaced by many other functional groups (*substitution reactions*).
 - Some halogens have some uses for example: as solvent fire retardants, cleaning fluids, refrigerants, and in polymers such as Teflon

Examples of some General Uses of Organic halogen compounds:

CHCl₃ CHClF₂ CCl₃—CH₃ CF₃—CHClBr chloroform Freon-22[®] 1,1,1-trichloroethane Halothane solvent refrigerant cleaning fluid nonflammable anesthetic

Classification Alkyl Halides

According to type of hydrocarbon attached to halide:

• 1.Alkyl Halides, R- X:compounds which have a halogen atom bonded to one sp3 hybrid C atom. Alkyl halides are also called haloalkanes.

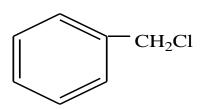
```
primary (1^{\circ}), secondary (2^{\circ}) or tertiary (3^{\circ})....
```

(depending on the type of carbon to which halogen attached)

- 2. Vinylic Halides: has a halogen atom bonded to one sp^2 hybrid \underline{C} atom
- 3. Aryl Halides: has a halogen atom bonded directly to an aromatic ring
- 4. Allylic Halides: has a halogen atom bonded to one sp³ hybrid <u>C</u> atom
- 5. Benzylic halides: has a halogen atom bonded to Carbone one away from aromatic ring

Classification Alkyl Halides

1-Alkyl halides (R-X):	CH ₃ -Cl	CH ₃ -CH ₂ -Br	(CH ₃) ₂ -CH-F
Common	Methyl Chloride	Ethyl bromide	Isopropyl fluoride
IUPAC	Chloromethane	Bromoethane	2-Fluoropropane
Class	1°	1°	2°
		H_3 C \longrightarrow Br CH_3	CICH ₃
Common	Cyclohexyl Iodide	t.Butyl bromide	Methylcyclopentyl chloride
IUPAC	Iodocyclohexane	2-Bromo-2- methylpropane	1-Chloro-1- methylcyclopentane
Class	2°	3°	3°

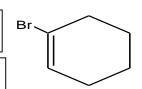

Classification Alkyl Halides

2-Vinylic halides

C=C-X

CH₂=CHBr Vinyl bromide Bromoethene

4-Benzylic halides: Ar-C-X

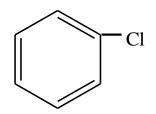


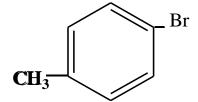
Benzyl Chloride

3-Allyl halides

C=C-C-X

CH₂=CHCH₂Cl Allyl chloride 3-Chloro-1-propene

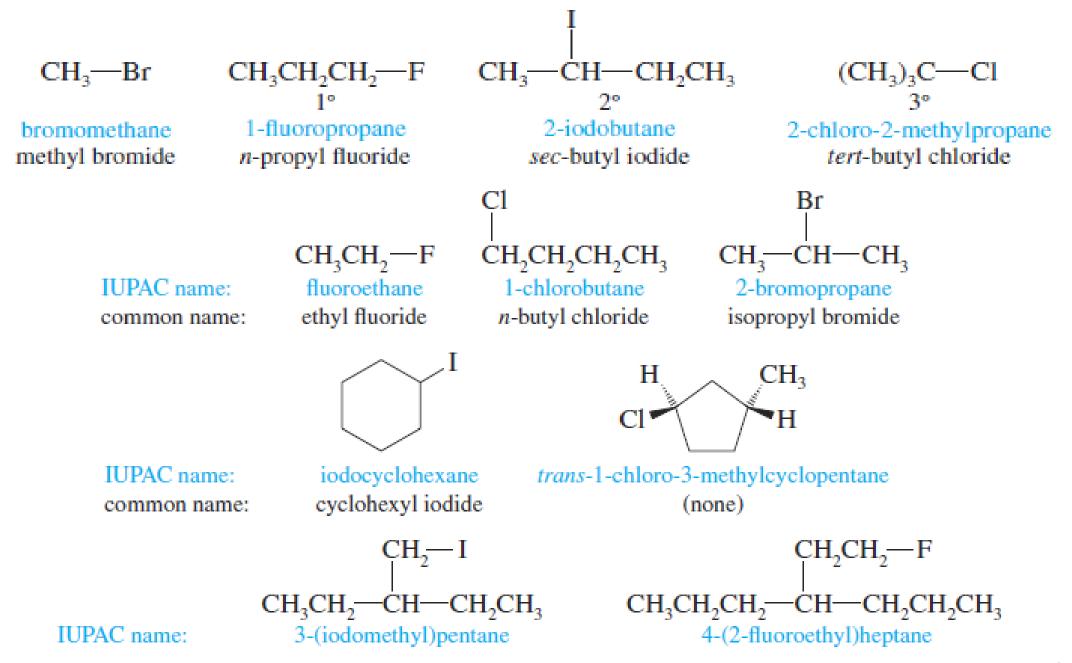


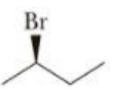

Cl

Bromocyclohexene 3-Chlorocyclopentene

5-Aryl halides:

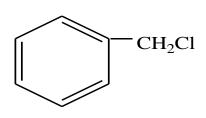
Ar-X (X directly attached to benzene ring)


Chlorobenzene


p-Bromo toluene

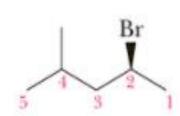
Nomenclature OF Alkyl halides

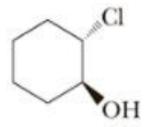
- IUPAC names derived from the names of parent organic compound (alkane or alkene or alkyne or alcohol or aldehydes and so on) with a prefix indicating halogens and their positions.
- Common names derived from the corresponding alkyl group followed by the name of halogen atom.
- Examples:

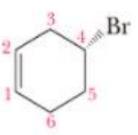

CHX₃ CX_{4} CH_2X_2 Methylene halides **Haloforms** Carbon tetrahalide Common name CHCl₃ CH₂Cl₂ CCl_4 dichloromethane trichloromethane tetrachloromethane IUPAC name: methylene chloride chloroform carbon tetrachloride common name:

IUPAC: Common:

Note:

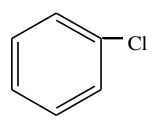

(R)-2-Bromobutane ((R)-sec-Butyl bromide)

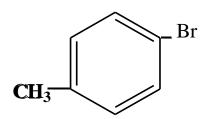

Chloroethene (Vinyl chloride)


3-Chloropropene (Allyl chloride)

Chloromethyl benzene

(Benzyl Chloride)




(S)-2-Bromo-4-methylpentane

(15,25)-2-Chlorocyclohexanol

(R)-4-Bromocyclohexene

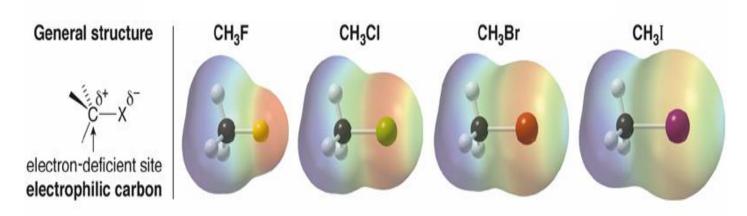
Chlorobenzene

p-Bromo toluene

Systematic name

substituted alkane CH₃Br bromomethane CH₃CH₂Cl chloroethane **Common name**

alkyl group attached to halogen plus *halide* CH₃Br methyl bromide CH₃ CH₂ Cl ethyl chloride


Types of Dihalides

- A **geminal dihalide** (Latin, *geminus*, "twin") has the two halogen atoms bonded to the same carbon atom.
- A **vicinal dihalide** (Latin, *vicinus*, "neighboring") has the two halogens bonded to adjacent carbon atoms.

Physical Properties

Polarity

• Fluorine, chlorine, and bromine are all more electronegative than carbon; as a result, C-X bonds with these atoms are polarized with a partial negative charge on halogen and a partial positive charge on carbon.

• The polar C-X bond makes the carbon atom electron deficient in each CH₃X molecule.

Physical Properties

Solubility

- Alkyl halides have some polar character, but only alkyl fluorides have an atom that can form a hydrogen bond with water. The other alkyl halides are less soluble in water
- In General, all organic halides are insoluble in water and soluble in common organic solvents.

Table 3.7 Solubilities of Alkyl Halides in Water					
CH ₃ F	CH ₃ Cl	CH ₃ Br	CH ₃ I		
very soluble	soluble	slightly soluble	slightly soluble		
CH ₃ CH ₂ F	CH ₃ CH ₂ Cl	CH ₃ CH ₂ Br	CH ₃ CH ₂ I		
soluble	slightly soluble	slightly soluble	slightly soluble		
CH ₃ CH ₂ CH ₂ F	CH ₃ CH ₂ CH ₂ CI	CH ₃ CH ₂ CH ₂ Br	CH ₃ CH ₂ CH ₂ I		
slightly soluble	slightly soluble	slightly soluble	slightly soluble		
CH ₃ CH ₂ CH ₂ CH ₂ F	CH ₃ CH ₂ CH ₂ CH ₂ CI	CH ₃ CH ₂ CH ₂ CH ₂ Br	CH ₃ CH ₂ CH ₂ CH ₂ I		
insoluble	insoluble	insoluble	insoluble		

Physical Properties

The boiling point

- The boiling points of alkyl halides increase with increasing molecular weight because of the increase in van der Waals forces.
- Alkyl halides have higher melting point than the corresponding alkanes, alkenes, and alkynes because:
 - 1. Polarity
 - 2. Molecular weight
 - (In series of halides BP. F < Cl < Br < I)

$$CH_3CH_2CH_2F \qquad CH_3CH_2CH_2Br \qquad CH_3CH_2CH_2I$$

$$bp = 47^{\circ}C \qquad bp = 71^{\circ}C \qquad bp = 102^{\circ}C$$

- Ethane (bp -89°C) & bromomethane (bp 4°C)
- butyl bromide, bp 100°C & tert-butyl bromide, bp 72°C.

1- Direct halogenation of hydrocarbons

- A. Halogenation of alkanes
- B. Halogenation of alkenes
- C. Halogenation of alkynes
- D. Halogenation of aromatic ring and alkyl benzenes

2- Conversion of alcohols: alkyl halides

1- Direct halogenation of hydrocarbons

A. Halogenation of alkanes:

B. Halogenation of alkenes:

$$H_{2}C = CH - CH_{2}R + X_{2} \xrightarrow{UV \text{ or heat}} H_{2}C = CH - CHR + HX$$

$$H_{2}C = CH - CH_{2}R + X_{2} \xrightarrow{CCI_{4}} H_{2}C - HC - CH_{2}R$$

$$H_{2}C = CH - CH_{2}R + HX \xrightarrow{CCI_{4}} H_{3}C - HC - CH_{2}R$$

$$CCI_{4} \rightarrow H_{3}C - HC - CH_{2}R$$

$$CCI_{4} \rightarrow H_{3}C - HC - CH_{2}R$$

$$CH_{2} = CHCH_{3} + Br_{2} \xrightarrow{high temp.} CH_{2} = CHCH_{2}Br + HBr \qquad (allylic substitution)$$

$$Propene \qquad 3-Bromopropene$$

$$CH_{2} = CHCH_{3} + Br_{2} \xrightarrow{room temp.} CH_{2}CHCH_{3} \qquad (electrophilic addition)$$

$$Propene \qquad Br \qquad Br$$

$$1,2-Dibromopropane$$

(racemic)

Note:

$$+ \bigvee_{O}^{N-Br} \xrightarrow{h\nu} + \bigvee_{O}^{N-H}$$

Cyclohexene N-Bromosuccinimide (NBS)

3-Bromocyclohexene (racemic)

Succinimide

C. Halogenation of alkynes:

HC
$$=$$
 CH₂R $+$ X₂ $\xrightarrow{\text{UV or heat}}$ HC $=$ C-CHR $+$ HX

HC $=$ C-CH₂R $+$ 2 X₂ $\xrightarrow{\text{CCI}_4}$ HC $\xrightarrow{\text{X}}$ X

HC $=$ C-CH₂R $+$ 2 HX

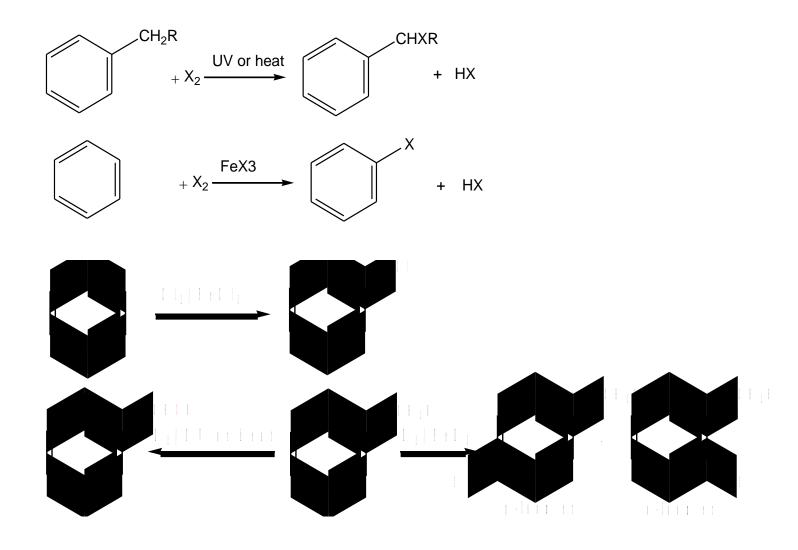
 $\xrightarrow{\text{CCI}_4}$ HC $\xrightarrow{\text{X}}$ C-C-CH₂R

 $\xrightarrow{\text{X}}$ X

 $\xrightarrow{\text{X}}$ X

2-Butyne

(E)-2,3-Dibromo-2-butene 2,2,3,3-Tetrabromobutane

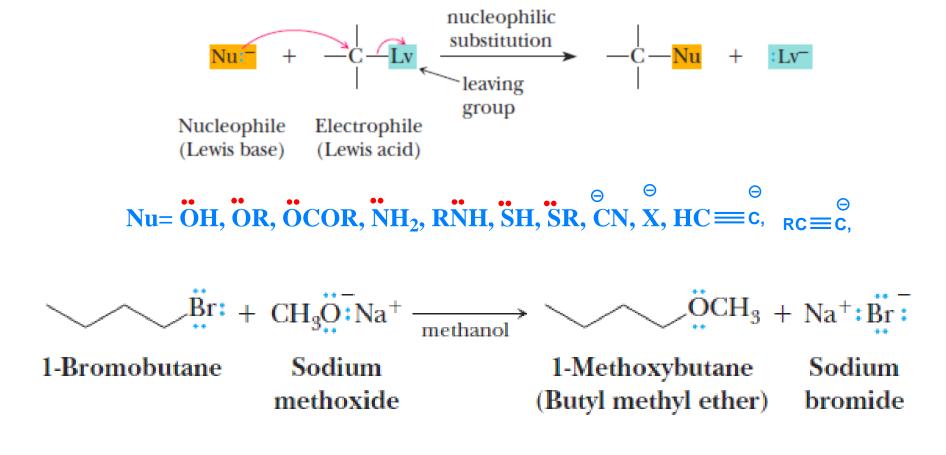

$$CH_3C = CH \xrightarrow{HBr} CH_3C = CH_2 \xrightarrow{HBr} CH_3CCH_3$$

Propyne

2-Bromopropene

2,2-Dibromopropane

D. Halogenation of aromatic ring and alkyl benzenes:

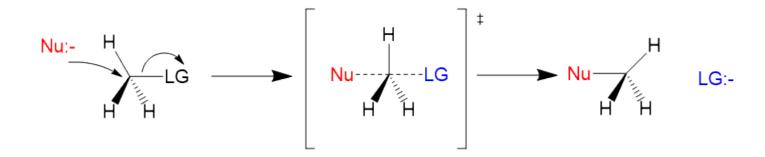

2-Conversion of alcohols: alkyl halides (Nucleophilic Substitution)

$$\begin{array}{c} \text{R-OH} & \xrightarrow{\text{HCI/ZnCl}_2} & \text{R-CI} \\ & \text{or SOCl}_2 \\ & \text{or PCl}_3 \\ & \text{or PCl}_5 \end{array}$$

• Concentrated halogen acid; HX - Phosphorus halides; PX₃ or PX₅ or Thionyl chloride; SOCl₂

- 1. Nucleophilic Substitution Reactions
- 2. Elimination Reactions
- 3. Formation of Grignard reagent and its reactions
- 4. Reduction of alkyl halides
 - Reduction by Zinc metal and acids or by metal hydrides
 - Reduction by sodium metal (coupling reaction)
 - Reduction using lithium dialkyl cuprate

1- Nucleophilic Substitution Reactions



Nucleophile Product	Class of Compound Formed
$\stackrel{\cdot}{:}$ OH \longrightarrow CH ₃ OH	An alcohol
$\overline{:}\ddot{O}R \longrightarrow CH_3\ddot{O}R$	An ether
$\overline{:}SH \longrightarrow CH_3SH$	A thiol (a mercaptan)
$\overline{:}$ SR \longrightarrow CH ₃ SR	A sulfide (a thioether)
$:C \equiv CH \longrightarrow CH_3C \equiv CH$	An alkyne
$:C \Longrightarrow N: \longrightarrow CH_3C \Longrightarrow N:$	A nitrile
$: I : \longrightarrow CH_3I :$	An alkyl iodide
$\ddot{:}\ddot{N} = \overset{+}{N} = \ddot{N} \vdots \longrightarrow CH_3 - \ddot{N} = \overset{+}{N} = \ddot{N} \vdots$	An alkyl azide
$: NH_3 \longrightarrow CH_3NH_3^+$	An alkylammonium ion
$: \ddot{O} \longrightarrow CH_3 \ddot{O}^+ \longrightarrow H$	An alcohol (after proton is taken away)
$: \overset{\cdot}{O} \longrightarrow CH_3 \overset{\cdot}{O} \longrightarrow CH_3 \overset{\cdot}{O} \longrightarrow CH_3$ $\stackrel{\cdot}{H} \longrightarrow H$	An ether (after proton is taken away)

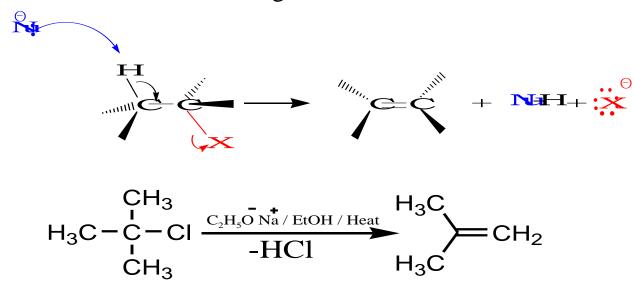
Nucleophilic Substitution Mechanism

• The SN2 mechanism:

is a one –step process in which the bond to the leaving group begins to break as the bond to nucleophile begins to form

Nucleophilic Substitution Mechanism

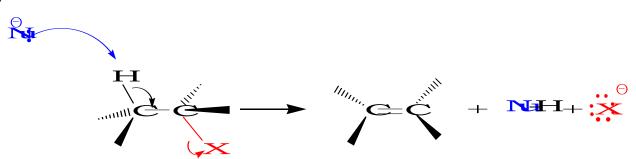
• The SN1 mechanism:


Is a two process: the bond between the carbon and leaving group breaks first and then the resulting carbocation combines with nucleophile

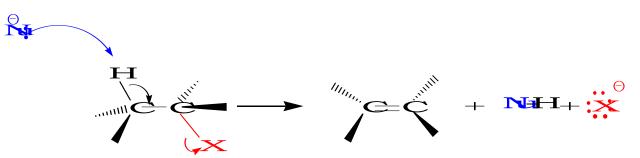
Nucleophilic Substitution Mechanism

Comparison of SN2 and SN1

2- Elimination Reactions


• Alkyl halides can lose HX molecule to give an alkene.

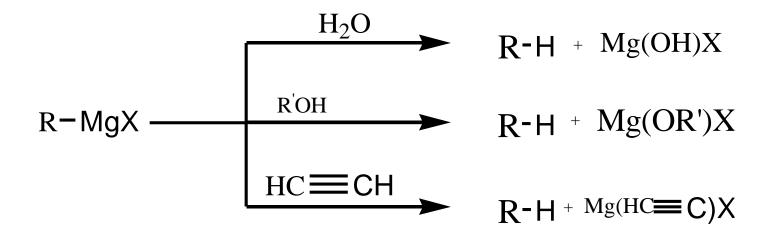
• If the haloalkane is unsymmetrical (e.g. 2-bromobutane or 2-bromopentane) a mixture of isomeric alkene products is obtained.


Elimination Reactions mechanism

E2

Elimination Reactions mechanism

• E2



• E1

3- Formation of Grignard reagent and its reactions:

$$R \longrightarrow X + Mg$$
 $\longrightarrow R \longrightarrow MgX (X=CI, Br, I)$
 $Ar \longrightarrow X + Mg$
 $\longrightarrow Ar \longrightarrow MgX (X=CI, Br, I)$

Reactions of Grignard reagent

4- Reduction of alkyl halides:

• Reduction by Zinc metal and acids or by metal hydrides

$$CH_{3}CH_{2}CH_{2}Br + Zn \xrightarrow{H^{+}} CH_{3}CH_{2}CH_{3} + ZnBr_{2}$$

$$CH_{3}CH_{2}CH_{2}CH_{2}Br \xrightarrow{+} CH_{3}CH_{2}CH_{2}CH_{3}$$

$$CH_{3}CH_{2}CH_{2}CH_{2}Br \xrightarrow{+} CH_{3}CH_{2}CH_{2}CH_{3}$$

Reduction by sodium metal (coupling reaction)

• Reduction using lithium dialkyl cuprate

$$(CH_3CH_2)_2CuLi$$
 + CH_3Br \longrightarrow $CH_3CH_2CH_3$

Quotations